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Magneto-rheological elastomers (MREs) are a class of soft active materials known for their tunable stiff-
ness. Dispersed with magnetic particles, these polymer-based composites tend to be stiffer under a mag-
netic field. Such a stiffening effect is often attributed to the magnetic interaction among filler particles,
but the well-acknowledged dipole-interaction model fails to explain the stiffening effect in tension/com-
pression, which was observed in experiments. Other mechanisms, such as the effect of non-affine defor-
mation, have been proposed, but there is no conclusive evidence on the dominating mechanism for the
field-stiffening effect. This paper investigates various filler-chain structures, and seeks to identify the ulti-
mate origin of the field-stiffening effect in MREs. Two different methods are used for cross verification: a
dipole-interaction model and a finite-element simulation based on continuum field theories. This paper
studies both the shear and axial deformation of the material, with a magnetic field applied in the particle-
chain direction. It is found that while the magnetic interaction between particles is indeed the major
cause of the stiffening effect, the wavy chain structure is the key to the modulus increase. Besides,
chain–chain interaction and non-affine deformation are shown to be insignificant. In addition, the depen-
dence of the stiffening effect on filler concentration is calculated, and the results qualitatively agree with
experimental observations. The models also predict some interesting results that could be easily verified
by future experiments.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction From a structural perspective, an MRE is a polymer-based com-
Subject to a magnetic field, a magneto-active polymer may un-
dergo a large deformation or change in its mechanical properties
(e.g. stiffness). The capability of fast, reversible, and large deforma-
tion has made these materials promising candidates for next-gen-
eration actuators or artificial muscles (e.g. Faidley et al., 2010;
Monz et al., 2008; Snyder et al., 2010; Zrínyi et al., 1997). The large
field-induced volumetric strain of a porous magneto-active poly-
mer may also be used in drug delivery (Zhao et al., 2011). The mag-
neto-active polymers that exhibit a field-induced stiffening effect
are known as magneto-rheological elastomers (MREs). Under an
applied magnetic field, an MRE may significantly increase its shear
modulus (e.g. Jolly et al., 1996; Shen et al., 2004; Zhou, 2003) and
tensile modulus (e.g. Bellan and Bossis, 2002; Varga et al., 2006;
Zhou, 2003). For brevity in description, we will refer to the field-
stiffening effect as the magneto-rheological (MR) effect in this pa-
per. The MR effect has endured MREs with numerous applications,
such as smart vibration absorbers and damping components (e.g.
Deng et al., 2006; Ginder et al., 2000; Hoang et al., 2011; Lerner
and Cunefare, 2008), noise barrier system (Farshad and Roux,
2004), and sensors (e.g. Tian et al., 2011).
ll rights reserved.
posite filled with magnetic particles. While various polymers can
been employed as the matrix material, silicon rubber and polyure-
thane are often used (e.g. Carlson and Jolly, 2000; Varga et al.,
2006; Wu et al., 2010; Zajac et al., 2010). Due to their reliability
and ease of manufacturing, micron-sized iron particles are usually
used as the filler (e.g. Jolly et al., 1996; Rao et al., 2010; Zhou,
2003). The filler particles are usually dispersed during the curing
process of the matrix elastomer, and their relative positions in
the matrix are locked upon completion of the polymerization. In
the absence of any external field, the filler particles are randomly
distributed, and the resulting MREs have isotropic microstructure
and magneto-mechanical properties. If an external magnetic field
is applied at curing, the filler particles tend to align into chain-like
structures, resulting in an MRE with highly anisotropic properties.
Such anisotropic MREs have directional magnetic sensitivity, and
exhibit a stronger MR effect than isotropic ones. Moreover, the
MR effect is most significant when the applied magnetic field is
in the direction along the particle-chains (e.g. Varga et al., 2006).
All these evidences suggest a strong correlation between the MR
effect and the microstructure of an MRE.

In past decades, constant efforts have been made in seeking the
underlying mechanism of the MR effect. The simple and widely
used model is based on the magnetic dipolar interaction between
neighboring filler particles (Jolly et al., 1996). This model assumes
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that all particles are magnetized in the same direction as the exter-
nal magnetic field, and the particles are small enough to be consid-
ered as magnetic dipoles. Under such an assumption, the
magnetostatic energy of the interaction between two neighboring
dipoles is a function of the dipole moment m, the inter-particle dis-
tance r, and the angle between the line connecting the two dipoles
and the direction of magnetization h (Fig. 1a) (Rosensweig, 1985),

U ¼ l0m2

4pr3 ð1� 3 cos2 hÞ; ð1Þ

where l0 is the vacuum permeability. As the interaction energy is
proportional to r�3, it attenuates quickly as the inter-particle dis-
tance increases, and thus an approximation can be made by
accounting for the neighboring particles only. As sketched in
Fig. 1a, when the material undergoes a shear c, the angle h changes
from 0 to c and the distance r increases as r = r0/cosc. The change in
the interaction energy contributes to the stress against the shear.
The corresponding contribution to the shear stiffness,

@2U
@c2

�����
c¼0

¼ 3
l0m2

pr3
0

; ð2Þ

is always positive. Consequently, the effective shear modulus in-
creases with the applied field. This simple model has been widely
used to explain the increase of the shear modulus of MREs under
a magnetic field (e.g. Ivaneyko et al., 2011; Jolly et al., 1996). The
model has been extended to account for the interactions among
all particles of an infinitely long chain (Shen et al., 2004), as well
as the interaction between parallel particle chains (Ivaneyko et al.,
2011; Stolbov et al., 2011).

Although all these models recover the MR effect in shear, none
of them is able to explain the MR effect in tension/compression.
Subject to a normal strain e along the chain direction, the inter-
particle distance changes as r = r0(1 + e), while the angle h = 0. Even
though the dipolar contribution to the normal stress oU/oe > 0, the
contribution to the tensile stiffness,

@2U
@e2

�����
e¼0

¼ �3
l0m2

pr3
0

; ð3Þ

is always negative. In contrast to the experimentally observed stiff-
ening effect, this simple dipolar model results in a reduction in ten-
sile modulus under an applied field. Similar conclusion has been
obtained when iron particles form a rectangular-lattice microstruc-
ture (Ivaneyko et al., 2011).
Fig. 1. Schematics of three possible mechanisms of the field-stiffening effect in an MRE: (
a wavy particle chain, and (c) non-affine deformation of the polymer matrix. The geomet
distance h between two neighboring particles.
We believe that the failure of this simple dipole-interaction
model is mainly due to the incorrect microstructure assumed –
the straight particle chains. In fact, available micrographs of MREs
(e.g. Bobarth et al., 2012; Chen et al., 2007; Coquelle and Bossis,
2005) show that the particle-chains are often wavy rather than
straight, as sketched in Fig. 1b. It has been suggested in the litera-
ture that wavy chains may explain the increased tensile modulus
(Ivaneyko et al., 2011), but no rigorous theory or model has been
proposed for this mechanism.

In addition to the dipolar interactions, other mechanisms have
also been suggested for the MR effect, such as the local non-affine
deformation of the polymer matrix. In a magnetic field, the neigh-
boring particles in a chain of finite length may move closer to each
other due to the magnetic attraction (e.g. Kankanala and Trian-
tafyllidis, 2004), as sketched in Fig. 1c. As the particles are much
stiffer than the matrix, the particle chain with narrower gaps
would have a higher effective stiffness. Another type of non-affine
deformation is the large distortion of the polymer matrix in be-
tween particle chains, as shown in Fig. 1c.

With all these mechanisms proposed but none verified, it be-
comes an urgent task to identify the ultimate origin of the MR ef-
fect in MREs. In the current paper, we seek to elucidate this puzzle
by reconsidering all possible mechanisms. We will first calculate
the MR effect from a wavy particle-chain structure by considering
the dipolar interactions. Then we will compare the contributions
from various mechanisms by computing the responses of a few
representative unit cells with detailed microstructures using a fi-
nite-element method, in which both the polymer matrix and the
filler particles are modeled as deformable continua, and the cou-
pled magnetic and strain fields are solved simultaneously. Our cal-
culations will show that the dominating mechanism for the MR
effect is the magnetic dipolar interaction between particles form-
ing wavy chains, while the contributions from chain–chain interac-
tion and non-affine deformation are minor. This study also foresees
the possibility of manufacturing a material with negative MR effect
by placing the particles in straight chains.
2. Dipolar interaction in a wavy particle-chain

In this section, we will extend the simple dipole-interaction
model (Jolly et al., 1996) by considering a wavy particle chain. Each
magnetized filler particle is still treated as a magnetic dipole. The
origin of the waviness in particle chains is quite natural. While
the detailed chain structure depends on the complex curing pro-
a) dipolar interaction between particles in a straight chain, (b) dipolar interaction in
ric parameters are the particle diameter d, the horizontal distance b, and the vertical
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Fig. 2. Dimensionless contribution to the tensile modulus from magnetic dipole
interactions, plotted as a function of the geometric parameter a = b/h (the waviness
of a chain). Both the nearest-neighbor approximation (dash curve) and the result
with interactions from all particles (solid curve) are presented.
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Fig. 3. Dimensionless contribution to shear modulus from magnetic dipole
interactions, plotted as a function of the geometric parameter a = b/h. The results
depend on the relative direction of the shear-induced rotation and the direction of
dipole moments. In the case when the dipoles stay in the original direction (case 1),
a straight chain (a = 0) has stiffening effect in shear, but a wavy chain of
intermediate a values softens under a magnetic field. In the case when the dipoles
follow the shear-induced rotation (case 2), a wavy chain shows stiffening effect at
intermediate values of a.
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cesses of MREs, such as the strength of the field applied, the initial
dispersion, the viscosity of the polymer solution, and the speed of
curing, basic physics suggests that a straight chain of aligned and
equally spaced magnetic dipoles is unstable (Earnshaw, 1842). To
enable analytical solution of the problem, we still assume the chain
structure to be periodic and infinitely long, as sketched in Fig. 1b.
The individual chains are assumed to be quite far from each other
so that the interaction between chains is neglected. The structure
is characterized by two geometric parameters: the horizontal dis-
tance b and vertical distance h between two neighboring particles.
Particularly, a wavy chain reduces to a straight chain when b = 0.

Consider the case when the magnetic field is applied in the ver-
tical direction, along the particle chains. When the material under-
goes an elongation or compression along the same direction, the
symmetry of the problem suggests that the dipole moment of each
particle, m, is also in the vertical direction. The magnetic interac-
tion energy of per particle can be calculated by summing Eq. (1)
over the contributions from all other particles:

U ¼ l0m2

ph3 ½0:5f ðaÞ � 0:1503�; ð4Þ

where f ðaÞ ¼
P1

n¼1ða2 � 2ð2n� 1Þ2Þða2 þ ð2n� 1Þ2Þ�5=2, and a = b/h
is a dimensionless geometry parameter representing the waviness
of a chain. When a = 0, the result reduces to that of a straight chain,
U � �1.2l0m2/ph3.

The magnetic interaction energy per unit volume of the MRE
can be written as Wm = NU, where N is the number of particles
per unit volume. Wm changes with deformation. Let us first con-
sider a uniaxial deformation along the chain direction, and assume
that all particles undergo an affine deformation. The geometry of
the chain structure varies accordingly with the axial stretch k: h
becomes kh, b becomes k�1b, and thus a becomes k�2a. The mag-
netic energy density is thus also a function of the axial stretch k,

WmðkÞ ¼
Nl0m2

pk3h3 0:5f
a
k2

� �
� 0:1503

� �
: ð5Þ

The magnetic energy gives rise to an additional stress sm ¼ @Wm=@k,
and an additional tensile modulus,

Em ¼
@2Wm

@k2

�����
k¼1

¼ Nl0m2

ph3 6f ðaÞ þ 9af 0ðaÞ þ 2a2f 00ðaÞ � 1:8032
� �

: ð6Þ

The normalized magnetic modulus, �Em ¼ Emph3
=Nl0m2, is plot-

ted in Fig. 2. To show the fast attenuation of the magnetic interac-
tions, we plot Eq. (6) together with the approximate result with
only nearest neighbors considered. The small difference clearly
shows the dominance of the interaction between neighboring par-
ticles. The results show that for relatively small a values (i.e. al-
most straight particle chains) the magnetic dipolar interaction
has a negative contribution to the modulus. At the intermediate
values of a (approximately 0.4–0.85, i.e. a relatively wavy chain),
�Em is positive and maximizes at a � 0.6. At large values of a, the
chain under consideration is effectively divided into two parallel
straight chains, and the magnetic contribution to the tensile mod-
ulus is also negative. The results at large values of a also indicate
that the interaction between two straight chains could not give a
positive MR effect in tension.

The prediction of this model is quite interesting. The MR effect
is highly dependent on the particle alignment in each chain. Only
an MRE containing wavy particle chains has positive MR effect in
tension/compression. The fact that existing MREs mostly demon-
strate positive MR effect indicates that most particle chains in
these materials are wavy. If an MRE with relatively straight particle
chains could be manufactured, we expect that it would exhibit a
negative MR effect, i.e. a reduction in tensile modulus under a mag-
netic field.

Using a similar approach, we also calculate the additional shear
modulus induced by the magnetic dipolar interaction. Interest-
ingly, the results are dependent on the relative direction of the
shear deformation, as shown by Fig. 3. If the applied shear is per-
pendicular to the direction of the magnetic moments (case 1 on
Fig. 3), the result is opposite to the tension case: a straight chain
stiffens under a magnetic field but a wavy chain becomes more
compliant. When the shear is parallel to the direction of the mag-
netic moments (case 2 on Fig. 3), the result is similar to the case of
tension. One may argue that these two shear modes differ only by a
rigid-body rotation, and case 1 is even closer to a usual experimen-
tal setup at first sight (e.g. Jolly et al., 1996; Shen et al., 2004; Zhou,
2003). However, it should be pointed out that, due to the presence
of the dipole vectors, the difference between these two cases is
more than just a rigid-body rotation. In fact, the physical difference
lies on the magnetization behavior of the material. In case 1, the
magnetic dipoles are always in the direction of the applied mag-
netic field, despite the shear-induced rotation of the particle chain.
In case 2, the magnetic dipoles rotate together with the particle
chain. Since the filler particles have much higher permeability than
the polymer matrix, a particle chain creates a highly permeable
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pathway for the magnetic field in the composite, and consequently
the magnetization would more likely follow the rotation caused by
the shear deformation. Case 2, which gives a result closer to the
experimental observations, may better represent the actual physi-
cal process. This speculation would be further validated by the
numerical calculations in the following sections.

Although the dipolar interaction model provides a simple way
of understanding the mechanism of the MR effect, and shows that
a wavy-chain structure could explain the stiffening effect in both
shear and tension/compression, it is still limited by the oversimpli-
fied model assumptions. First, the magnetic interactions between
particles are modeled as that between dipoles. Such an approxima-
tion is valid when the inter-particle distance is much larger than
the size of individual particles, whereas available micrographs
showed that the gaps between particles are often comparable or
even smaller than a particle (e.g. Bobarth et al., 2012; Chen et al.,
2007). Second, the model assumes constant dipole moment for
each filler particle, while in reality both the magnitude and the
direction of magnetization would vary with deformation. Third,
as discussed in the previous section, the presence of rigid particles
may induce highly non-affine deformation, which may also affect
the mechanical stiffness. To verify the prediction of this over-sim-
plified model and to investigate the effects of other possible mech-
anisms, a different model which considers both filler particles and
polymer matrix as continua will be introduced in Section 3 to
study the stiffening effect via numerical simulations.

3. Material model and numerical calculation

The continuum theory of coupled magnetic field and mechanical
deformation, namely the magneto-elasticity, has been well devel-
oped (e.g. Brigadnov and Dorfmann, 2003; Danas et al., 2012; Dorf-
mann and Ogden, 2004; Han et al., 2011; Kankanala and
Triantafyllidis, 2004). The purpose of the current section is not to
redevelop the theory, but to use it to study the field-stiffening mech-
anism of the composite material. We will thus omit the detailed der-
ivation of the theory, and only list the governing equations and the
specific material model. In contrast to homogenized models (e.g.
Dorfmann and Ogden, 2004; Kankanala and Triantafyllidis, 2004;
Ponte-Castañeda and Galipeau, 2011), we will study the effect of
microstructures by considering the polymer matrix and the mag-
netic fillers as continua of distinct material properties.

Following the common approach of modeling deformable mag-
netic materials, we specify the material properties by introducing
the Helmholtz free energy function W. Even though the composite
exhibits a coupling behavior, neither the polymer matrix nor the
filler particles have physically coupled magnetic and mechanical
properties. Polymers are naturally non-magnetic, and the small
magnetostriction of individual iron particles can be neglected.
We therefore write the free energy into the sum of the magnetic
contribution Wm and the elastic contribution Ws. For simplicity,
we further assume the magnetic field is much lower than the sat-
uration field, so that the materials can be modeled as linear mag-
netic, with magnetization energy density

Wm ¼
BiBi

2l
; ð7Þ

where l is the permeability and Bi the magnetic induction. Re-
peated indices indicate a summation over all spatial dimensions.
The elastic property is captured by the neo-Hookean model of free
energy density

Ws ¼
1
2

GðFiK FiK � 3Þ; ð8Þ

with G being the shear modulus, and FiK the deformation gradient.
An incompressible constraint, det F = 1, is further prescribed by
using a Lagrange multiplier, p, i.e. the pressure field. To avoid intro-
ducing distributed mechanical moments and asymmetric true
stress tensor, the field theory of magneto-elasticity is often written
in terms of the nominal quantities measured with respect to the ref-
erence configuration. For example, the nominal magnetic inductioneBK ¼ BiF

�1
Ki ;withF�1

Ki being the inverse tensor components of the
deformation gradient.

The specific form of free-energy function determines the consti-
tutive relations. The nominal stress is related to deformation gradi-
ent and magnetic induction as

siK ¼
@W
@FiK

¼ GFiK þ
1
l
eBK
eBMFiM � pF�1

Ki ; ð9Þ

and the nominal magnetic field

eHK ¼
@W

@eBK

¼ 1
l
eBMFiMFiK : ð10Þ

In the absence of any body force, the mechanical equilibrium re-
quires the divergence of the nominal stress to vanish

@siK

@XK
¼ 0: ð11Þ

Without any distributed current in the bulk, the static magnetic
field satisfies Ampère’s law,

eiKM
@ eHM

@XK
¼ 0; ð12Þ

where eiKM is the permutation symbol. The spatial derivatives in the
governing equations, (11) and (12), are both taken with respect to
the material coordinates in the reference state.

The governing equations and the material model are imple-
mented into a finite-element code (Han et al., 2011) using the com-
mercial software COMSOL Multiphysics 4.2. As the detailed
microstructure of an MRE is unknown, we are more interested in
the dominating mechanism rather than the accurate prediction
for one specimen. We thus implement the model in 2D, and calcu-
late the representative unit cells in a material, such as the one
sketched in Fig. 4b. In contrast to the dipole-interaction model,
each filler particle is now modeled as a circular domain with diam-
eter d. We assume the particles to be tightly bonded to the matrix,
so that both displacement and traction are continuous across the
interface. Different material properties are assigned to the filler
and the matrix. Both the shear modulus and the magnetic perme-
ability of the iron fillers are taken to be 1000 times higher than the
corresponding parameters of the polymer matrix, Gf/G0 = lf/
l0 = 103, similar to those taken in the literature (Davis, 1999). To
reduce the number of parameters, we normalize stresses by G0,
magnetic inductions by

ffiffiffiffiffiffiffiffiffiffiffi
l0G0

p
, and magnetic fields by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G0=l0

p
.

For a typical shear modulus of the polymer matrix, 1 MPa, a dimen-
sionless magnetic field H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=G0

p
¼ 0:5 is approximately 445 kA/m,

which is far below the saturation field for iron particles (Carlson
and Jolly, 2000). Thus the linear magnetic assumption in Eq. (7)
should be valid.

Since the computational unit cells are much smaller than the
size of a specimen, the boundary conditions are different from
those on a macroscopic sample. Periodic boundary conditions are
applied to the four sides of a unit cell, to represent a small piece
of material in the middle of a large sample. To allow macroscopic
deformation, the horizontal displacement on the right boundary
has a constant but unknown offset, u0, from that on the left bound-
ary, ur = ul + u0. Similar conditions are prescribed on the top and
bottom boundaries, vt = vb + v0.

The proper choice of magnetic boundary conditions is not obvi-
ous, as no magnetic field or electric current is applied directly on
the boundaries of the unit cell. In experiments, magnetic fields
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Fig. 4. (a) Sketch of an MRE with the magnetic field applied through an electromagnetic coil. (b) Sketch of a representative unit cell with a wavy chain. Periodic boundary
conditions with constant offsets are applied on the displacements of all four edges of the unit cell.

(a)

(b)

Fig. 5. Stiffening effect in the tensile modulus of MREs with different chain
geometries: (a) straight chains (a = 0) only give softening effect, which becomes
weaker as the inter-particle distance increases; (b) wavy chains of intermediate a
values have positive field-stiffening effect.
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have been applied in various ways to study the stiffening effect. In
the tension or compression tests, magnetic fields are usually ap-
plied via electromagnetic coils where the MRE sample is placed
at the center of the coil (e.g. Chertovich et al., 2010; Li et al.,
2010; Varga et al., 2006), as sketched in Fig. 4a. Due to the different
permeability of the sample and its surrounding air, the magnetic
field is non-uniform. Let us neglect the surface effect by consider-
ing a small representative volume in the middle of the sample, in
which the field is almost uniform. We thus apply periodical bound-
ary conditions to the top and bottom edges of the unit cell, and
symmetry boundary conditions to the left and right edges. The
magnetic field is applied through an integral constraint. Consider
the contour a-b-c-d on Fig. 4a, according to Ampère’s law, the inte-
gration of the magnetic field along a closed contour equals the
electric current it encloses. We may neglect the magnetic field out-
side the coil, and also that along the transverse sections (b and d) of
the contour. Thus the true magnetic field along boundary a is re-
lated to the current density in the coil J as

R
aHtdl = Ja, where Ht is

the tangential component of the true magnetic field along the
boundary. Since the coil rarely deforms with the sample, the true
magnetic field H measured with respect to the current geometry
keeps constant when the sample undergoes a tension or compres-
sion. To be consistent, we also evaluate the moduli by taking the
derivatives of the true normal stress r and shear stress s with re-
spect to the corresponding strains e and c, all measured in the cur-
rent state. Therefore, in the following numerical examples, the MR
effect is demonstrated by calculating the dependence of the tensile
and shear moduli on the applied true magnetic field,

EðHÞ ¼ @r
@e

����
H

and GðHÞ ¼ @s
@c

����
H

ð13Þ

It should be mentioned that some experiments are done under
approximately constant true magnetic induction by placing the
sample between two permanent magnets, such as those measuring
the MR effect in shear (Chen et al., 2007; Jolly et al., 1996; Kaleta
and Lewandowski, 2007; Stepanov et al., 2007; Varga et al., 2006;
Zajac et al., 2010). The measured constant-induction moduli, e.g.
@s=@cjB, may differ from the constant-field moduli (13) in values,
but should at least have the same sign and trend.

4. Results and discussion

First, the tensile moduli of unit cells with straight and wavy par-
ticle chains are studied. The chain structures are assumed to be
infinitely long in both cases. In the numerical simulation, a 1% nor-
mal strain was applied to the unit cell along the chain direction.
The tensile modulus E(H) is evaluated from the finite-element out-
put using Eq. (13). The results are normalized with the zero-field
modulus E(0), and plotted in Fig. 5 as a function of the dimension-
less field strength H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=G0

p
, for various particle-chain geometries.

Shown in Fig. 5a are the results of unit cells with straight particle
chains (a = 0) but different inter-particle distances ({h/d} = 1.1, 1.2,
1.3). Just like the prediction of the dipole-interaction model, the
straight-chain structure has a negative MR effect (i.e. the field-in-
duced stiffness decreases). Moreover, the relative change in the
modulus decreases with h/d, as the composite is less permeable
with large inter-particle distance, and thus the particles are less
magnetized. As shown in Fig. 5b, the results with wavy particle
chains are also consistent with the prediction of the dipole-interac-
tion model. At intermediate values of a, wavy chain structures ex-
hibit a positive MR effect in tension. Interestingly, the tensile
modulus of some wavy chain structures (e.g. at a = 0.4) is not a
monotonic function of the applied field. At a relative high magnetic
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(b)

Fig. 6. (a) Stiffening effect in the shear modulus of MREs with different chain
geometries: straight chains (a = 0) give the strongest stiffening effect and wavy
chains (a > 0) also induce positive stiffening effect. (b) Rotation of a particle chain
and the magnetization due to a shear deformation. The color scale shows the
magnitude of the dimensionless true magnetic induction, and the arrows indicate
the directions of the magnetization field.
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field, the modulus decreases slightly. We believe that this phenom-
enon is caused by the local non-affine deformation. Under a strong
magnetic field, the particles are aligned into straighter chains with
smaller a.

The shear moduli G(H) of these unit cells are also calculated and
the results are plotted in Fig. 6, after normalization with the zero-
field shear modulus G(0). In contrast to the behaviors in tension,
l L

w

(a)

Fig. 7. Two representative microstructures of MREs containing particle chains of finite
computational unit cells are marked by dash lines.
the particle-chain structures always exhibit a positive MR effect,
and a straight chain (a = 0) shows the highest relative change in
the shear modulus. The results show that the behavior of particle
chains is neither of the two ideal cases in the dipole-interaction
model (Fig. 3). The magnetization of the iron particles neither re-
mains in the direction of the external field, nor strictly follows
the shear-induced rotation of the chains. As shown by Fig. 6b,
the magnetization of the filler particles slightly rotates in the direc-
tion of shear, but the angle of rotation is smaller than the shear
strain.

To further investigate the effect of deformation non-affinity in
the particle-chain level, two more microstructures of MREs are
studied. Instead of assuming the particle-chains to be infinitely
long, we arrange finite particle chains side by side or staggered
as shown by Fig. 7a and b, respectively, and select the computa-
tional unit cells as delineated by the dash lines. To focus on the
contribution from non-affine deformation, we only consider the
case of straight chains. Even though the two parallel chains may
be regarded as an extreme case of one wavy chain, the separation
corresponds to a large a value (>5) and is thus no different from
two straight chains as suggested by the results shown in Figs. 2
and 3. The distance between neighboring particles within a chain
is fixed at h/d = 1.2 and the aspect ratio of the unit cells is fixed
at w/L = 0.5, where w and L are the width and length of the unit
cells. The relative length of a particle chain l/L varies from 0.5 to
1. Under a 1% tensile strain, the deformation and the magnetic field
are shown in Fig. 8. As expected, even under the low overall strain,
both cases exhibit highly non-affine deformation: the inter-particle
distance is significantly narrowed while the gaps between chains
are extended. The local strain exceeds 20%. In addition, the stag-
gered-chain structure shows a shear-lag pattern in the polymer
matrix between two parallel chains with overlaps. The relative
changes in tensile modulus of both types of structures are plotted
in Fig. 9.

Despite the finite chain length and the staggered pattern, all re-
sults show a negative MR effect in tension. Although the structures
with larger gaps (smaller l/L values) demonstrate a smaller de-
crease in the stiffness, we believe it is mainly caused by the de-
crease in the effective permeability of the structure – particle
chains with larger gaps are less magnetized under the same field.
This conclusion can be drawn by comparing between the behaviors
of the side-by-side structure and the staggered structure. As shown
by Fig. 9, the two types of structures are only slightly different in
l L

(b)

lengths: (a) chains are parallel and side by side, and (b) chains are staggered. The



Fig. 8. Simulated non-affine deformation in unit cells under magnetic fields: the
inter-particle distance is narrowed and the inter-chain gap is stretched. The
magnetic induction field is shown by streamlines, and the vertical stretch is shown
by color scale.

Fig. 9. Relative change in tensile modulus of MREs containing straight chains
arranged side by side or staggered. All geometrics show a field-softening effect. The
effect becomes weaker as the gap size increases.

(a)

(b)

Fig. 10. (a) Change of tensile modulus plotted as a function of the normalized true
magnetic field, for MREs of various filler volume fractions. The numerical results fit
well to a quadratic relation, DE / l0H2 (solid curves). (b) The dimensionless
quantity DE/l0H2 from the fitting results, is approximately linear in filler volume
fraction, /.
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terms of the stiffness change. The difference would be much more
significant if the non-affine deformation were the dominating
mechanism for the stiffness change, as the deformation patterns
and load-carrying modes of the two structures are very different.
We thus conclude that although the non-affine deformation under
a magnetic field could cause stiffness increase, it plays a minor role
compared to the effect of wavy chains in an anisotropic MRE. It
may, however, explain the relatively low MR effect in isotropic
MREs (Rao et al., 2010), in which particles are randomly distributed
and no chain structure is present.

Finally, using the numerical model developed, we will study the
effect of particle concentrations. It has been observed in experi-
ments that MREs loaded with more iron particles usually have a
stronger MR effect, both in shear and in tension/compression (Bel-
lan and Bossis, 2002; Nikitin et al., 2006; Rao et al., 2010; Varga
et al., 2006; Wu et al., 2011). For simplicity, only the structures
of infinite long wavy chains with geometric parameter a = 0.6 are
considered. The volume fraction of filler particles, /, is changed
by tuning the width of the computational unit cells. The calculation
results are presented in Fig. 10a. It is found that for each /, the rela-
tion between the dimensionless change in tensile modulus DE/G0

and the dimensionless magnetic field H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=G0

p
fits well to a qua-

dratic function, as shown by Fig. 10a. In other words, the absolute
change in modulus scales with the square of the applied field, and
is independent of the elastic properties of the matrix. Such a result
could be understood as a consequence of the dominance of the
magnetic particle interactions over the non-affine deformation.
This important result could be easily verified through experiments,
e.g. by measuring the MR effect under different temperatures.

Subsequently, we fit all data in Fig. 10a by quadratic relations,
and plot DE/l0H2, which represents the relative strength of the
MR effect, as a function of the filler volume fraction in Fig. 10b.
More interestingly, the dimensionless combination DE/l0H2 turns
out to be almost linear in the filler volume fraction /. Due to the
limitation of the current 2D model and the coarse presentation of
the microstructures, we are not confident on the accuracy of this
linear relation, especially at high concentrations of filler particles.
A densely loaded MRE could cause the particles to agglomerate
and thus change the chain structure of the material. Nevertheless,
the predicted trend that stronger MR effects are expected at higher
filler concentrations is in agreement with experimental observa-
tions (e.g. Varga et al., 2006). A 3D finite element model with more
realistic microstructures of MREs is expected to yield more accu-
rate results, but is beyond the scope of this paper.
5. Concluding remarks

While the MR effect in magnetic-particle-filled polymer com-
posites has been identified for decades, the dominating mechanism
giving rise to this effect has never been identified clearly. It is clear
though, that the mechanism is strongly correlated with the under-
lying microstructures of the materials. In this paper, we investigate
the particle-chain structures of anisotropic MREs and identify the
dominating mechanism that causes the MR effect using two meth-
ods. First, by modeling each particle as a magnetic dipole, we ana-
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lytically derive the magnetic contribution to the stiffness of an
MRE. The result shows that even though a straight chain could give
MR effect in shear, the tensile modulus would decrease with mag-
netic field. On the other hand, a wavy chain could give rise to po-
sitive MR effect in both shear and tension/compression. To
compensate the simplicity of the dipole-interaction model, we de-
velop a finite-element model to simulate the behavior of material
unit cells, which contain the polymer matrix and filler particles ar-
ranged into various patterns. Both the matrix and the fillers are
modeled as continua of distinct material properties. The finite-ele-
ment calculation confirms that the magnetic interaction among the
filler particles in an MRE with wavy chains have positive MR effect
in both shear and tension/compression. Furthermore, numerical
calculations show that the contribution from non-affine deforma-
tion is present but insignificant, and would not yield a positive
MR effect in MREs with straight chains.

Besides identifying the dominant mechanism of MR effect, our
models have a few interesting predictions. It is shown analytically
and numerically that an iron-particle-filled polymer composite
would have a decrease in tensile stiffness under a magnetic field,
if the particles are specially arranged to form straight chains. For
a regular MRE, it is shown numerically that the stiffness increase
scales with the square of the applied field, and is independent of
the stiffness of the matrix material. The 2D numerical model also
predicts an approximately linear dependence of the MR effect on
the volume fraction of filler particles at relatively low filler concen-
trations. We are eagerly waiting for experimental verifications on
the microstructural mechanism and on the predictions of the
model.
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