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Various counting polynomials suggested by chemical and physical problems are discussed. 

Mathematical relations among them and physico-chemical interpretations are given. 

1. Introduction 

The concept of a counting polynomial was first introduced in chemistry by Polya 

[55] in 1936. However, the subject received little attention from chemists for several 

decades even though the spectra of the characteristic polynomial of graphs were 

studied extensively by numerical means in order to obtain the molecular orbitals of 

unsaturated hydrocarbons [41]. Some researchers realized the importance of graph- 

theoretical concepts and techniques for solving this problem. The results of this 

paper arise from fifteen years of research by the present author and his colleagues 

into the applications of the counting polynomials to many different areas of chem- 

istry and physics. Important contributions by other researchers in this area are 

described in [61]. Most of the graph-theoretical terminology appears in standard 

works on graph theory and combinatorial theory [7,22,45,57]. 

2. Characteristic polynomials and the topological index 

The characteristic polynomial PC(x) of a graph G was originally not defined as 

a counting polynomial but as the expansion of the determinant of A -xE, where A 

is the adjacency matrix of G and E the identity matrix: 

Pc(X)=(-l)Ndet(A-xE)= F akxNek. (1) 
k=O 

Sachs [ 11,16,58] and the present author [28,3 l] independently found a combina- 

torial interpretation. Namely, the characteristic polynomial of a tree can be expres- 

sed in terms of the non-adjacent numbers p(G, k), by 

[N/21 
PC(x)= c (-l)kp(G,k)xN-2k 

k=O 

(G: tree). (2) 

Here, p(G, k) is the number of ways of choosing k disjoint lines from G, and can 
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G G-e G@k? 

Fig. 1. 

be obtained from the two subgraphs G-I and GOI (for an arbitrarily chosen line 

I) using the recursion 

p(G,k)=p(G-I,k)+p(GOl,k-1). (3) 

The two subgraphs G-f and GOI are illustrated in Fig. 1. The relation (3) is a 

natural consequence of the inclusion-exclusion principle [45,57]: the first and 

second terms correspond, respectively, to the choices of lines from G by excluding 

and including 1. In many of the counting polynomials introduced in this paper recur- 

rence relations similar to (3) play an important role in dealing with large graphs 

[24,3 11. An operator technique is useful for obtaining the recurrence formulas of 

counting polynomials for periodic large graphs [36, 381. 

For non-tree graphs we have to add some correction terms to (2) (see [29,33]) as 

follows: 
[N/21 

PC(x) = c (-l)kp(G, k)xN-2k 
k=O 

CYCkS [(N-n,)/4 
+ F (-2)‘f c p(G@R,,k)xNP”‘P2k, 

k=O 
(4) 

where the index i extends over every set, Ri, of line-disjoint ri-cycles and where Ri 
has nj points. As the number of cycles increases the correction terms become com- 

plicated. Nevertheless, it is always true that the characteristic polynomial can be 

constructed by counting the number of the sets of disjoint lines in a given graph. 

The sum of the p(G, k) numbers is defined as the topological index Z, as follows 

[28,31]: 
[N/21 

ZG= c p(Gk). (5) 
k=O 

The Z, numbers for a series of path graphs {S,} and cycle graphs (C,} are the 

Fibonacci and Lucas numbers, respectively. 

In chemistry we often need to know the electronic structure of a molecule so as 

to interpret the ultraviolet and visible absorption spectra of the molecule, to under- 

stand the reactivity and various related problems, and so on. Among all the several 

million known chemical compounds, the great majority contain carbon atoms and 

are called organic compounds. The most fundamental of these are composed of only 

carbon and hydrogen atoms, and are called hydrocarbons, either saturated with 

hydrogen or unsaturated. The electronic structure of a typical unsaturated hydro- 

carbon, such as benzene C,H,, can be explained by solving a secular equation of 
the following form [41,53] (see Fig. 2): 
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Fig. 2. 

= 0, 

This is simply the spectrum, or the set of zeros {xn, n = 1,2, . . . , N 1 PC(x) = 0} of the 

graph G corresponding to the carbon atom skeleton of the molecule. Usually the 

{x,} are listed in decreasing order. Several interesting properties of the molecule, 

such as the electronic energy, charge density, bond order, and so on, can be ob- 

tained as a functional of PC(x): 

J(P) = F{P&), P;;(z), z) dz (6) 

defined over a specified contour in the complex plane [lo] - usually a semicircle of 

infinite radius: +mi + 0 -+ --03i --) -too -+ +wi. For example, the total Tc-electronic 

energy E,, defined by 

[N/21 

En=2 c x,,, (7) 
II=1 

can be expressed as 

t E,=L ~_ ki zP;;(z) 
ni 

N dz 

1 PC(Z) * 
(8) 

Thus analysis of the characteristic polynomial is important for understanding the 

global electronic structure of unsaturated hydrocarbon molecules [33,34]. In par- 

ticular the special stability of polycyclic aromatic hydrocarbons whose carbon skele- 

tons form polyhex graphs, has offered a glamorous target for study by many 

theoretical chemists [61]. This stability, reflected in a large E, value, is called aro- 
maticity. 

Based on extensive numerical analysis of (8), the modified topological index po 

was proposed, and is defined in terms of the absolute magnitudes of the coefficients 

of the even terms of PC(x) for G: 
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(9) 

The total rr-electronic energy E, can then be estimated by 

E,=alog&+b. (10) 

For tree graphs ZG is identical to Z, while for non-tree graphs the following AZ,- 
value, 

AZ,=&Z,, (11) 

gives additional stabilization energy for the molecule caused by the cycle closure. 

By extending this discussion we obtain the general (extended Htickel) rule for clari- 

fying the stability (4n +2-cycle) and instability (4n-cycle) of polycyclic unsaturated 

hydrocarbon molecules. 

Another line of approach was proposed by RandiC [39,56]. The characteristic 

polynomial of a path graph S, is 

This yields: 
Id21 

X” = ‘c’ 4kL2k(d, 
k=O 

(12) 

(13) 

where the coefficients {B,k} are related to the Catalan numbers. With this expres- 

sion any characteristic polynomial can be expanded as a linear combination of 

{S,(x)} (called Chebyshev expansion), by which one can analyze the topological 

dependency of the characteristic polynomial. 

Contrary to a conjecture that the characteristic polynomial can be used for graph 

discrimination, certain pairs of graphs, such as 

PC(x) =x’“-10x8+33x6-44x4+24~2-4 

have the same PC(x) and are called cospectral [23] or isospectral [27,61] graphs. 

While algorithms for finding isospectral graphs have been proposed, this problem 

is not of much interest to chemists. Many chemical problems depend heavily on the 

geometrical or metric factors rather than on the topological or non-metric factors. 

3. Distance and Wiener polynomials 

The distance polynomial So(x) was independently defined by the present author 

[37] and Graham and Lovasz [14,15] by 



Some counting polynomials in chemistry 243 

So(x) = (-l)Ndet(D-xE) = i bkxNek, 
k=O 

(14) 

where D is the distance matrix. This is also not a counting polynomial. However, 

as we shall see the coefficients of the distance polynomial are related to certain coun- 

ting problems through the Wiener polynomial defined below. 

The element Dij of the distance polynomial is the length of the shortest path con- 

necting points i and j. Let 2dk be the number of such elements of D that are equal 

to k. Define the Wiener polynomial HG(x) of G as 

Ho(x) = c dkXk, (15) 
k=l 

where I is the largest element of D, or the diameter of G. In 1947 (the year as 

Norbert Wiener presented his cybernetics) Harry Wiener proposed two structural 

parameters w and p which give good correlation with the thermodynamic properties 

of saturated hydrocarbon molecules [62]. Since then, a number of topological in- 

dices have been proposed and discussed in connection with various problems of 

chemistry, such as structure-activity correlation including carcinogenic compound 

search [42,54], coding and classification of the chemical structures 13,301, and in- 

formation-theoretic analysis of various networks in chemistry [8]. 

The p and w indices are defined as d3 and the half sum of the off-diagonal ele- 

ments of D, respectively. Using the following expressions for HG(x) 

H;;(x)= c kdkXk-', (16) 
k=l 

H;(x) = f: k(k- l)dkxkP2, 
k=2 

(17) 

we can obtain the following relations: 

w= c D,= c kdk= H;;(l) 
i<j k=l 

p = d3 = H;(O)/6, 

(18) 

(19) 

or, generally, 

dk = Hhk'(0)/k f . . cw 

On the other hand, we can derive the following relations for the coefficients of 

So(x) by expanding (14) as follows: 

bo= 1, b, = 0, 

b2 = -c D; = f: k2dk = H;;(l)+H;(l), 
i<; k=l 

(21) 

b3 = -2 c D,Dj,Dk;. 
i<jik 
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Table 1. Examples of distance polynomial. 

Graph SG (x1 

--_- 

I --- 

II>- 

x5 - 50x3 - 140x2 - 120x - 32 

5 
x - 38x3 - 116x2 - 112x - 32 

x5 - 28x3 - 88x2 - 96x - 32 

5 
X - 35x3 - 88x2 - 74x - 20 

X5 - 30x3 - 82x2 - 72x - 20 

X5 - 25x3 - 70x2 - 66x - 20 

X6 - 44x4 - 162x3 - 201x2 - 80x 

X6 - 49x4 - 176x3 - 209x2 - 80x 

6 
X - 49x4 - 180x3 - 220x2 - 80x 

For higher bk things get more involved and no neat expression can be expected. 

However, for a tree graph the last term of &(x) can be shown to be 

b,.,, = -2NP2(N- l), (22) 

regardless of its branching mode as shown in Table 1 [ 15,371. 

Further, the coefficient b,,_, for a tree graph can be expressed in terms of gk, the 

number of points with degree k, 

bN_r = -2N-3 c g,#-1)(2N-k+2). 
k=2 

(23) 

These relations are illustrated in Fig. 3 with the second graph in Table 1 taken as 

an example. 

More interestingly, the conjecture [37] that b,(G) of graph G is determined only 

by the number of points and the cycle skeleton was later proved to be true [14]. 

Thus, a good deal of information about the topological structure of a graph is con- 

tained in the distance polynomial. Namely, the term b1 gives the number of lines 

of G, b2 gives the ‘roundness’, b,,_, gives the ‘branching’, and bN gives the cycle 

skeleton. 

Although the distance polynomial has no direct chemical interpretation, one 
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Fig. 3. 

might be able to use it as a device for coding, sorting, or classifying graphs. Gener- 

ating isospectral pairs is much slower when using the distance polynomial in com- 

parison to using the characteristic polynomial. 

4. Z-counting and matching polynomial 

The topological index ZG can also be defined as 

ZG = QGU) 

in terms of the Z-counting polynomial QG(x) [28]: 

[N/z1 
QG(x) = k;, P(W)X~ 

(24) 

(25) 

In statistical mechanics Heilman and Lieb [25,26] and Kunz [44] proposed a similar 

polynomial. Aihara [l] also proposed the reference polynomial 

[N/21 
c+(x) = c (-l)kp(G,k)~N-2k (26) 

k=O 

to discuss the aromatic character of polycyclic hydrocarbons. Independently, 

Gutman et al. [21] proposed the same polynomial for the same purpose under the 

name of acyclicpolynomial. Further, Farrell extended the idea of these polynomials 

and introduced the matching polynomial (26) [ 131. The magnitudes of the difference 

between the &-values defined in (7) for the polynomials P,(x) and o,(x) have 

been thorougly discussed. However, the logical basis of these studies is simply the 

idea of our modified topological indices (see (11)). Great enrichment in the under- 

standing of the aromaticity of polycyclic unsaturated hydrocarbons has been 

achieved by these researchers [61]. 

Aside from this problem these polynomials have important mathematical sig- 

nificance, as will be clear from the following discussion. The matching polynomials 
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Table 2. Correspondence between the orthogonal polynomials and the matching 

polynomials for certain series of graphs. 

Orthogonal polynomial Graph 

Chebyshev (1st kind) 
Tn' Cn 

Cycle graph 
Cn 

Chebyshev (2nd kind) 
"n' srl 

Path graph Pn 

Hermite 
Hrlr brl 

Complete graph 
Kn 

Laquerre 
Ln 

Complete bipartite Kn n 

graph 

Associated Laquerre m 
Lm-n 

Complete bipartite Km n 

graph 

Leqendre 
Pi? 

--_- 

of several series of graphs are identical to typical orthogonal polynomials, such 

as Chebyshev, Hermite, and Laguerre polynomials, as summarized in Table 2 

[l&26,32]. 

Because the Z-counting and matching polynomials are related, 

(x0(x) = xNQG(-1/x2), 

QG(x> = (I/@acWfi), 
(27) 

the relation between the Z-counting and orthogonal polynomials is straightforward 

(see [34]). 

Let us turn to the adsorption of diatomic molecules, such as oxygen, onto the 

clean surface of a metal composed of a two-dimensional periodic lattice, such as the 

square or hexagonal lattice. The number of ways of placing k dimers in one layer 

on a given lattice G is exactly the number p(G, k) defined already. If the energy 

needed for a dimer to be adsorbed onto two neighboring sites in the lattice is a>0 

and the reaction is additive, the partition function is 

Q = c p(G, k) exp(-ka/kT), 
k=O 

(28) 

where k is the Boltzmann constant and T the temperature. By substituting x= 

exp(--E/kT), (28) turns out to be (25). 

Thus, the master equation of dimer statistics is equivalent to our Z-counting poly- 

nomial. To obtain the numbers p(G, k) for larger graphs we need effective recursion 

formulas, an example of which is shown in Fig. 4. Together with the operator 

technique we can obtain the Z-counting polynomials for a variety of periodic rec- 

tangular and torus lattices [36]. Observing the distribution of p(G, k) against k for 

large networks leads us to believe that it might approach that of the normal or 

Gaussian distribution, but this is not yet proved. 
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l+8x+lGx2+8x3+x~ 1+7x+llxL3x3 1+4x+2x2 
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q 1+12x+42x2+44x3+9x~ 

Fig. 4. 

5. Rotational polynomial [35] 

Another connection between the counting polynomials and thermodynamic parti- 

tion functions can be found in the analysis of the entropy of chain hydrocarbon 

molecules. All the carbon-carbon (C-C) single bonds in these molecules rotate 

rapidly with certain restricted conditions (potentials). Thus the thermodynamic 

properties, such as entropy and enthalpy, should be explained by averaging over 

numerous conformations. 

The carbon atom chain of saturated hydrocarbons takes a restricted random walk 

along the diamond lattice, in which only four directions are allowed to each bond 

(Fig. 5). The directions of the terminal C-H bonds are also restricted in this way. 

Each pair of bonds at the opposite ends of a given C-C bond, or a pair of atoms 

X and Y whose distance Dxy is 3, takes either trans (T) or one of the two gauche 

(G, G’) conformations (see Fig. 6) [46, 49, 591. The conformations G and G’ are 

mirror images of each other. Extra energy, de = cx>O, is needed for any four 

successive carbon atoms in the chains of saturated hydrocarbons to take a gauche 

form relative to the trans form. 

According to Balaban [2] any conformation of a branchless saturated hydro- 

carbon CNH2N+2 (Nz 4) with skeletal graph S, can be expressed as a set of N- 1 

successive digits from 1 to 4 (6digit code or 4-DC). Each of the 3N-3 conforma- 

tions generated from S, can be transformed into another TG-code which is a set 

of N- 3 successive codes of T, G, and G’, as in Table 3 [46]. Thermodynamically 

equivalent conformations, such as TG and CT, are further regrouped as in the third 

Fig. 5. 
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Q Y 

X 

9 
124 

G’ 

o( 

column in Table 3. Note that the GG’ type conformation has an extra repulsion 

energy /3> 0 between the pair of X and Y sites with D,, = 4, relative to the CC type 

(see Fig. 7). Let us define the rotational polynomial QG(X, Y) for hydrocarbon G 

by 

QdXY) = c (m,n)X"Y", (29) 
m,n 

where (m, n) is the number of conformations with m G-codes and n CC’-pair codes. 

The QG(X, Y) for S, and S, graphs are, 

1+2X and 1+4X+2X2+2X2Y, 

respectively. Further, if we delete all the conformations containing three successive 

GG’G-codes from energy consideration, we immediately obtain 

GG GG’ 

A E=2K P E=Zoc+p 

Fig. 7. 
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Table 3. Rotational polynomials of pentane graph (Ss). 

4-DC TG-code Classification Energy 

1 2 1 2 TT TT 0 

1 2 1 3 TG 

1 2 1 4 T G’ 
TG a 

1232 GT 

1242 G’T 

1234 GG 
GG 2 (2 

1243 G’G’ 

1231 G G' 
G G’ 2 L+(’ 

1241 G’G 

QG(x,y) = 1 + 4x + 2x2 + 2x2y2 

Q&GO) = (X+l)Q,-,(x,O)+Q,~,(X,O), 

cm, n)N = ( > yn (m-n,%-., 

and a few other recursion relations, where QN stands for the Q polynomial of S,. 

This rotational polynomial can be extended to branched hydrocarbons. Then by 

substituting 

X = exp(-a/kT) and Y = exp(+/kT) 

into (29) we get 

QG = zn Cm, n) w I -(ma + M)/kT}, (32) 

which is the rotational part of the partition function of the saturated hydrocarbon 

chain, and is closely related to its entropy. Good correlation can be obtained 

between the experimentally observed entropies and the partition functions thus 

derived from the rotational polynomial. 

6. King and domino polynomials [47,48] 

Although the rook polynomial has been known as an effective means for con- 

sidering the enumeration problems of chess and Japanese shohgi games, it ap- 



250 H. Hosoya 

parently has not been used in the mathematics of the important models of physics 

and chemistry [45,57]. 

We have proposed the King polynomial for enumerating the number of ways of 

putting non-taking kings on a given polyomino, square animal, or chessboard of an 

arbitrary size and shape [47,48]. It turns out that the king polynomial is closely 

related to the perfect matching number problem already discussed in Section 4. 

A king can take any of the eight neighboring cells, including the four point- 

contact ones. By drawing circles in a certain set of cells of a given polyomino graph 

G we get king patterns as in Fig. 8. If any pair of two cells occupied by the kings 

in a king pattern are not neighbors of each other, such a pattern is called a non- 

taking king pattern. 
Define the non-taking king number r(G, k) for a given polyomino graph G as the 

number of non-taking king patterns with k kings. In all cases, r(G,O) is defined to 

be unity. The king polynomial KG(x) for G is defined as 

KG(x) = c r(G, k) xk. (33) 
k=O 

For the polyomino given in Fig. 8 we get 

KG(x) = 1+6x+4x2. 

It is interesting to note that the total number of non-taking king patterns for G, or 

KG(l) (=ll in this case), is equal to the number of perfect matchings, or the 

KekulC number K(G) of the rectangular lattice G. A perfect matching pattern is also 

KING KEKULi 

RI R 

r(G,O)=l 

0 El33 
EEEI 0 

0 EEI 
EEH 0 

1 lo 

II I EEI - - - - 
EEH II 1 

I IEI I 
- - 
- - 

I IZI I 

1 II El3 - - - - - EEEI - II 
r(G,1)=4 

Fig. 8. 
r(G,2)=6 
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king pattern 
perfect matching 

Kekul6 pattern 
domino pattern 

Fig. 9. 

the pattern obtained by paving or tiling dominoes and is called the domino pattern. 
The relationship between these different patterns are illustrated in Fig. 9. 

For ‘thin’ polyomino graphs there is a one-to-one correspondence between the 

king pattern and the KekulC pattern as illustrated in Fig. 8: 

K,(l) = K(G). (34) 

However, for ‘fat’ polyominoes, provided certain correction terms are properly 

taken into account in constructing the domino polynomial DG(x), the relation 

D,(l) = K(G) (35) 

holds universally. More detailed discussion is given in [48]. 

The existence of this novel one-to-one correspondence between the two different 

graph-theoretical quantities reveals that the structural formula which has been 

drawn formally and used conventionally by chemists might have both a profound 

physical meaning and mathematically meaningful properties. This idea is more 

extensively analyzed in connection with the sextet polynomial. 

7. The sextet polynomial [40,52] 

Consider a honeycomb or polyhex graph, composed of only hexagons, repre- 

senting the carbon atom skeleton of polycyclic aromatic hydrocarbon molecules. If 

the number of carbon atoms (points) is even, most of those polyhexes have non-zero 

perfect matching or non-zero KekulC patterns (see Fig. 10). If the set of three cir- 

cularly arranged double bonds in the right hexagon of Fig. 10(a) are rotated by 60 

degrees in either direction, we get another Kekulk pattern 10(b). In a chemical sense 

we interpret this as follows: the aromatic sextet, a union of six rr-electrons, stabilizes 

the electronic structure in the benzene ring by the quantum-chemical resonance. So 

it is important to analyze what kinds of aromatic sextets can stabilize the whole 

molecule. 

a b 

Fig. 10. 

C 
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proper sextet improper sextet 

aromatic sextet 

Fig. 11. 

We call the sets of three double bonds as shown in Fig. 11 the proper and im- 

proper sextets, respectively. A pair of proper and improper sextets in a certain hexa- 

gon is called an aromatic sextet and is sometimes designated by a circle. No two 

sextets may share a bond. However, certain Kekule patterns can have more than one 

sextet located on disjoint hexagons. Such disjoint sextets are said to be resonant with 

each other. Note that for certain kinds of Kekule pattern there is no unique way of 

choosing a sextet or a set of resonant sextets (see Fig. IO(b)). According to Clar [9] 

we denote a sextet by a circle and suppress the remaining double bonds to give a 

sextet pattern si as shown in Fig. 12. Here the zero-sextet pattern is also defined to 

have no circle. 

For a given polyhex graph G we define the resonant sextet number r(G, k) to be 

the number of ways of choosing k disjoint resonant sextets from G. The sextet pofy- 
nomiaf BG(x) is defined as 

K(G) = I{ kill = I{Si}l = BG(l) 

Fig. 12. 
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Fig. 13. Fig. 14. 

B&X)= 5 r(G,k).& 
k=O 

For the graph in Fig. 12 we have 

&(x)=1+4x+2x2. 

Fig. 15. 

(36) 

For ‘thin’ polyhex graphs that have no coronene skeleton (Fig. 13) the following 

relation holds, 

B,(l) = K(G), (37) 

we can extend the validity of the relation (37) to ‘fat’ polyhexes by defininng the 

‘supersextet’ [50,52]. 

Since both sides of (37) are derived from quite different enumeration problems, 

this is a very important relation both in chemistry and graph theory. In order to 

analyze this problem we introduce the following two graphical operations. 

Define the Clar transformation (C) as a simultaneous substitution of all the 

proper sextets by circles in a given Kekule pattern ki followed by the transforma- 

tion of the remaining double bonds into single bonds (Fig. 14), as exemplified in 

Fig. 12. The Clar transformation can symbolically be expressed as 

C(kj) = Si. (38) 

Define the sextet rotation (R) as a simultaneous rotation of all proper sextets in a 

given KekulC pattern kj into the improper sextets to give another KekulC pattern kj - 
or symbolically as 

R(k;) = kj (see Fig. 15). (39) 

For example, we get R(k,) = k, for the graph in Fig. 12. Note that for such kj with 

no proper sextet, such as k, in Fig. 12, we cannot operate the sextet rotation. In 

this case we put it down as 

R(ki) = 0, 

and call such ki the root Kekule pattern. 

(40) 

Now try to apply the sextet rotation to the set of the Kekult patterns for the graph 

in Fig. 12. The resultant relationship among { ki} is a hierarchical structure and can 

be expressed by a directed rooted tree as shown in Fig. 16, where all entries in {ki) 
can find the corresponding points including the root. It has been shown that the 

proof of (37) and of the results in Figs 12 and 16 can be obtained straightforwardly 

from the following Lemma [50,52]: 
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Fig. 16. 

Lemma. For each polyhex graph, there exists exactly one root Kekuie’ pattern (a 
Kekule’ pattern with no proper sextet). 

Interesting mathematical properties of this challenging polynomial are being studied 

by several research groups [12,20]. 

8. Concluding remarks 

We have surveyed the counting polynomials proposed for analyzing problems 

arising from counting various elements in the structural formula. Their characteris- 

tic features and relations are summarized in Table 4. For other polynomials see 

[51,61]. 

Within the last five years remarkable progress has been made in elucidating the 

Table 4. Relation among various counting polynomials. 

Polynomial Definition Characterization Related problem Relation 

P,(X) characteristic det(A - xE) all graphs Hiickel MO TTr-1 

QGiX) Z-counting p(G.k) 

w( 

matchlnq 

ii 
non-adjacent all graphs 

acyclic *"lTlbeI 
reference 

{ to;:;l:cal]~ 

SG(X) distance det(D - xE) coding, 4-y 

- all graphs 
ring analysis 

FIG(X) Wiener dk in D (_-' 

KG(x) king 

- > 

r(G,k) 
non-taklng polyomino 

partition I 
DG(x) domrno klnq number 

function 1 

r(G.k) 
resonant sextet polyhex, Kekule 

number 
unsaturated structure --/ 

BG(X) sextet 

I 
WG(X) Wheland matching all graphs, resonance e-J I 

Datterns unsaturated structure *__----. 

gauche pairs, 
steric con- partition 

QG(x,y) rotational 
internal rotation 

formation function, 
of tree entropy 
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mathematical structure of various counting polynomials and also in developing the 
algorithms for obtaining their coefficients and recursion relation [4,5,6,19,38,39, 
43,56,60]. By the use of these relations further progress is being expected in the 
analysis of the physico-chemical and mathematical features of molecules and crys- 
tals. However, there is still plenty of room for defining new counting polynomials 
for the various problems in this field. 
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