Analytic Solutions of an Iterative Functional Differential Equation

Xin-Ping Wang
School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
and
Jian-Guo Si
Department of Mathematics, Sichuan University, Chengdu 610064, People's Republic of China

Submitted by V. Lakshmikantham
Received June 6, 2000

This paper is concerned with an iterative functional differential equation $x^{\prime}\left(x^{[r]}(z)\right)=c_{0} z+c_{1} x(z)+c_{2} x(x(z))+\cdots+c_{m} x^{[m]}(z)$, where r and m are nonnegative integers, $x^{[0]}(z)=z, x^{[1]}(z)=x(z), x^{[3]}(z)=x(x(x(z)))$, etc. are the iterates of the function $x(z)$, and $\sum_{j=0}^{m} c_{j} \neq 0$. By constructing a convergent power series solution $y(z)$ of a companion equation of the form $\alpha y^{\prime}\left(\alpha^{r+1} z\right)=y^{\prime}\left(\alpha^{r} z\right) \sum_{j=0}^{m} c_{j} y\left(\alpha^{j} z\right)$, analytic solutions of the form $y\left(\alpha y^{-1}(z)\right)$ for the original differential equation are obtained. © 2001 Academic Press

Key Words: functional differential equation; analytic solution.
In the last few years there has been a growing interest in studying functional equations with state dependent delay. We refer the reader to the papers by Eder [1], Feckan [2], Wang [3], and Stanek [4]. In [5], the authors considered the equation

$$
x^{\prime}(z)=x^{[m]}(z)
$$

and established sufficient conditions for the existence of analytic solutions. In [7, 8], Minsker studied the asymptotic property of the equation

$$
a^{\prime}(a(x))=a(x) / x
$$

In this paper, we will be concerned with a class of iterative functional differential equations of the form

$$
\begin{equation*}
x^{\prime}\left(x^{[r]}(z)\right)=c_{0} z+c_{1} x(z)+c_{2} x(x(z))+\cdots+c_{m} x^{[m]}(z) \tag{1}
\end{equation*}
$$

where r and m are nonnegative integers, $c_{0}, c_{1}, \ldots, c_{m}$ are complex constants, and $\sum_{j=0}^{m} c_{j} \neq 0$. By means of the method of majorant series, we construct analytic solutions for our equations in a neighborhood of the complex number $\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$, where α satisfies one of the following conditions:
(H1) $\quad|\alpha|>1$.
(H2) $\quad 0<|\alpha|<1$.
(H3) $\quad|\alpha|=1, \alpha$ is not a root of unity, and

$$
\log \frac{1}{\left|\alpha^{n}-1\right|} \leq \mu \log n, \quad n=2,3, \ldots
$$

for some positive constant μ.
The technique for obtaining such solutions is as follows. We first seek an analytic solution $y(z)$ for the initial value problem

$$
\begin{gather*}
\alpha y^{\prime}\left(\alpha^{r+1} z\right)=y^{\prime}\left(\alpha^{r} z\right) \sum_{j=0}^{m} c_{j} y\left(\alpha^{j} z\right), \tag{2}\\
y(0)=\frac{\alpha}{\sum_{j=0}^{m} c_{j}} . \tag{3}
\end{gather*}
$$

Then we show that

$$
\begin{equation*}
x(z)=y\left(\alpha y^{-1}(z)\right) \tag{4}
\end{equation*}
$$

is an analytic solution of (1) in a neighborhood of $\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$. Here $y^{-1}(z)$ denotes the inverse function of $y(z)$. Finally, we make use of (4) to show how to derive an explicit power series solution.
First of all, we seek a solution of (2) in a power series of the form

$$
\begin{equation*}
y(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \tag{5}
\end{equation*}
$$

where $b_{0}=\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$. By substituting (5) into (2), we see that

$$
\begin{align*}
\left(\alpha-b_{0} \sum_{j=0}^{m} c_{j}\right) & b_{1}=0 \tag{6}\\
(n+1)\left(\alpha^{(r+1) n+1}-\alpha^{r n+1}\right) b_{n+1}= & \sum_{k=0}^{n-1}\left(\sum_{j=0}^{m} c_{j} \alpha^{j(n-k)+r k}\right)(k+1) \\
& \times b_{k+1} b_{n-k}, n=1,2, \ldots \tag{7}
\end{align*}
$$

So $b_{1}=\eta \in C$ and the sequence $\left\{b_{n}\right\}_{n=2}^{\infty}$ is successively determined by (7) in a unique manner. This implies that for (2) there exists a formal power series solution

$$
\begin{equation*}
y(z)=\frac{\alpha}{\sum_{j=0}^{m} c_{j}}+\eta z+\sum_{n=2}^{\infty} b_{n} z^{n} . \tag{8}
\end{equation*}
$$

Next, we show that such a power series solution is majorized by a convergent power series. We begin with the following preparatory lemma, the proof of which can be found in [6, Chap. 6].

Lemma 1. Assume that (H3) holds. Then there is a positive number δ such that $\left|\alpha^{n}-1\right|^{-1}<(2 n)^{\delta}$ for $n=1,2, \ldots$. Furthermore, the sequence $\left\{d_{n}\right\}_{n=1}^{\infty}$, defined by $d_{1}=1$ and

$$
d_{n}=\frac{1}{\left|\alpha^{n-1}-1\right|} \max _{\substack{n=n 1+\cdots n_{i} \\ 0=n_{1} 1 \leq-m n_{i}, \geq 2}}\left\{d_{n_{1}} \cdots d_{n_{l}}\right\}, \quad n=2,3, \ldots,
$$

satisfies

$$
d_{n} \leq\left(2^{5 \delta+1}\right)^{n-1} n^{-2 \delta}, \quad n=1,2, \ldots
$$

Lemma 2. Suppose (H3) holds. Then for $\eta=1$, Eq. (2) has an analytic solution of the form (8) in a neighborhood of the origin and there exists a positive constant δ such that

$$
|y(z)| \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{2^{5 \delta+1}} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}} .
$$

Proof. In view of (8), we define $b_{1}=\eta=1$. Since $0 \leq k \leq n-1$ and

$$
\begin{align*}
\left|\frac{\left(\sum_{j=0}^{m} c_{j} \alpha^{j(n-k)+r k}\right)(k+1)}{(n+1)\left(\alpha^{(r+1) n+1}-\alpha^{r n+1}\right)}\right| & =\left|\frac{\left(\sum_{j=0}^{m} c_{j} \alpha^{(j-r)(n-k)}\right)(k+1)}{\left(\alpha^{n}-1\right)(n+1)}\right| \\
& \leq \frac{\sum_{j=0}^{m}\left|c_{j}\right|}{\left|\alpha^{n}-1\right|}, \quad n \geq 2, \tag{9}
\end{align*}
$$

thus

$$
\begin{aligned}
\left|b_{n+1}\right| & \leq \frac{\sum_{j=0}^{m}\left|c_{j}\right|}{\left|\alpha^{n}-1\right|} \sum_{k=0}^{n-1}\left|b_{k+1}\right|\left|b_{n-k}\right| \\
& =\frac{\sum_{j=0}^{m}\left|c_{j}\right|}{\left|\alpha^{n}-1\right|} \sum_{\substack{n_{1}+n_{2}=n+1 ; \\
1 \leq n_{1}, n_{2} \leq n}}\left|b_{n_{1}}\right|\left|b_{n_{2}}\right|, \quad n=1,2, \ldots
\end{aligned}
$$

Let us now consider the function

$$
G(z)=\frac{1}{2\left(\sum_{j=0}^{m}\left|c_{j}\right|\right)}\left\{1-\sqrt{1-4\left(\sum_{j=0}^{m}\left|c_{j}\right|\right) z}\right\},
$$

which, in view of the binomial series expansion, can be written as

$$
G(z)=z+\sum_{n=2}^{\infty} B_{n} z^{n}
$$

for $|z|<1 / 4\left(\sum_{j=0}^{m}\left|c_{j}\right|\right)$. Since $G(z)$ satisfies the equation

$$
\left(\sum_{j=0}^{m}\left|c_{j}\right|\right) G^{2}(z)-G(z)+z=0
$$

thus, by the method of undetermined coefficients, it is not difficult to see that the coefficient sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ satisfies $B_{1}=1$ and

$$
\begin{aligned}
B_{n+1} & =\left(\sum_{j=0}^{m}\left|c_{j}\right|\right) \sum_{k=0}^{n-1} B_{k+1} B_{n-k} \\
& =\left(\sum_{j=0}^{m}\left|c_{j}\right|\right) \sum_{\substack{n_{1}+n_{n}=n+1 ; \\
1 \leq n_{1}, n_{2} \leq n}} B_{k+1} B_{n-k}, \quad n=1,2, \ldots
\end{aligned}
$$

Hence by induction, we easily see that

$$
\left|b_{n}\right| \leq B_{n} d_{n}, \quad n=1,2, \ldots,
$$

where the sequence $\left\{d_{n}\right\}_{n=1}^{\infty}$ is defined in Lemma 1.
Since $G(z)$ converges in the open disc $|z|<1 / 4\left(\sum_{j=0}^{m}\left|c_{j}\right|\right)$, there exists a positive T such that

$$
B_{n} \leq T^{n}
$$

for $n=1,2, \ldots$. In view of this and Lemma 1 , we finally see that

$$
\left|b_{n}\right| \leq T^{n} Q^{n-1} n^{-2 \delta}, \quad n=1,2, \ldots
$$

where $Q=2^{5 \delta+1}$, which shows that the series (8) converges for $|z|<$ $(T Q)^{-1}$.
Next, note that $|z| \leq(T Q)^{-1}$,

$$
\begin{aligned}
|y(z)| & \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\sum_{n=1}^{\infty}\left|b_{n}\right||z|^{n} \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\sum_{n=1}^{\infty} B_{n} d_{n}|z|^{n} \\
& \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\sum_{n=1}^{\infty} T^{n} Q^{n-1} n^{-2 \delta}(T Q)^{-n} \\
& =\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{Q} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}}
\end{aligned}
$$

as required. The proof is complete.

Lemma 3. Suppose (H1) holds. Then for any $r \geq m$ and any complex number $\eta \neq 0, E q$. (2) has an analytic solution of the form (8) in a neighborhood of the origin and there exists a positive constant M such that for z in this neighborhood,

$$
|y(z)| \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{2 M}
$$

Proof. As in the proof of Lemma 2, we seek a power series solution of the form (8). By defining $b_{0}=\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$ and $b_{1}=\eta \neq 0$, we see that (7) again holds. Furthermore, since $r \geq m, 0 \leq k \leq n-1,|\alpha|>1$, and

$$
\begin{aligned}
\left|\frac{\left(\sum_{j=0}^{m} c_{j} \alpha^{j(n-k)+r k}\right)(k+1)}{(n+1)\left(\alpha^{(r+1) n+1}-\alpha^{r n+1}\right)}\right| & =\left|\frac{\left(\sum_{j=0}^{m} c_{j} \alpha^{(j-r)(n-k)}\right)(k+1)}{\alpha\left(\alpha^{n}-1\right)(n+1)}\right| \\
& \leq \frac{\sum_{j=0}^{m}\left|c_{j}\right|}{\left|\alpha^{n}-1\right|} \leq M, \quad n \geq 2
\end{aligned}
$$

for some positive number M, thus if we define a sequence $\left\{D_{n}\right\}_{n=1}^{\infty}$ by $D_{1}=|\eta|$ and

$$
D_{n+1}=M \sum_{k=0}^{n-1} D_{k+1} D_{n-k}, \quad n=1,2, \ldots
$$

then $\left|b_{n}\right| \leq D_{n}$ for $n=1,2, \ldots$ Now if we define

$$
G(z)=\sum_{n=1}^{\infty} D_{n} z^{n}
$$

then

$$
\begin{aligned}
G^{2}(z) & =\sum_{n=2}^{\infty}\left(D_{1} D_{n-1}+D_{2} D_{n-2}+\cdots+D_{n-1} D_{1}\right) z^{n} \\
& =\sum_{n=1}^{\infty}\left(D_{1} D_{n}+D_{2} D_{n-1}+\cdots+D_{n} D_{1}\right) z^{n+1} \\
& =\frac{1}{M} \sum_{n=1}^{\infty} D_{n+1} z^{n+1}=\frac{1}{M} G(z)-\frac{1}{M}|\eta| z
\end{aligned}
$$

Hence

$$
G(z)=\frac{1}{2 M}\{1 \pm \sqrt{1-4 M|\eta| z}\}
$$

However, since $G(0)=0$, only the negative sign of the square root is possible, so that

$$
G(z)=\frac{1}{2 M}\{1-\sqrt{1-4 M|\eta| z}\}
$$

It follows that the power series $G(z)$ converges for $|z|<1 /(4 M|\eta|)$; thus (8) is also convergent in the neighborhood of the origin.

Next, note that for $|z| \leq 1 /(4 M|\eta|)$,

$$
\frac{1}{G(|z|)}=\frac{2 M}{1-\sqrt{1-4 M|\eta||z|}}=\frac{1+\sqrt{1-4 M|\eta||z|}}{2|\eta||z|} \geq \frac{1}{2|\eta||z|}
$$

or

$$
G(|z|) \leq 2|\eta||z| \leq 2|\eta| \frac{1}{4 M|\eta|}=\frac{1}{2 M} .
$$

Thus

$$
\begin{aligned}
|y(z)| & \leq\left|\frac{\alpha}{\sum_{j=0} c_{j}}\right|+\sum_{n=1}^{\infty}\left|b_{n}\right||z|^{n} \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\sum_{n=1}^{\infty} B_{n}|z|^{n} \\
& =\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+G(|z|) \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{2 M}
\end{aligned}
$$

as required. The proof is complete.
Lemma 4. Suppose (H2) holds. Then for $r \leq m, c_{0}=0, \ldots, c_{r-1}=0$, and any complex number $\eta \neq 0$, Eq. (2) has an analytic solution of the form (8) in a neighborhood of the origin and there exists a positive constant M such that for z in this neighborhood,

$$
|y(z)| \leq\left|\frac{\alpha}{\sum_{j=r}^{m} c_{j}}\right|+\frac{1}{2 M} .
$$

Proof. As in the proof of Lemma 2, we seek a power series solution of the form (8). By defining $b_{0}=\alpha /\left(\sum_{j=r}^{m} c_{j}\right)$ and $b_{1}=\eta \neq 0$, we see that (7) again holds. Furthermore, since $r \leq m, 0 \leq k \leq n-1,0<|\alpha|<1$, and

$$
\begin{aligned}
\left|\frac{\left(\sum_{j=r}^{m} c_{j} \alpha^{j(n-k)+r k}\right)(k+1)}{(n+1)\left(\alpha^{(r+1) n+1}-\alpha^{r n+1}\right)}\right| & =\left|\frac{\left(\sum_{j=r}^{m} c_{j} \alpha^{(j-r)(n-k)}\right)(k+1)}{\alpha\left(\alpha^{n}-1\right)(n+1)}\right| \\
& \leq \frac{\sum_{j=r}^{m}\left|c_{j}\right|}{\left|\alpha^{n}-1\right|} \leq M, \quad n \geq 2,
\end{aligned}
$$

for some positive number M, thus if we define a sequence $\left\{D_{n}\right\}_{n=1}^{\infty}$ by $D_{1}=|\eta|$ and

$$
D_{n+1}=M \sum_{k=0}^{n-1} D_{k+1} D_{n-k}, \quad n=1,2, \ldots,
$$

then $\left|b_{n}\right| \leq D_{n}$ for $n=1,2, \ldots$. Moreover, we infer as in the proof of Lemma 3 that the power series (8) is convergent in the neighborhood of the origin and

$$
|y(z)| \leq\left|\frac{\alpha}{\sum_{j=r}^{m} c_{j}}\right|+\frac{1}{2 M} .
$$

We now state and prove our main result.

Theorem 1. Consider the following three hypotheses:
(i) (H3) holds.
(ii) (H1) holds and $r \geq m$.
(iii) (H2) holds, $r \leq m, c_{0}=0, \ldots, c_{r-1}=0$.

Suppose one of conditions (i)-(iii) is fulfilled. Then Eq. (1) has an analytic solution $x(z)=y\left(\alpha y^{-1}(z)\right)$ in a neighborhood of $\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$, where $y(z)$ is an analytic solution of Eq. (2). Furthermore, when (i) holds, there is a positive number δ such that

$$
|x(z)| \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{Q} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}}
$$

in a neighborhood of $\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$. When (ii) or (iii) holds, there is a positive constant M such that

$$
|x(z)| \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{2 M}
$$

in a neighborhood of $\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$.
Proof. In view of Lemmas 2-4, we may pick a complex number $\eta \neq 0$ and find a sequence $\left\{b_{n}\right\}_{n=2}^{\infty}$ such that the function $y(z)$ defined by (8) is an analytic solution of (2) in a neighborhood of the origin. Since $y^{\prime}(0)=\eta \neq 0$, the inverse function $y^{-1}(z)$ is analytic in a neighborhood of the point $y(0)=$ $\alpha /\left(\sum_{j=0}^{m} c_{j}\right)$. If we now define $x(z)$ by means of (4), then

$$
x^{\prime}\left(x^{[r]}(z)\right)=\frac{\alpha y^{\prime}\left(\alpha^{r+1} y^{-1}(z)\right)}{y^{\prime}\left(\alpha^{r} y^{-1}(z)\right)}=\sum_{j=0}^{m} c_{j} y\left(\alpha^{j} y^{-1}(z)\right)=\sum_{j=0}^{m} c_{j} x^{[j]}(z)
$$

as required.
Next, if either (ii) or (iii) holds, then in view of Lemma 3 or Lemma 4,

$$
|x(z)|=\left|y\left(\alpha y^{-1}(z)\right)\right| \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{2 M} ;
$$

if (i) holds, then in view of Lemma 2,

$$
|x(z)|=\left|y\left(\alpha y^{-1}(z)\right)\right| \leq\left|\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right|+\frac{1}{Q} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}} .
$$

The proof is complete.

We now show how to explicitly construct an analytic solution of (1) by means of (4). By means of Lemmas 2-4, Eq. (2) has an analytic solution of the form

$$
y(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

where $b_{0}=\alpha /\left(\sum_{j=0}^{m} c_{j}\right), b_{1}=\eta \neq 0$, and $\left\{b_{n}\right\}_{n=2}^{\infty}$ is determined by (7). We calculate the first few terms of the coefficients b_{n} by means of (7):

$$
\begin{aligned}
b_{2} & =\frac{y^{\prime \prime}(0)}{2!}=\frac{\sum_{j=0}^{m} c_{j} \alpha^{j}}{2 \alpha^{r+1}(\alpha-1)} \eta^{2}, \\
b_{3} & =\frac{y^{\prime \prime \prime}(0)}{3!}=\frac{\sum_{i=0}^{m} \sum_{j=0}^{m} c_{i} c_{j} \alpha^{i+j}\left(\alpha^{j}+2 \alpha^{r}\right)}{6 \alpha^{3 r+2}(\alpha+1)(\alpha-1)^{2}} \eta^{3}, \\
& \vdots .
\end{aligned}
$$

Next, by calculating the derivatives of both sides of (4), we obtain successively

$$
\begin{aligned}
x^{\prime}(z)= & \frac{\alpha y^{\prime}\left(\alpha y^{-1}(z)\right)}{y^{\prime}\left(y^{-1}(z)\right)}, \\
x^{\prime \prime}(z)= & \frac{\alpha^{2} y^{\prime \prime}\left(\alpha y^{-1}(z)\right) y^{\prime}\left(y^{-1}(z)\right)-\alpha y^{\prime}\left(\alpha y^{-1}(z)\right) y^{\prime \prime}\left(y^{-1}(z)\right)}{\left[y^{\prime}\left(y^{-1}(z)\right)\right]^{3}}, \\
x^{\prime \prime \prime}(z)= & \left\{\alpha^{3} y^{\prime \prime \prime}\left(\alpha y^{-1}(z)\right)\left[y^{\prime}\left(y^{-1}(z)\right)\right]^{3}-\alpha y^{\prime}\left(\alpha y^{-1}(z)\right) y^{\prime \prime \prime}\left(y^{-1}(z)\right)\right. \\
& \quad \times\left[y^{\prime}\left(y^{-1}(z)\right)\right]^{2}-3 \alpha^{2} y^{\prime \prime}\left(\alpha y^{-1}(z)\right) y^{\prime \prime}\left(y^{-1}(z)\right)\left[y^{\prime}\left(y^{-1}(z)\right)\right]^{2} \\
& \left.+3 \alpha y^{\prime}\left(\alpha y^{-1}(z)\right)\left[y^{\prime \prime}\left(y^{-1}(z)\right)\right]^{2} y^{\prime}\left(y^{-1}(z)\right)\right\} /\left[y^{\prime}\left(y^{-1}(z)\right)\right]^{6},
\end{aligned}
$$

so that

$$
\begin{aligned}
x\left(\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right) & =\frac{\alpha}{\sum_{j=0}^{m} c_{j}}, \\
x^{\prime}\left(\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right) & =\alpha, \\
x^{\prime \prime}\left(\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right) & =\sum_{j=0}^{m} c_{j} \alpha^{j-r}, \\
x^{\prime \prime \prime}\left(\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right) & =\frac{\sum_{i=0}^{m} \sum_{j=0}^{m} c_{i} c_{j} \alpha^{i+j}\left(\alpha^{j}+2 \alpha^{r}\right)-3 \alpha^{r}\left(\sum_{j=0}^{m} c_{j} \alpha^{j}\right)^{2}}{\alpha^{3 r+1}(\alpha-1)}
\end{aligned}
$$

Thus, the desired solution is

$$
\begin{aligned}
x(z)= & \frac{\alpha}{\sum_{j=0}^{m} c_{j}}+\alpha\left(z-\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right)+\frac{\sum_{j=0}^{m} c_{j} \alpha^{j-r}}{2!}\left(z-\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right)^{2} \\
& +\frac{\sum_{i=0}^{m} \sum_{j=0}^{m} c_{i} c_{j} \alpha^{i+j}\left(\alpha^{j}+2 \alpha^{r}\right)-3 \alpha^{r}\left(\sum_{j=0}^{m} c_{j} \alpha^{j}\right)^{2}}{3!\alpha^{3 r+1}(\alpha-1)} \\
& \times\left(z-\frac{\alpha}{\sum_{j=0}^{m} c_{j}}\right)^{3}+\cdots
\end{aligned}
$$

REFERENCES

1. E. Eder, The functional differential equation $x^{\prime}(t)=x(x(t))$, J. Differential Equations 54 (1984), 390-400.
2. E. Feckan, On certain type of functional differential equations, Math. Slovaca 43 (1993), 39-43.
3. K. Wang, On the equation $x^{\prime}(t)=f(x(x(t)))$, Funkcial. Ekvac. 33 (1990), 405-425.
4. S. Stanek, On global properties of solutions of functional differential equation $x^{\prime}(t)=$ $x(x(t))+x(t)$, Dynam. Systems Appl. 4 (1995), 263-278.
5. J. G. Si, W. R. Li, and S. S. Cheng, Analytic solutions of an iterative functional differential equation, Comput. Math. Appl. 33(6) (1997), 47-51.
6. M. Kuczma, "Functional Equations in a Single Variable," Polish Scientific Publishers, Warsaw, 1968.
7. S. Minsker, On splitting the area under curves, J. Differential Equations 26 (1977), 443-457.
8. S. Minsker, On splitting the area under curves II, J. Differential Equations 45 (1982), 182-190.
