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This paper is concerned with an iterative functional differential equation
x′�x�r��z�� = c0z+ c1x�z�+ c2x�x�z��+ · · · + cmx�m��z�, where r and m are nonnega-
tive integers, x�0��z� = z� x�1��z� = x�z�� x�3��z� = x�x�x�z���, etc. are the iterates of
the function x�z�, and ∑m

j=0 cj 	= 0. By constructing a convergent power series solu-
tion y�z� of a companion equation of the form αy ′�αr+1z� = y ′�αrz�∑m

j=0 cjy�αjz�,
analytic solutions of the form y�αy−1�z�� for the original differential equation are
obtained.  2001 Academic Press

Key Words: functional differential equation; analytic solution.

In the last few years there has been a growing interest in studying func-
tional equations with state dependent delay. We refer the reader to the
papers by Eder [1], Feckan [2], Wang [3], and Stanek [4]. In [5], the authors
considered the equation

x′�z� = x�m��z�
and established sufficient conditions for the existence of analytic solutions.
In [7, 8], Minsker studied the asymptotic property of the equation

a′�a�x�� = a�x�/x�
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In this paper, we will be concerned with a class of iterative functional dif-
ferential equations of the form

x′�x�r��z�� = c0z + c1x�z� + c2x�x�z�� + · · · + cmx�m��z�� (1)

where r and m are nonnegative integers, c0� c1� � � � � cm are complex con-
stants, and

∑m
j=0 cj 	= 0. By means of the method of majorant series, we

construct analytic solutions for our equations in a neighborhood of the com-
plex number α/�∑m

j=0 cj�, where α satisfies one of the following conditions:

(H1) �α� > 1�
(H2) 0 < �α� < 1�
(H3) �α� = 1� α is not a root of unity, and

log
1

�αn − 1� ≤ µ log n� n = 2� 3� � � � �

for some positive constant µ.

The technique for obtaining such solutions is as follows. We first seek an
analytic solution y�z� for the initial value problem

αy ′�αr+1z� = y ′�αrz�
m∑
j=0

cjy�αjz�� (2)

y�0� = α∑m
j=0 cj

� (3)

Then we show that

x�z� = y�αy−1�z�� (4)

is an analytic solution of (1) in a neighborhood of α/�∑m
j=0 cj�. Here y−1�z�

denotes the inverse function of y�z�. Finally, we make use of (4) to show
how to derive an explicit power series solution.
First of all, we seek a solution of (2) in a power series of the form

y�z� =
∞∑
n=0

bnz
n� (5)

where b0 = α/�
∑m
j=0 cj�. By substituting (5) into (2), we see that(

α− b0
m∑
j=0

cj

)
b1 = 0� (6)

�n+ 1�
(
α�r+1�n+1 − αrn+1

)
bn+1 =

n−1∑
k=0

( m∑
j=0

cjα
j�n−k�+rk

)
�k+ 1�

× bk+1bn−k� n = 1� 2� � � � � (7)
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So b1 = η ∈ C and the sequence �bn�∞n=2 is successively determined by (7)
in a unique manner. This implies that for (2) there exists a formal power
series solution

y�z� = α∑m
j=0 cj

+ ηz +
∞∑
n=2

bnz
n� (8)

Next, we show that such a power series solution is majorized by a con-
vergent power series. We begin with the following preparatory lemma, the
proof of which can be found in [6, Chap. 6].

Lemma 1. Assume that (H3) holds. Then there is a positive number δ
such that �αn − 1�−1 < �2n�δ for n = 1� 2� � � � � Furthermore, the sequence
�dn�∞n=1, defined by d1 = 1 and

dn =
1

�αn−1 − 1� max
n=n1+···+ni�

0<n1≤···≤ni� t≥2

�dn1 · · ·dnl�� n = 2� 3� � � � �

satisfies

dn ≤ �25δ+1�n−1n−2δ� n = 1� 2� � � � �

Lemma 2. Suppose (H3) holds. Then for η = 1, Eq. (2) has an analytic
solution of the form (8) in a neighborhood of the origin and there exists a
positive constant δ such that

�y�z�� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
25δ+1

∞∑
n=1

1
n2δ
�

Proof. In view of (8), we define b1 = η = 1. Since 0 ≤ k ≤ n− 1 and

∣∣∣∣∣
(∑m

j=0 cjα
j�n−k�+rk

)
�k+ 1�

�n+ 1��α�r+1�n+1 − αrn+1�

∣∣∣∣∣ =
∣∣∣∣∣
(∑m

j=0 cjα
�j−r��n−k�

)
�k+ 1�

�αn − 1��n+ 1�

∣∣∣∣∣
≤

∑m
j=0 �cj�

�αn − 1� � n ≥ 2� (9)

thus

�bn+1� ≤
∑m
j=0 �cj�

�αn − 1�
n−1∑
k=0

�bk+1��bn−k�

=
∑m
j=0 �cj�

�αn − 1�
∑

n1+n2=n+1�
1≤n1� n2≤n

�bn1 ��bn2 �� n = 1� 2� � � � �
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Let us now consider the function

G�z� = 1
2�∑m

j=0 �cj��


1−

√√√√1− 4
( m∑
j=0

�cj�
)
z


 �

which, in view of the binomial series expansion, can be written as

G�z� = z +
∞∑
n=2

Bnz
n

for �z� < 1/4�∑m
j=0 �cj��. Since G�z� satisfies the equation( m∑

j=0

�cj�
)
G2�z� −G�z� + z = 0�

thus, by the method of undetermined coefficients, it is not difficult to see
that the coefficient sequence �Bn�∞n=1 satisfies B1 = 1 and

Bn+1 =
( m∑
j=0

�cj�
) n−1∑
k=0

Bk+1Bn−k

=
( m∑
j=0

�cj�
) ∑

n1+n2=n+1�
1≤n1� n2≤n

Bk+1Bn−k� n = 1� 2� � � � �

Hence by induction, we easily see that

�bn� ≤ Bndn� n = 1� 2� � � � �

where the sequence �dn�∞n=1 is defined in Lemma 1.
Since G�z� converges in the open disc �z� < 1/4�∑m

j=0 �cj��, there exists a
positive T such that

Bn ≤ Tn
for n = 1� 2� � � � � In view of this and Lemma 1, we finally see that

�bn� ≤ TnQn−1n−2δ� n = 1� 2� � � � �

where Q = 25δ+1, which shows that the series (8) converges for �z� <
�TQ�−1.

Next, note that �z� ≤ �TQ�−1,

�y�z�� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+
∞∑
n=1

�bn��z�n ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+
∞∑
n=1

Bndn�z�n

≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+
∞∑
n=1

TnQn−1n−2δ�TQ�−n

=
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
Q

∞∑
n=1

1
n2δ

as required. The proof is complete.
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Lemma 3. Suppose (H1) holds. Then for any r ≥ m and any complex
number η 	= 0, Eq. (2) has an analytic solution of the form (8) in a neigh-
borhood of the origin and there exists a positive constant M such that for z in
this neighborhood,

�y�z�� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
2M

�

Proof. As in the proof of Lemma 2, we seek a power series solution of
the form (8). By defining b0 = α/�

∑m
j=0 cj� and b1 = η 	= 0, we see that (7)

again holds. Furthermore, since r ≥ m� 0 ≤ k ≤ n− 1� �α� > 1, and
∣∣∣∣∣
(∑m

j=0 cjα
j�n−k�+rk

)
�k+ 1�

�n+ 1��α�r+1�n+1 − αrn+1�

∣∣∣∣∣ =
∣∣∣∣∣
(∑m

j=0 cjα
�j−r��n−k�

)
�k+ 1�

α�αn − 1��n+ 1�

∣∣∣∣∣
≤

∑m
j=0 �cj�

�αn − 1� ≤M� n ≥ 2�

for some positive number M , thus if we define a sequence �Dn�∞n=1 by
D1 = �η� and

Dn+1 =M
n−1∑
k=0

Dk+1Dn−k� n = 1� 2� � � � �

then �bn� ≤ Dn for n = 1� 2� � � � � Now if we define

G�z� =
∞∑
n=1

Dnz
n�

then

G2�z� =
∞∑
n=2

�D1Dn−1 +D2Dn−2 + · · · +Dn−1D1�zn

=
∞∑
n=1

�D1Dn +D2Dn−1 + · · · +DnD1�zn+1

= 1
M

∞∑
n=1

Dn+1z
n+1 = 1

M
G�z� − 1

M
�η�z�

Hence

G�z� = 1
2M

{
1±

√
1− 4M�η�z

}
�

However, since G�0� = 0, only the negative sign of the square root is pos-
sible, so that

G�z� = 1
2M

{
1−

√
1− 4M�η�z

}
�
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It follows that the power series G�z� converges for �z� < 1/�4M�η��; thus
(8) is also convergent in the neighborhood of the origin.
Next, note that for �z� ≤ 1/�4M�η��,

1
G��z�� = 2M

1−√
1− 4M�η��z� =

1+√
1− 4M�η��z�
2�η��z� ≥ 1

2�η��z�
or

G��z�� ≤ 2�η��z� ≤ 2�η� 1
4M�η� =

1
2M

�

Thus

�y�z�� ≤
∣∣∣∣ α∑

j=0 cj

∣∣∣∣+
∞∑
n=1

�bn��z�n ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+
∞∑
n=1

Bn�z�n

=
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+G��z�� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
2M

as required. The proof is complete.

Lemma 4. Suppose (H2) holds. Then for r ≤ m� c0 = 0� � � � � cr−1 = 0,
and any complex number η 	= 0, Eq. (2) has an analytic solution of the form
(8) in a neighborhood of the origin and there exists a positive constant M such
that for z in this neighborhood,

�y�z�� ≤
∣∣∣∣ α∑m

j=r cj

∣∣∣∣+ 1
2M

�

Proof. As in the proof of Lemma 2, we seek a power series solution of
the form (8). By defining b0 = α/�

∑m
j=r cj� and b1 = η 	= 0, we see that (7)

again holds. Furthermore, since r ≤ m� 0 ≤ k ≤ n− 1� 0 < �α� < 1, and∣∣∣∣∣
(∑m

j=r cjα
j�n−k�+rk

)
�k+ 1�

�n+ 1��α�r+1�n+1 − αrn+1�

∣∣∣∣∣ =
∣∣∣∣∣
(∑m

j=r cjα
�j−r��n−k�

)
�k+ 1�

α�αn − 1��n+ 1�

∣∣∣∣∣
≤

∑m
j=r �cj�

�αn − 1� ≤M� n ≥ 2�

for some positive number M , thus if we define a sequence �Dn�∞n=1 by
D1 = �η� and

Dn+1 =M
n−1∑
k=0

Dk+1Dn−k� n = 1� 2� � � � �

then �bn� ≤ Dn for n = 1� 2� � � � � Moreover, we infer as in the proof of
Lemma 3 that the power series (8) is convergent in the neighborhood of
the origin and

�y�z�� ≤
∣∣∣∣ α∑m

j=r cj

∣∣∣∣+ 1
2M

�

We now state and prove our main result.
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Theorem 1. Consider the following three hypotheses:

(i) (H3) holds.

(ii) (H1) holds and r ≥ m.

(iii) (H2) holds, r ≤ m, c0 = 0� � � � � cr−1 = 0.

Suppose one of conditions (i)–(iii) is fulfilled. Then Eq. (1) has an analytic
solution x�z� = y�αy−1�z�� in a neighborhood of α/�∑m

j=0 cj�, where y�z� is
an analytic solution of Eq. (2). Furthermore, when (i) holds, there is a positive
number δ such that

�x�z�� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
Q

∞∑
n=1

1
n2δ

in a neighborhood of α/�∑m
j=0 cj�. When (ii) or (iii) holds, there is a positive

constant M such that

�x�z�� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
2M

in a neighborhood of α/�∑m
j=0 cj�.

Proof. In view of Lemmas 2–4, we may pick a complex number η 	= 0
and find a sequence �bn�∞n=2 such that the function y�z� defined by (8) is an
analytic solution of (2) in a neighborhood of the origin. Since y ′�0� = η 	= 0,
the inverse function y−1�z� is analytic in a neighborhood of the point y�0� =
α/�∑m

j=0 cj�. If we now define x�z� by means of (4), then

x′�x�r��z�� = αy ′�αr+1y−1�z��
y ′�αry−1�z�� =

m∑
j=0

cjy�αjy−1�z�� =
m∑
j=0

cjx
�j��z�

as required.
Next, if either (ii) or (iii) holds, then in view of Lemma 3 or Lemma 4,

�x�z�� = �y�αy−1�z��� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
2M

�

if (i) holds, then in view of Lemma 2,

�x�z�� = �y�αy−1�z��� ≤
∣∣∣∣ α∑m

j=0 cj

∣∣∣∣+ 1
Q

∞∑
n=1

1
n2δ
�

The proof is complete.
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We now show how to explicitly construct an analytic solution of (1) by
means of (4). By means of Lemmas 2–4, Eq. (2) has an analytic solution of
the form

y�z� =
∞∑
n=0

bnz
n�

where b0 = α/�
∑m
j=0 cj�� b1 = η 	= 0, and �bn�∞n=2 is determined by (7). We

calculate the first few terms of the coefficients bn by means of (7):

b2 =
y ′′�0�
2!

=
∑m
j=0 cjα

j

2αr+1�α− 1�η
2�

b3 =
y ′′′�0�
3!

=
∑m
i=0

∑m
j=0 cicjα

i+j�αj + 2αr�
6α3r+2�α+ 1��α− 1�2 η3�

��� �

Next, by calculating the derivatives of both sides of (4), we obtain
successively

x′�z� = αy ′�αy−1�z��
y ′�y−1�z�� �

x′′�z� = α2y ′′�αy−1�z��y ′�y−1�z�� − αy ′�αy−1�z��y ′′�y−1�z��
�y ′�y−1�z���3 �

x′′′�z� =
{
α3y ′′′�αy−1�z���y ′�y−1�z���3 − αy ′�αy−1�z��y ′′′�y−1�z��

×�y ′�y−1�z���2 − 3α2y ′′�αy−1�z��y ′′�y−1�z���y ′�y−1�z���2

+3αy ′�αy−1�z���y ′′�y−1�z���2y ′�y−1�z��
}/

�y ′�y−1�z���6�
so that

x

(
α∑m
j=0 cj

)
= α∑m

j=0 cj
�

x′
(

α∑m
j=0 cj

)
= α�

x′′
(

α∑m
j=0 cj

)
=

m∑
j=0

cjα
j−r�

x′′′
(

α∑m
j=0 cj

)
=

∑m
i=0

∑m
j=0 cicjα

i+j�αj + 2αr� − 3αr�∑m
j=0 cjα

j�2
α3r+1�α− 1� �

��� �
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Thus, the desired solution is

x�z� = α∑m
j=0 cj

+ α
(
z − α∑m

j=0 cj

)
+

∑m
j=0 cjα

j−r

2!

(
z − α∑m

j=0 cj

)2

+
∑m
i=0

∑m
j=0 cicjα

i+j�αj + 2αr� − 3αr�∑m
j=0 cjα

j�2
3!α3r+1�α− 1�

×
(
z − α∑m

j=0 cj

)3

+ · · · �
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