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It is shown that there exist conformally covariant differential operators D, of all
even orders 2/, on differential forms of all orders 4, in the double cover M of the
n-dimensional compactified Minkowski space M”. These act as intertwining
differential operators for natural representations of O(2, n), the conformal group of
M". For even n, the resulting decompositions of differential form representations of
0'(2, n), the orthochronous conformal group, produce infinite families of unitary
representations, the most interesting of which are carried by “positive mass-
squared, positive frequency” quotients for 2/> |n — 2k|. Physically, these generalize
unitary representations of the conformal group associated with the modified wave
operator D,o= 0+ ((n—2)/2)%, and the Maxwell operator on vector potentials
Dyn _2y2=0d. All the representation spaces produced, unitary and nonunitary,
may be viewed as infinite systems of harmonic oscillators. As a by-product of the
spectral resolution of the D,;,, one gets some striking wave propagative properties
for all of the equations D, @ =0, including Huygens’ principle in the curved
spacetime M". The operators D,,, have not beén seen before except in the special
cases k=0 or n, and k= (n+2)/2, =1 (the Maxwell operator). Thus much new
information is obtained even in the physical case n=4. ¢ 1987 Academic Press. Inc.

0. INTRODUCTION

In classical physics, particles are identified with field equations like the

wave, Maxwell, and Dirac equations. A field equation should be invariant
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under some fundamental spacetime symmetry group G; for example, the
Lorentz, scale-extended Poincaré, or conformal group. One then gets a
representation u of G', the orthochronous (preserving the forward direction
of time) subgroup of G, in a space X of positive frequency solutions to the
field equation. Once realized as a wunitary representation, ie., once X is
supplied with a positive definite invariant complex inner product and
completed to a complex Hilbert space #, the pair (#,u) gives the
quantum mechanical picture of the particle: classical observables like the
energy and angular momenta go over to operators given by the
infinitesimal generators of G in the representation. Historically, this
construction was made explicit for G the Lorentz group in, for example, the
work of Bargmann and Wigner [2,41]. Since that time, the group
representation aspect of a particle has come to be regarded as more fun-
damental than the field equation aspect. This point of view has provided at
least some of the motivation for the central problem in group represen-
tation theory, the classification of irreducible unitary representations.

In the present paper, we adopt an approach directly motivated by
physics to produce decompositions of natural differential form represen-
tations of O'(2, n), the orthochronous conformal group of its homogeneous
space M", the double cover of the n-dimensional compactified Minkowski
space. The methods are primarily those of differential geometry:
intertwining, or covariant differential operators are treated as the fundamen-
tal objects. They arise as higher-order generalizations of the wave and
Maxwell operators, and of certain wave-Maxwell hybrids, with represen-
tation spaces and formulas for nondegenerate complex inner products
naturally attached. These inner products are then easily tested for
definiteness.

Some remarks are in order concerning the role of the conformal group in
physics. One of the earliest-noted [7, 3, 8] aspects of the standard massless
field equations was their invariance under the 15-parameter conformal
group (locally O(2,4)) of 4-dimensional Minkowski space. Conformal
transformations are those which carry the Lorentz metric tensor to a
multiple of itself by a positive function. Conformal transformations- not
only preserve the null hyperfaces (light conoids) but also permute the
null geodesics, ie., the paths of massless particles. Thus one should have
conformal invariance of any reasonable massless particle model. Massive
field equations, on the other hand, result from eigenvalue problems for
differential operators D for which D@ =0 is conformally invariant. These
eigenvalue problems are not themselves conformally invariant, but exhibit
invariance only under some smaller group like the Poincaré group.

An important mathematical device in the present work is the
replacement of n-dimensional Minkowski space M" by its conformal
compactification M" = (S* x §"')/Z,, obtained by adding a light cone at
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infinity, and by various covering spaces of M”. M" is the “compact picture”
of M" in much the same way as the Riemann sphere S” is the compact
picture of the complex plane. M" was used by Dirac in [8], is central to
the Penrose Twistor program [53], and is a basic ingredient in the far-
reaching and highly predictive Chronometric Theory of Segal [38]. One
major effect of looking at the compact picture is that all our conformally
covariant differential operators have discrete spectra. In the Chronometric
Theory, this circumstance for the wave operator [J + ((n— 2)/2)? implies a
discrete set of admissible particle masses [25, 17]. As a by-product of the
spectral resolution of the operators considered here, we get some striking
wave propagative results.
The main results of the present paper are as follows:

(1) Let M" be the double cover of M”, ie, S'xS"' with the
Lorentz metric g= — gga + ge-1. Let d be the exterior derivative on forms
in M" and ¢ its formal adjoint. Then for n even and /=1, 2, 3,..., there exist
differential operators D,,, on k-forms in M”, 0 <k < n, with leading term

n—2k+2/
2

(od) + — 2~ 2;‘ —2 sy

(n—2§+2i5d+n—2§—21d5> .

where [ = dd + dd, which are covariant under conformal transformations
in the same sense as the modified wave operator D,,= [ + ((n —2)/2)* on
functions and the Maxwell operator D, , . ,,,=0dd. (D, is the realization
in M" of the general conformally covariant operator [+
(n—2) R/A(n—1), R=scalar curvature [26]. D, ,,, is the Maxwell
operator on “vector potentials.”) Conformal covariance on M" is an
interesting property because the conformal group O(2, n) of M" has the
maximal dimension (Sect. 1.b). The D,,, can actually be defined for any n,
and on any covering space of M"; and the proof of covariance given
extends to these situations after slight modifications. In particular, the D,,,
are defined and conformally covariant on the universal cover M" of A=4",
ie, RxS" ! with the metric g= — gp+ gg-1.

(2) Suppose n is even, /% + (n—2k)/2, and either
< (n-2)2 (0.1)

and

I <n/2, k#0,1,n—1,n (0.2)
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Then all solutions of D, @=0 on M" are 2n-periodic in ¢, the parameter
on R, ie., they “live on” M"; solutions are either odd or even under the
product of S' and S"!' antipodal maps, according to whether
(n—2k—21)/2 is odd or even; and the equation D,,, & satisfies Huygens’
principle. If neither (0.1) nor (0.2) is satisfied, all solutions are of the form
@ + t¥, where @ and ¥ are 2n-periodic solutions (though not all fields of
this form are solutions); but all periodic solutions still have parity
(—1)"~ 2202 ynder the product of antipodal maps. In the case /=
(n—2k)/2, D, has the form 62d, where 2 is a differential operator with
leading term (d3)'~!, and the higher-order “Maxwell” system

dF=0

(0.3)
0PF=0

on (k+1)forms F is conformally invariant. Solutions of (0.3) are
automatically 2n-periodic in ¢, and even under the product of antipodal
maps in M"; the system (0.3) satisfies Huygens’ principle. (The case
/= —(n—2k)/2 carries the same information via the Hodge * operator.)

(3) Suppose n is even, and /# (n—2k)/2. For a certain multiplier
representation u_of the orthochronous conformal transformation group
G =0"(2, n) of M", there exist u(G)-invariant subspaces

NSNS
NS

of the space &, of C* k-forms in A=4", where the arrows represent
inclusions; with F finite dimensional, W™* + W~ =A4"(D,,), and
V*+ V- +M=9,. The resulting representations on W*/F, W~/F,
Ve/w*, Vo /W-, and M/(W*+ W) all admit u(G)-invariant non-
degenerate complex inner products. The inner products on W*/F are
definite exactly when k=0 or » and /= 1; those on M/(W™* + W) exactly
when k=0 or n. The inner products on V*/W? are definite exactly when
k=0 or u or

20> |n—2k|. (0.5)
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All definite inner product spaces result, after completion, in continuous
unitary representations of G. If /= (n—2k)/2, the subspaces of (0.4) are
u(G)-invariant, as is ¥ = A"(d). Invariant nondegenerate complex inner
products are carried by (W' +9)/¥9, (W~ +%)/%4, (V* +9)/(W" +9),
(V- +%)/(W~ +%),and (M +%)/(W*+ W +%). The inner product on
(W* +%)/% is definite only for /=1; that on (M +%)/(W*™ + W +%)
only for k =0. The inner product on (V* + 4)/(W* + ) is always definite,
and again, all definite inner products result in continuous unitary represen-
tations. (The case /= — (n—2k)/2 is dual under the Hodge *.)

In the exceptional case /= (n — 2k)/2, the system (0.3) may be regarded
as a higher-order generalization of the Maxwell field equations, with 4 the
space of “pure gauges.” In the case of D,,, W* and W are the spaces of
positive and negative frequency wave functions, while V*/W™* is the
positive mass-squared, positive frequency quotient. An interesting feature of
the representations determined by the D,,, is that the massive represen-
tation (on V'*/W™) is sometimes unitary even when the massless represen-
tation (on W*/F) is not.

The representation theoretic part of present work is motivated partly by
the following recent work:

(1) In [18], Jakobsen and Vergne showed that powers [1’ of the
ordinary d’Alembertian on functions in 4-dimensional Minkowski space
are conformally covariant, and used these operators to decompose
representations of SU(2, 2) (locally O(2, 4)). (2) In [40], Speh determined
the full composition series for scalar field representations of SO(2, 4). Also
working in the scalar case, Mol¢anov [52] constructed the intertwining
operators D, , realizing them as integral intertwining operators (without
proving that they are differential operators). He also tested the resulting
composition factors for unitarity. (3) in [25,26], @rsted used the wave
and Maxwell operators to decompose representations of O(2, n) and its
subgroups, and obtained information along the same lines for O(p, ¢).
{4) In [31-33], Paneitz and Segal found full composition series for all the
relevant scalar and spinor representations in M* and its covering spaces,
and for the differential form representations associated to the Maxwell
equations. This work in the 4-dimensional case used to great advantage the
group structure of S* = SU(2), which results in the triviality of the bundles
involved. The present work in the arbitrary even-dimensional case may be
regarded as, among other things, a step toward determining which results
can be freed from reliance on this special circumstance, but we also obtain
much new information in dimension 4. (5) In[4], in the setting of a
general pseudo-Riemannian manifold of dimension n#1,2, the present
author introduced a second-order conformally covariant operator D,, on
forms of any order k. The main idea was to form a “Laplacian”™ in which
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the dd and dé terms are weighted differently; the covariant operator is then
obtained by “correcting” with a zeroth-order operator depending on the
Ricci tensor

n—2k+2 n—2k—2

DZ, k = 2 6d+ 2 da + ZRicci‘ (06)

(In M", this operator and its natural higher-order generalizations are the
keys to the composition structure of the differential form representations.)
Later, Paneitz [34] found a general fourth-order operator D,, on
functions which is conformally covariant in pseudo-Riemannian manifolds
of dimension n # 1, 2, and the present author [6] generalized this to a D,
on forms for n+#1, 2, 4. The dimension constraints n # 2, 4 turn out not to
be a factor for very symmetric manifolds like covers of M".

The wave propagative results in this paper (automatic periodicity,
oddness/evenness in M", and Huygens’ principle) generalize the results of
Lax and Phillips [24] on the wave equation D, (@ =0, and of Qrsted
[27] on the wave and Maxwell equations. The proofs are adaptations of
the Lax—Phillips approach. It is interesting to note that D,, seems to be
exactly the correct second order differential operator on forms to produce
the automatic periodicity results.

The present representation theoretic work is at once more general and
less complete than the recent works cited above in (1)-(4). No general
approach to the decomposition of the differential form representations
seems to have existed previously. The construction of the intertwining
differential operators D,,, in the case of forms (k #0, n) is considerably
more involved than in the scalar case, because one must keep track of four
different Hodge-theoretic “sectors.” Previous attempts to construct such
operators have been hampered by the natural tendency to expect [ =
8d + db or [1' as the leading term. The idea of weighting the éd and dd parts
of the leading term, inspired by (0.6), turns out to be the right one.
However, though we get composition factors roughly analogous to those in
the full composition series for scalar representations, we do not prove that
the resulting decomposition is complete.

It is possible to use the methods of this paper to study differential form
representations of all the O(p, q) for p, ¢ > 1. The resuits for the Lorentz
groups O(1, n) are included here as remarks; the case p,¢=>3 will be
treated in a later paper [43]. Mol¢anov’s work [52] on the scalar case, in
fact, is carried out for general p, ¢ > 2. The theory is richest, however, in
the case where p or g is 2, because of the “positive-negative frequency”
decomposition, which is ultimately traceable to the existence of a complex
structure for O(2, n).

It should be mentioned that there is an alternate approach to the con-
struction of unitary representations of O'(2, n) which has been the subject
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of intensive recent work, viz. the classification of unitary highest weight
modules of groups with a Hermitian symmetric space. This classification
was carried out by Jakobsen in [48], and independently by Enright, Howe,
and Wallach in [46]. In principle, all the unitary representations construc-
ted here are visible in this classification. After this paper was written,
Jakobsen [49] classified “conformal covariants” in dimension 4; in the
language of this paper, intertwining differential operators for O(2,4) on
tensor and spinor bundles over M*. Thus in the special case n=4, the
intertwining operators of this paper (and others, on higher spin bundles)
can be seen anew. Finally, Angelopoulos [1] has given an inductive

classification scheme for irreducible unitary representations of §5;(2, n), in

which the answer for 55;(2, n) depends on that for 553(2, n—2).
However, in the special case n=4 [42] (which was also handled by Knapp
and Speh in [50]), direct comparison with the unitary representations
constructed here is possible.

This paper is organized as follows. In Section 1, we standardize differen-
tial geometric notation, introduce the natural multiplier representations of
the conformal transformation group of a pseudo-Riemannian manifold,
and review the conformal compactification. Section 2 contains the results
on D,,, and the scalar representations; some of these results are already
known [52,40]. Section3 contains the results on the generic
(!# +(n—~2k)/2) D,,, and the differential form representations. The
exceptional “Maxwell-like” case /= + (n—2k)/2 is treated in Section 4.
Problems and prospects opened up by the new results are discussed in
Section 5.

The author would like to thank Irving Segal for an introduction to the
complex of physical and representation theoretic ideas involved in this
work, Bent @rsted for much help and education, Henrik Schichtkrull for
pointing out the important reference [52], and Hans Plesner Jakobsen for
valuable suggestions. Thanks are also due to the Institute for Advanced
Study, Odense University, and the University of Copenhagen for their
hospitality, and to the IAS, NATO, and the NSF for financial support.

1. DIFFERENTIAL GEOMETRIC PRELIMINARIES

a. Notation and Conventions

Let (M, g) be a pseudo-Riemannian manifold, i.e,, a C* manifold M
equipped with a C* metric tensor g =(g,z) which is nondegenerate, but
not necessarily positive definite. » will always denote the dimension of M. g
determines a distinguished metric g* on the kth exterior bundle A*(M), and
this gives an L?-formal adjoint & for the exterior derivative d. The d’Alem-
bertian (Laplacian if (M, g) is Riemannian) OJ is the operator dd + dé on
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differential forms. Our convention is such that (0 = — (6/6x)*— (d/dy)* on
Riemannian R?.

Exterior multiplication of forms by a one-form # will be denoted &(7);
exterior multiplication by a vector field X is just exterior multiplication by
the g-associated one-form (X,) = (g,;X”) (summation convention). Interior
multiplication of forms by a vector field X will be denoted :(X); if 5 is a one-
form, 1(y) is interior multiplication by (%)= (g*’n;). 1(n) is the pointwise
adjoint of e(n): if ¢ is a k-form and ¢ a (k — 1)-form, then g*(¢, e(n) ¥) =
g 10m) o, ¥).

The following notational convention will be helpful in a number of
places.

DerINITION 1.1, If 4= (A%) is a type (1, 1) tensor field on M, we
denote by A# the unique type-preserving derivation on the mixed tensor
field algebra of M which annihilates functions, commutes with contrac-
tions, and has (A#X)* = — A“,;X” on vector fields.

Remark 1.2. If o=(¢* >, ..,)is a tensor field, then

(A#Q)" == 3 AbgphPoh

[ I
- {

u;place

On forms, in a local frame (X,) and dual coframe (nf), A# =
A% pe(nP) i(X,).
If X is a vector field and .#(X) the Lie derivative,
L(X)=i(X)d+ di(X) on forms,
and thus
LX) *=de(X)+e(X)d on forms.
An easy local calculation [6, Sect. 1.d ] now gives
LX)+ L (X)*= -V, X+ (VX)# + (VX)' # on forms, (1.1)

where V is the covariant derivative in the unique symmetric pseudo-
Riemannian connection, and in general, (4°);= Az*
If fis a (possibly local) diffefomorphism on M, denote by /- the natural
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action of f on tensor fields as in {14, p. 90]. On vector fields, f- X = (df) X:
on covariant tensors, including differential forms and the metric tensor, /-
acts as (f~")*.

b. Representations of the Conformal Group

A conformal vector field T on (M, g) is one for which Z(T) g =2wg,
we C*{M); in classical notation,

V,Ty+V,T,=2wg,,. (1.2)

Equation (1.2), its contraction V, T* = nw, and (1.1) give

LT+ L(TY*=2k—-—nw on k-forms. (1.3)

If T, and T, are conformal, #(T,) g=2w,g, then [T,, T,] is conformal
with

Orpy =T, —Tho,. (1.4)

Thus the conformal vector fields form a Lie algebra ¢(M, g). For M con-
nected and n>2, it is shown in [9] that dim ¢(M, g)< (n+1)(n+2)/2.
(The reference works in the Riemannian case, but the proof applies equally
well to the pseudo-Riemannian case. See also [20, Notes 9, 11, 131]).

A conformal transformation on (M, g) is a (possibly local) diffeo-
morphism /4 for which h-g=Q%, Q>0eC*(M). f h, and h, are
conformal, so are A <h, and i, !,

Qp py=(h " 2,)Q,,Q,1=(2,°h) L (1.5)

Thus the global conformal transformations ¥(M, g) form a group. If M is
connected and n>2, ¥(M, g) is a Lie transformation group on M, of
dimension at most (n+ 1)(n+2)/2 [20, Note 117].

If X is a vector field and {f,} is the local one-parameter group of local
diffeomorphisms generated by X, then

d
(Z(X) o) (x)=—

T (f - 0)x) (1.6)

=0

for xe M and ¢ a tensor field on M. Equation (1.6) implies that if each f, is
conformal, so is X; conversely, (1.6) and the group law f,o f, = f.,, show
that if X is conformal, then each £, is, and [25]

d

= Q _.(x). (1.7)

e=0

W x(x)
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¢. Covariance

Let J be a space of C* tensor fields on M obtained by specifying some
covariant-contravariant type, and (possibly) some list of pointwise sym-
metry and trace conditions invariant under the orthogonal group of g. (For
example, we could consider the three-forms or the trace-free symmetric
covariant two-tensors.) By (1.4) and (1.5), the maps

oM, g)—2EndT, U,T)=L(T)+aw:
€(M, g) —-> Aut 7, u,(h)=Q°,

for ae C are homomorphisms. We shall refer to these maps as represen-
tations, even though 7 has not been topologized. By (1.6) and (1.7), U, is
the infinitesimal representation corresponding to u, in the following sense:
if a conformal T integrates to a one-parameter group of global conformal
transformations {A,}, then

d

(U o} =g] |

ulh_,) @ }(x). (1.8)
If Vis a U,invariant (resp. u -invariant) subspace of .7, we shall also
denote by U, (resp. u,) the corresponding representations on ¥ and /V.
The same notation will be used for spaces obtained by iterated passage to
and quotient by invariant subspaces: if V is already considered to carry U,
or u, and W is an invariant subspace of V, then W and V/W will be con-
sidered to carry U, or u,. Similar conventions will apply to the restrictions
of the u, to Lie subalgebras g of ¢(M, g) and subgroups G of «(M, g).
Every representation studied in this paper will arise in this way, or will result
by completion in a pre-Hilbert space inner product from a representation
arising in this way.

DEerFINITION 1.3, Let J be as above, and suppose a, be R.

(i) A differential operator D: 9 — J is infinitesimally conformally
covariant of bidegree (a, b) if

DUAT) ¢ =U,(T) Do

for all Tec(M, g), pe 7.
(ii) D is conformally covariant of bidegree (a, b) if

Du(h) ¢ =uy(h) Do
for all he (M, g), pe T .
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If D is conformally covariant of bidegree (a, b), then its null space A" (D)
carries the representation u,, and the range %(D) carries u,. This latter
representation is equivalent to the representation u, on J /A"(D). Similar
statements hold for infinitesimal covariance. Covariance and the related
concept of quasi-invariance on homogeneous spaces, and the consequences
for representation theory were first discussed in [23]; other fundamental
references are [21,22, 18].

Remark 14 [25]. Suppose D is conformally covariant,

[Du,h) 9 1(x) = [up(h) Do1(x), @eT,xeM.

Letting 4 run over local one-parameter groups {h,}, differentiating, and
using (1.8), we find that D is infinitesimal conformally covariant:

[DUAT) ¢1(x)=[UxT) Dol(x), @eT,xeM, (1.9)

for all Tec(M, g).
Conversely, suppose D is infinitesimally conformally covariant as in
(19). If Te (M, g) generates {h,}, then [25]

d
= Lualh,) Duyfh ) 91()
£

= Lup(h,) DU T u,h ) @+ up(h,) Us( = T) Duyh _,) @1(x)
= [uph,){DU(T) = Uy(T) D} u,(h _,) 91(x).

Since uy(h,) Du,(h_,) @|,_o= D¢, this shows that

Duu(h~s) 0= uh(hAs) D(P

The {h,} generate the identity component of €(M, g), so we can get con-
formal covariance if we have infinitesimal covariance and covariance under
one element of each connected component of ¥(M, g).

d. Conformal Compactification

Let R be the standard signature (p, q) flat space, p+q=n, g=1; ie.,

R” equipped with coordinate functions x _, )., x, and the metric tensor
g=—dx’ , = —dxj+dxi+ - +dxl.
R""~1=M" is the n-dimensional Minkowski space. (The rather strange

assignment of indices is chosen so that M* will have coordinates
Xo, X1, X4, X5.) All local conformal transformations on R‘”) are generated
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by the linear isometries O(p, ¢); the translations x> x+ b, beR”; the
uniform dilations x+> ax, a>0€eR; and the inversion in the unit hyper-
boloid (or sphere if p=0), £: x> x/g(x, x). (See [38] and the references
therein.) Since .# is undefined on {g(x, x) =0} (the light cone if p = 1), this
“group” acts with singularities, which can be resolved by passing to the
conformal compactification, obtained essentially by adding a copy of
{g(x, x)=0} at infinity.

Consider, as in [26], the real projective space P(R"*?) with

homogeneous coordinate functions ¢ ..., ¢, ;. The map

Ji RO P(R"2),
J(X)ZKI +g():: ) 8 x))]’

4

where [ ] denotes equivalence class in projective space, has as its range the
projective quadric Q= {&> + - +&3=41+ _+éf(+l}, minus the set
{¢_,+¢&,,1=0}. Q is naturally difftcomorphic to R'"”?' = (87 x §9)/Z,, the
Z, action coming from the product of antipodal maps. Giving R”%) the
signature (p, ¢) metric built from the standard sphere metrics,

g= —gyt+ gso>

we have J conformal

2 0 —1
re={(1+829) 4 ¥ e (1.10)

i=—(p-1)

The conformal “group” of R'»?’, transplanted to R”) by J, now acts as
an “honest” group of global transformations. Double covering both the
space and the group, we get the action

0

—1/2
(A,é)'—'{ D (Aé)?} A4, AeO(p+1,9+1), E=(S s §yut)

i=—p

(1.11)

of O(p+1,q+ 1) on R»¥ = (8" x 8% g). It was shown by Klein [19] that
this gives the full conformal group of R‘”% (note that the dimension is the
maximal (n+ 1)(n+2)/2). O(p+1,¢q+1) has 4 connected components,
each containing one element of the Klein-4 subgroup consisting of the
identity I, T = diag(—1, 1,.., 1, 1), P = diag(l, 1,..,1, —1), and PT.
SO(p+1,4+1) is the union of the 7 and PT components; the / com-
ponent, as usual, is denoted SO,(p+ 1, g+ 1).
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A basis of the conformal vector fields on R, expressed in
homogeneous coordinates, is (summation convention not in force)

La(f:gzéua[}_gﬂé[)’aou (X,B _pa---’q+1s

where 0, =0/0¢,,and —¢_,= - = —gg=¢,=+* =¢,, = 1. The L4 for
—p<a, <0 generate the SO(p) group of isometries; likewise, the L, for
1<a, f<g+1 generate the SO(q) group of isometries. The “mixed” L,
—p<La<0<f<qg+1, are proper conformal vector fields: #(L,;)g=
2m,, & with w,, #0.

In this paper, we shall be concerned only with the Minkowski (p=1)
case, and (to a lesser extent) with the Euclidean (p =0) case. The confor-
mal compactification of Minkowski space was first studied in connection
with physical field equations by Dirac [8], and is a basic ingredient in the
far-reaching Chronometric Theory of Segal [38]. From the points of view
of both physics and representation theory, it will be important to dis-
tinguish between the conformal group O(2,n) of M"=R"" Y and the
orthochronous (preserving the direction of time) conformal group 0'(2, n),
which consists of just the I and P components. The difference is that for
representations of O(2, n) on, say, wave and Maxwell fields (Sects. 2.b, 4.a),
the time-reversal (essentially T') turns out to be anti-unitary; the restriction
to O'(2, n) gives us a chance at unitarity once positive and negative fre-
quency fields are distinguished.

Remark 1.5. The “typical” proper basic conformal vector field L_,,
can be expressed in intrinsic coordinates on S'x S” "' as follows. Let ¢ be
the angular parameter on S' (¢_, =cos t, &y =sin t), and set

én:COSp, nggﬂf

Complete p to a set of spherical angular coordinates (p, 6,,.., 0, ,) on
§" !, so that @, is gg-1-orthogonal to the d,. Then

L ,,=sintcospd,+costsinpd,,

® _y,=COS COS .

Note that

L_,,=(int)wyd, +(cost) Y,
where Y =sin p 0, is conformal on Riemannian $”~' with w,=cos p. In
fact, Y is the L,, of compactified Euclidean space R~V = (§" 1 g...)).
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2. SCALAR REPRESENTATIONS

a. Wave Propagation in M

Return for a moment to the setting of an arbitrary n-dimensional
pseudo-Riemannian manifold (M, g). It is known [26] that the modified
d’Alembertian on functions,

n—2

=0 4 —
D: T T

R =scalar curvature,

is conformally covariant of bidegree ((n—2)/2, (n+2)/2),

DZu(n— 2)/2(h) O =ugy +2)/2(h) Do,

2.1)
DyU_5p(T) ¢ = U1 2)0(T) Dy
for e C*(M), he¥(M, g), and Tec(M, g). The scalar curvature of
Riemannian §"~', and thus of Lorentzian S'xS§"~' or RxS"~', is
(n—2)(n—1). Hence on M" or its universal cover M"=(Rx S"~1, g),

__2 2 _2 2
1)2=D+<"2 >=53+A+("2 ) A=Ag1.

We can diagonize D, as follows: let 0=4,< 4, < --- be the eigenvalues
of 4 (ignoring multiplicity); by, e.g., [11], ;= j(n —2+ j). Let E; be the 4,
eigenspace of 4, and for f =0, +1, +2,.., let & ;= {¢”p(x)| ¢ € E,}, where
x is now the variable on S"~'. The &, are L*(M")-orthogonal, and D,
acts as — 2+ 4, +((n—2)2)>= — f 2+ ((n—2)/2+ )’ on &,.

Pictorially, we can represent the &;; as lattice points in an upper half-
plane diagram as in Fig. 2.1. Physically, each point is a system of finitely
many harmonic oscillators of the same frequency; group theoretically, each
carries a representation of the maximal compact subgroup K=
SO(2) x O(n) of G=0%2, n). (The restriction of u, to K is independent
ofa.) The x’s represent fields which are even under the antipodal map #:

FIGURE 2.1
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(t, x)— (t+ 7, —x), and the <’s represent odd fields. Evenness and oddness
is calculated using the fact that E; consists of restrictions to §” ' of
J-homogeneous harmonic polynomials on R”, the so-called jth-order
spherical harmonics.

According to (2.1), A7(D,) carries the representation u, _,,, of (2, n).
But D, is a hyperbolic operator; solutions to D, ® = 0 are gotten by solving
the Cauchy problem; i.c., by propagating initial (¢=0) data. This we can
easily do in Rx S"~', but unless quite a few of the solutions are 27-
periodic in ¢, the null space representation will not be very interesting. It is
remarkable that all solutions are 2zn-periodic for even n. Note that

D,=[0,+iB1[d,—iB], B= A+ ({(n—2)/2)%

and that the nonlocal operator B acts as multiplication by (n—2)/2+ j on
E;. Thus we can solve the Cauchy problem, and show uniqueness of our
solutlon by looking at second-order ODEs valued in the E,. Using the fact
that functions which are Jomtly C* in ¢t and x can be viewed as C”*
functions in 7 with values in L*(S" '), we have:

THEOREM 2.1 [24] (Automatic periodicity). For n>3, the general
C* solution of D,® =0,

€”B(p ”Bl// 0, w € Cv.(sn -1 )’ (22)

is 2n-periodic in t for even n, 4n-periodic for odd n. For n=2, every solution
is a sum of a solution of the form (2.2) and one of the form at, o e C.

This “automatic periodicity” will turn out to be a recurring theme for all
the conformaliy covariant operators studied here.

For even n>4, the wave equation subspace .#°(D,) occupies the lines
f=+((n—2)/2+) in the upper half plane diagram (Fig.2.2). In par-
ticular, all wave functions have the same parity under the antipodal map.

THEOREM 2.2 [24] (Oddness-evenness). If n>4 is even, all C*
solutions of D,®=0 on Rx 8"~ ! have ®(t +mn, —x)=(—1)""2"2 &(¢, x).

In particular, if n is of the form 4p + 2, @ “lives on” (covers a field on) M" =
(S'x 8"~ 1)/Z,. If n=2, this is true of periodic solutions.

X x o 0 o © x x

x x x x o [e] x x

x x [} o} 0 [} 3

x x x x (o] o] x x
n=2 n=4 n=6

FIGURE 2.2

580/74,2-2
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Remark 2.3. D, is related to the d’Alembertian [J on Minkowski space
M" by the conformal compactification J,

(QU=212¢ 0 J) = QU+ DD, b)o J, (23)

where Q is the conformal factor in (1.10). (See [27].) Thus D, fields on
R x S**! determine wave functions on Minkowski space M* *2,

By an argument of Lax and Phillips based on Theorem 2.2, or by an
argument of Qrsted based on (2.3), one immediately has Huygens’
principle for the equation D,® =0 in the curved spacetime AM".

THEOREM 2.4 [24,27] (Huygens principle). Suppose n>=4 is even,
and @ C* with D,®=0. If the support of the Cauchy data ®(0, x),
@ (0, x) contains no point at a distance t, from x,€S8" ', 0<1t,<n, then
®(ty, x4)=0.

Proof [24]. First note that the formulas given in, e.g,, [10, Sect. 5]
for the unique local solution to the Cauchy problem (say, within a
neighborhood of the form N= {|7| <&} x {dist(x, xo) < }), together with
the uniqueness of the above global solution to the Cauchy problem, imply
a global finite propagation speed principle: If the time 0 Cauchy data for @
are supported in {dist(x, xo) <{,}, then the time ¢ data are supported in
{dist(x, xo) <o+ |7|}. For by superposition and time translation, it is
enough to prove this for small ¢, and |¢|. In this case, the local formula for
the solution to the Cauchy problem, extended by zero outside N, must give
the unique global solution to the Cauchy problem. Since the local formula
exhibits finite propagation speed, the principle follows.

Looking at the statement of the theorem, we may, by superposition,
assume that the Cauchy data are supported either in {dist(x, x,)>t,} or
{dist(x, xo) < 1o}. In the first case, finite propagation speed gives the con-
clusion. In the second case, we propagate backward from time 7n. The
oddness—evenness result implies that the ==z Cauchy data are supported
in {dist(x, —x,) <t,}; finite propagation speed then says that the 1=¢,
data are supported in {dist(x, —x,)<n}, as desired. ||

Remark 2.5. For n=2, suppose the r=0 Cauchy data of a D,=0
field @ are supported in {dist(x, x,) <?,}, and let

1
b=5- Ll ® (0, x) dx.

Then the r=n data for @ —nb are supported in {dist(x, —x,) <1,}, and
more generally, the ¢=Nn data of & — Nmb are supported in
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{dist(x, (—1)"xo) < 1o}, NeZ. Thus in the “lacuna” {dist(x, (—1)"x,) <
t—Nn—1t,} for Nt <t<(N+1) =, one has @ =nNb.

The oddness—evenness result and Huygens’ principle will also recur for
all the operators we study. Note that Theorem 2.4 does not just follow
from hyperbolicity, nor does Theorem 2.1 follow from the fact from the fact
that geodesics in S”"~' have length 2rn. The generic linear hyperbolic
equation in curved spacetime, in particular (J® =0 in Rx S" !, does not
propagate all energy at characteristic speed; among all equations
(L] + constant) @ =0, only D,® =0 has this property. It is worth mention-
ing here that Helgason [15] has proved Huygens’ principle on R x K for K
a simply connected compact semisimple Lie group, for the operator
02+ 4, + (dim K)/24. For K= SU(2)=S?, this is 02 + (4 + 1)/8, since A,
is calculated with respect to — (the Killing form), which for SU(2) is 8
times the usual S* metric. An argument for Huygens’ principle for this
operator on Rx SU(2) is an easy adaptation of the above.

b. Representation Theoretic Content of D,

Restrict now to even n. Let G=0"2,n), G,=S0,2,n), and K=
SO(2) x O(n); let g be the Lie algebra of G (or G,), and # the Lie algebra of
K. The antipodal map #: (¢, x)+— (2 +7#, —x) is an isometry given by the
action of the central element —7 of G. Thus each u,(G) acts on even and
odd fields separately. Within the fields # of parity (—1)"~2”2, D, decom-
poses u,, . ,,,(G) into representations on A"(D,) and #/.4"(D,). But much
more can be said about decomposability, and about unitarity of the
resulting pieces. First, a few functional analytic observations are needed.

Consider the L*-Sobolev spaces H™ = H™(M"), me R. Each ®# e H™ can
be identified with a series 2@, ;, where @, €&, ; and

Z(1 +f2+j2)"’||(1§,;/.||iz< 0.

Thus each H™ can be thought of as a weighted /> space. By the Sobolev
Lemma, the usual Fréchet topology on C* = H* = (\H™ is equivalent to
that gotten by using the H™ norms as seminorms. H~* = JH" is the dual
space of distributions.

Within any H™, the distributions represented by series >, ;. , @, for
any subset./ of Zx(Z*u{0}) form a closed subspace. It will be
understood that a subspace gotten in this way will be denoted by its
corresponding of; for example, the space & above is {f=(n—2)2+
(mod 2)}, while A°(D,)={lf]=(n—2)/2+ j}.

Remark 2.6. By an argument in [26, Sect. 4] (see also [12, 35]), the u,
are continuous representations on H* and H~*, and thus on each H™.
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The same can be said of the representations u, on differential forms.
Though a priori there is some ambiguity as to what L* and H™ mean for
sections of a bundle (like the exterior bundles) with an indefinite metric,
the compactness of M” implies [30, Sect. 8] that any “artificial” Rieman-
nian metric G (and corresponding form metrics G¥) we might impose yield
the same L? and H™ classes.

Consider now the space  of fields of parity (— 1)~ > We shall show
that the closed subspaces

v _f, n=2
w —{f" 2 +J}’
_ n—2
w ={—f= > +j},
V*z{f>”;2+j}, (24)
- n—2
-2
M={|f|<—2—+1}

are u,, _,)(G)-invariant. By symmetry, the action of all the proper confor-
mal vector fields in g can be derived from that of S=L_,,. Let Y be as in
Remark 1.5.

LEMMA 2.7. Suppose n=2 (n need not be even here), and let ¢ € E;. Then

C= (L) + (=24 E1s
<P/ (ZL(Y)+(n—2+))w)pek,, (2.5)
@

=(ZL(Y)-jo) g€k, ,,

where w =wy=cos p, and E_, is {0} by convention.

Proof. By (1.3),
LN+ Z(YV)*=—-—n—-1ow on functions.

Note that

(dw)az == Yau
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ie., dw is the one-form corresponding to — Y through gg. 1. Thus for
peE, f A=4,=jn—2+)),
A(we) = d(wde + &(dw) ¢)
=wdp — dw) dp + ds(dw) ¢
=lwp+(L(Y)-Z(Y)*) ¢
=lwe+ 2L+ (n—1w)e
=2¢(Y)+(A+n—1)w} o. {2.6)

On the other hand, the content of (2.1) for the conformal vector field ¥ on
Riemannian S$" ' is

(A +m—_—m1:—3—)><,‘?(Y)+n;3w>w

4
=($(Y)+%w)<z1 +————(”_IL(”—3)> 0,

A(.S,”(Y)+ _3w><p={i,%”(Y)+%((n+1)/'t+(n~—l)(n—3))a)} ®.

(2.7)

Putting (2.6) and (2.7) together gives

ALY+ (n=2+j)o)o=(+D)n—1+)(ZL(Y)+(n-2+))o)¢
=4 (LN +(n=2+))w)e,
AL(Y)—jo)o=(j—1)n=3+)(L(Y)-jo)e
=4, (L(Y)—jw) o,

as desired. 1|
Now look at e"f’(p(x)eé_"M for pe E;. By (1.9) and wg=(cos t) w,
Z(S) e’ @ = (sin t)(cos p) ife” @ + (cos t) e L(Y) @
=3{V LY+ fo) ¢+~ V(L(Y) - fw) o},

Hf—1iy

wse’p=4{eV"Vop+e we}.
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«
PR

FIGURE 2.3
By (2.5),
1 . N
=-Sf(Y)</>=n—_—2“+—2j(1€0 +(n=2))o"),
S
w(p_n—2+2j M

unless # =2 and j=0 (in which case £(Y) ¢ =0, we € E,). This means

1
2(n—2+2))
+ TG =St a) ot + (=24 j+f~a) o™ 1},

(n, j)#(2,0),

U(S)e" o= {eV M+ f+a)et +(n=2+j—f—a)e~]

U,,(S)e"’k'1=%{e"‘f*"’(f+a)w—e"‘-"’”’(—f+a)w}, n=2. (2.8)

Thus any U,(S) carries a field at a point (f, j) of Fig. 2.1 to a linear com-
bination of fields at the 4 “nearest neighbors” of the same parity,
(f+1,j+'1) (Fig. 2.3). It is immediate from (2.8) that moves off the wave
equation subspace are forbidden for a=(n—2)/2, as expected (Fig. 2.4).
But we can also show that the 5 subspaces of (2.4) are invariant:

LEMMA 2.8. If n=2 is even, the subspaces W*, V* M of (2.4), within
the fields of parity (—1)" " are U, _,,, (G)-invariant. If n=2, the one-
dimensional space of constants, F={f=j=0}=W*n W, is also
invariant.

FiGure 2.4
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Proof. Let u=uy, 5, and U=U, ,),. To show invariance of X =
W=, V* M, we need only show that if @€ X &, for some (f, j), then
u(h)®e X for all heG. Clearly each &, is P-invariant, so it suffices to
prove u(G,)-invariance. Each X has a closed L’-orthogonal direct com-
plement X* in each H™; if X corresponds to &/ =Zx(Z* v {0}), X*
corresponds to the complement of /. (Here we use the inner product
(DY) ym=2(1+ 2+ )P, ,, ¥, ,>,2.) Thus it suffices to show that

(u(h_,) P, ¥);2=0

forall e XN ¢, Ye X' né ;, and each one-parameter group {A,} in
G,. But such @ and ¥ are real-analytic, and by (1.11), u(#_,) & is jointly
analytic in ¢ and (¢, x) (note that Q, is the Jacobian determinant of 4 to the
t/n power). Since M is compact, (u(h_,) @, ¥),: is analytic in ¢, but

d N

(@)
where T generates {h,}. This reduces the problem to U(g)-invariance. For
the isometric basic conformal vector fields #, invariance (in fact, invariance

of each & ) is obvious. By symmetry, we are reduced to the U(S)-
invariance shown above. |

(uh_) @, ¥) 2= (UT)"P, ¥),2,

=0

We now have 5 (or 6 if n=2) representations to work with, namely
U, 22{GY on W*, W™ (the positive or negative frequency solutions);
VY/W* V- /W~ (the positive and negative frequency quotients); and
M/(W™ + W™) (the mixed quotient). (F and W= /F replace W* for n=2.)
The following theorem asserts that all of these composition factors atre
unitary.

THEOREM 2.9 (see [40,31] for n=4). Suppose n=2 is even. The
Hermitian inner products
(D, ¥ y=(@,D,¥),: on MW"+ W),
(D, ¥Yye=—(D,D,¥),: on VEWE
(D, Py =4+1D,0,¥),2 on W=* (or WE/Fifn=2)

are positive definite and invariant for u, ,,,(G). Completion (of, say, C*)
in these inner products results in continuous unitary representations.

Proof. The (, >, for X=M, V*, W* are Hermitian because D, and
(1/i) 0, are formally self-adjoint. Let u, =u(, 42, Uy =U,1,,. The
{, >y are clearly u_(P)-invariant, so it suffices in each case to show
u_(Gy)-invariance. That (&, D,¥),. is invariant follows from the
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covariance relation for D,, together with the fact that an orientation-
preserving conformal transformation A, k- g=Q%g, has the effect 4- O =
Q"0 on the normalized volume element ¢. Indeed,

(u_(h) @, Dyu_(h) ¥) 2= (u_(h) D,u,(h) D, ¥),2

=L Q"(h-®)h-D,F) 0

Mll

=[_h-(2[D,P]0)
MR

=L ®[D, P 0= (P, D,¥),:.
M’Y

The positive definiteness of this inner product on M/(W* + W~), and
negative definiteness on V*/WZ*, follow from the fact that D, is mul-
tiplication by the scalar — f2 + ((n—2)/2 + j)? at (f, j).

For the invariance of {, >, X= W?¥, note that for smooth @, ¥e X,

L h )0 (h_) )
de

=u_(h )P, 0,U(Tyu_(h_;) ¥
+ (U (Du_(h_)P,0,u_(h_;)¥)p

for a conformal vector field T generating a one-parameter group {4, }. This
means it is enough to show U_(g)-skewness for {, >y. U_(£)-skewness is
clear, so symmetry reduces the problem to that of U_(S)-skewness.

For this, note first that ,=1i[D,, ¢]. (Here ¢ is an abbreviation for mul-
tiplication by ¢.) Taking [, ¢] of both sides in the covariance relation
D, U _(8)=U_(S)D,, we get

DyLU_(S), t]1+ [ D2, t] U_(S)= U (S)[ D2, 1]+ [U(S), 11 D,.

(Note that [U,(S), t] has periodic coefficients.) Because D, is formally
self-adjoint, this shows that

(D, 0,U_(S)¥) 2= (D, U_(5)0,¥).2, D, YeN(D,) (29)

By (1.3), U, (S) and U_(S) are formal adjoints, so (2.9) establishes the
<, > y-skewness of U_(S).

For positive definiteness of {, )+, note that 9, acts as multiplication
by i((n—2)/2+j) on & 4 ((s_22+ -

Looking at the asymptotics of the eigenvalues of D, and (1/i) d, on the
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&, ;, it 1s clear that the {, ), uniform structures “come from” (under
passage to and quotient by closed subspaces) the H'? uniform structure
while the {, >,: and {, },, uniform structures are no weaker than that of
H'?, and no stronger than that of H'. This (recall Remark 2.6) shows that
completion in each <, ), results in a continuous unitary representation. |

Remark 2.10 (Polarization of symplectic structure). We can also
unitarize the wave equation subspace by polarization as in [377; this gives
the same result. Consider real solutions of D,® =0, represented by their
Cauchy data @, @, (with the usual abuse of notation), and the u (G)-
invariant symplectic form

D iy , ,
i <<(pz>, (‘D;)) B an-l ((pds’ - ¢r) dx.

(Invariance implies in particular that the integral can be taken at any
fixed#.) The conserved energy &=1{ \(|BPI>+|® |*)dx is the
Hamiltonian function corresponding to the formal vector field

Too=( &
(3Y‘(—W¢)

of temporal evolution on phase space. Taking the Hessian of & in a flat
formal connection yields the symmetric bilinear form

(e o’ ’ /
°%<<¢)’Qﬁ>>:Lh.UB¢NB¢)+¢ﬁR]dn

but 2 is not u _(G)-invariant. However, writing
KX, V)= (X, HY)
and polar decomposing ¥~ with respect to J¢ as

4= X
e

where # if s#-orthogonal and 2 is # -self-adjoint and positive, we get the
u_(G)-invariant symmetric bilinear form

X =g, P=/—A7,

RX, Y)=A X, £Y).

Note that # carries Cauchy data () to

o )a)
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F is a complex structure on the real solutions and £+ is/ is a u_(G)-
invariant Hermitian inner product.

The relation of this to {, ), is as follows. Each real solution @ is the
real part of a unique positive frequency solution &, and it is easily shown
(identifying a solution with its Cauchy data) that

u_(h)®=(u_(h)o)",
(@+¢dx¢,wy=%<5,¢>wh
id=(gD)~.
c. Higher Order Operators and Wave Propagation

According to (2.8), one direction of escape from each of the 4 lines

n—2

+f="5

+jt'(1-1)

via U, _,2(g) is cut off (Fig. 2.5). This suggest looking at the operator

(/1—1)2
D, l_[) [0, +i(B+2p)][0,—i(B+2p)]
p=1
0, +i(B—2p)][0,—i(B—2p)], [odd
D, = x[0,+{B—2p)]1[0,—i(B—2p)] 0 (2.10)

12
[T (6. +iB+(2p—1))1[6,— i(B+(2p—1))]

p=1

x[8,+i(B—(2p—1))][0,—i(B—(2p—1))], !/ even.

It turns out that D, is a conformally covariant differential operator, and
that one has full analogues of Theorems 2.1, 2.2, 2.4, and 2.9 involving D,
except for the unitarity of the representation spaces corresponding to W+
or W*/F. D, was studied by Paneitz [34], who showed that it is a special
case of a general fourth-order operator which is well defined and confor-
mally covariant in an arbitrary pseudo-Riemannian manifold of dimen-
sion 3 or higher; he also showed that D, plays an interesting role in the

WU ZONSK

FIGURE 2.5
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gauge theory of the Maxwell equations ([34] and Remark 4.11). D, is also
a special case of an operator that exists somewhat more generally; the
general version was introduced by the present author in [6].

LEMMA 2.11. D, is a differential operator with leading term [’

Proof. D, is a differential operator with leading term [J, and the “block
of 4,7

L0, +iB+m)][0,—i(B+m)}[0,+i(B—m)][d,—i(B—m)]
=0} +2(B*+m?) 0} + (B> —m*)’

is a differential operator with leading term 12 |

In particular, D,;¢ =0 has finite propagation speed. By construction, the
periodic null pace of D,, for even n is as in Fig. 2.6.

THEOREM 2.12 (Automatic Periodicity). Suppose n is even. If n> 2l all
solutions of Dy ®=0 on RxS"~' are 2n-periodic in t. If n<2l, every
solution is of the form @ =®' +1®", where @' and " are periodic solutions.

Proof.  Again, we reduce the problem to that of getting unique solutions
to initial value ODE problems in the variable 1, and use the fact that the
eigenvalues of B are integers. The only complication comes when the
characteristic polynomials of these ODEs have double roots; we never get
roots of greater multiplicity. |

THeOREM 2.13  (Oddness-evenness). For even n, all periodic solutions
of Dy®=0 have ®(t+n, —x)=(—1)""272P(t,x). In particular, if
(n—2D)/2 is even, ® “lives on” (covers a field on) M"=(S'x §"")/Z,.

FIGURE 2.6
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Proof. By (2.10) or Fig. 2.6, the frequency f of a “simple” solution
e”¢(x), p€E,;, has the same parity as (n—2/)/2+ j, and the jth order
spherical harmonic ¢ has ¢(—x)=(—1)p(x). |

THEOREM 2.14 (Huygens’ principle). Suppose n> 2l is even. If e C*,
D, =0 and the support of the Cauchy data @0, x),
(0,9)(0, x),..., (0%~ '®)O0, x) contains no point at a distance t, from
xo€S8" 1, 0ty <, then D(ty, x,)=0.

Proof. We just need to look at D, @ = ([1'+lower order) ®=0 as a
vector-valued wave equation: (] +lower order) (&, 0®,.., 0" '®)=0.
Then the result follows from finite propagation speed, the uniqueness of
our solution to the Cauchy problem (proof of Theorem 2.12), and
oddness-evenness, exactly as for Theorem 2.4. |

Remark 2.15. The condition n>2 necessary for D,® =0 to have a
“perfect” Huygens’ principle is replaced here by n> 2/. This reflects the fact
that in Minkowski space M”, the fundamental solution of (1'®=0 for
n <2l is not supported entirely on the light cone (see, e.g., [16]). It can be
shown (but we do not do so here) that D,, on M" is related to (1’ on M"
by the conformal compactification map J,

DI(Q(n~2I)/2¢OJ) — Q(H+2I)/2(D21¢) o J,

where Q is the conformal factor in (1.10). As in [27], there is a resultant
relation between fundamental solutions.

Running the oddness—evenness argument for n < 2/ shows that if the r=0
Cauchy data for @ = @’ + t®” have small support (say, of radius ¢,) near
Xg, the 1 =n Cauchy data for @ — n®” has small support near —x,. Thus
the lacuna that opens up starting at time ¢, near x, is “filled” with the field
n®". Similar results hold, as in Remark 2.5, for the earlier and later
lacunae.

d. Representation Theoretic Content of the D,

The “forbidden U, _ ,,,,(g)-move” structure of Fig. 2.5 suggests that D,
is conformally covariant, with “inside multiplier” power (n—2/)/2. In this
section, let J=(n—2)/2+ j, and denote the & ; component of & e C*(M")
by & ;.

THEOREM 2.16 (Covariance of D,). Suppose n is even. For
beC*(M”) and he O(2, n),

DZIu(n - 2,)/2(h)¢ =Up 4 21)/2(h) D,®.
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Proof. By the obvious covariance under isometries, Remark 1.4, and
symmetry, we are reduced to S-covariance

DU opa(S) @ = Uy 2o S) Doy ®.

It is enough to prove this on “simple” fields @ = e”'¢(x), @ € E;. Forsuch a
&, U,(S)P is the sum of its 4 components at (f+ 1, j3'1). In fact, by
(2.8), writing U, for U, .,

J+1+7+1
(Ui(S)¢)/'+1.;+1=‘_7J__(P+
J—1—fFI
(Uj(S)¢)/+l./~-1:——4T]*(p
Sl [t ; (n, j)#(2,0),
(Ui(s)¢)r'~l</+1=—v;(p+ (2.11)
J—1+fFI
(U, (S) D),y 12*‘7‘—@
. 1
(Ui(S)eln-l)_/'+]‘|=§(f+1i/)w
| ifn=2
(Ui(S)eily'l)/’r 1_1=§(*‘f+1i1)0)
D,, acts on such a @ as multiplication by
-1
(=1 T] (f+T—=1+142m)(f—J+1—1—2m). (2.12)

m=0

Thus both D,,U_(S)® and U, (S)D,® have possible nonzero com-
ponents only at (f+1,;+’l). But, writing D for D, and assuming
(n, jY#(2,0),

(DU (S) @)y, 1.

ﬁ—lj—f—(q [[ﬂl (f+T—1+3+2m)(f — J+1_1-2m)]
m=0

:L;JL)[[[[ (f+T—I+1 +2m)][[l—[1 (f—J+1—1 —2m)] -

0
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whiie

(U (S)DP)r 141

=J+144;f+l(_1)/[[1‘f (f+J—1+1+2m)(f~J+1—1—2’")]"’+
m=0

:——(';Jl) [[[](f+J—l+ 1 +2m)][ll_[1 (f—J+1—1—2’")]‘!’+
0 0

Similarly,
(DU_(S) @)1,/
"1)1[ [T (f+j—1+1 +2m)]|:lj[ (f=J+1+1 —2m)] .
=(U, (S)DP)i1

In the exceptional case n=2 and j=0,

(DU _(S) el 1)_/‘+ 1.1

! -1
=%(—1)’[ I1 (f~l+1+2m)][ I1 (f+l—1—2m)]w
m=0 m=0
=(U,(S)De” 1), 1,.
Equality of the (f— 1, j+ 1) components now follows upon application of

the time reversal, which commutes with both U ,(S) and D. |

This gives us representations on 4'(D,,) and F/A(D,,), where & is the
space of fields of parity (—1)” 22 But just as for the wave equation,
much more can be said; again we have 5 or 6 invariant subspaces.

LemMa 2.17. If n is even, the subspaces
={J-(-0)<£f<I+ (- D},
F=W*'nW-,
M={lfI<J+{(-1)},
VE={tf2]—(I-1)}

of the spaces of fields of parity (—1)" 2" are u, ,,(G)-invariant.
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Proof. As for Lemma 2.8, the problem reduces to U, 1,(S)-
invariance, which can be read off from Fig. 2.5 or (2.11). |}

Note that F is finite dimensional. All the resulting representation spaces
admit nondegenerate U, ,,,(G)-invariant complex inner products,
though not all are unitary.

THEOREM 2.18.  Suppose n is even, and consider the Hermitian inner
products

D, ¥>y=(®,Dy¥),: on M/(WT+ W),
(D, Ve =(=1)(D,Dy¥)2  on VEW™,
(D, Y¥Y>yr=xi(D, DYY),: on WH*/F,

(D, V)= (@, D} VP),: on F.-

where D4y =Dy, t] and D5,=[DY, t]. All these inner products are non-
degenerate and u,,, (G )-invariant. {, ), and {, ). are positive definite
and result, upon completion, in continuous unitary representations. {, > y= IS
indefinite unless | =1, and { , >, is indefinite unless n <21, in which case F is
either {0} or the one-dimensional space of consiants.

Proof. D), and D}, are clearly differential operators with periodic coef-
ficients. Since D5, and ¢ are formally self-adjoint, D5, is formally skew, so
(1/i) Dy, and D3, are formally self-adjoint. Thus all the inner products are
Hermitian. Note that A47(D3,) is exactly F.

Let u, =u,+2,2,Us =Uysap, and let D= D,,. Each inner product is
clearly u (K)-invariant, so it is enough to show either u_(G,)-invariance
or U_(g)-skewness. For (&, D¥),., the proof of u_(G,)-invariance runs
exactly as in the case /=1 (Theorem 2.9); the key point is that (n — 2/)/2 +
(n + 20)/2 = n. Positive definiteness of {, >,, and <, >,: results from the
fact that the scalar (2.12) has the correct sign at the points J> |f] +1—1
representing M/(W*+ + W), and + f>J+/— 1 representing V*/W*. The
strength of the resulting uniform structures is between that of H%? and that
of H', so we get continuous unitary representations.

For <, >,:,we shall show U _(S)skewness (and conclude U_(g)-
skewness by symmetry ). The argument for this runs exactly as in
Theorem 2.9, with D’ in place of 20, and the new meaning of U , ;

DLU (8),t]+D'U_(S)=U,(S)D'+[U,(S),t]1D, (2.13)
(&, D'U (S)¥)=(®, U (S)D'¥),:, & Peh(D),
U, (S)=U_(S)~ (2.14)
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As for nondegeneracy, if &;;< W™, then
f=J—(I-1)+2p

for some p with 0< p</—1, and D’ acts on this &, as multiplication by
the scalar

(—_Q[H (f+J—1+1+2m>][ Il (f—J+l~1—2m)].

! m=0 Osms<i—1
m¥ p

If 6, =W,

—f=J—(I=1)+2p

for some p with 0< p</—1, and D’ acts on &, ; as multiplication by

(—1)/[ 1l (f+J—l+1+2m)][[]:[1 (f—J+l——1—2m)].

! Osmsi—1 m=0
m#£p

This show that in either case, the sign of {, >+ on &, € Fis (—1)”
(Fig. 2.7). This proves nondegeneracy, and indefiniteness unless /= 1.

Taking [, t] of both sides of (2.13) and using the fact that D and D’
annihilate F, we get

(DLLU _(8),t], ]+ D'[U_(S),t]+D"'U_(S))®=U_(S)D"®, PeF.
But D and D’ are formally self-adjoint, so

(@, DU _(S)¥)=(2, U _(S)D"¥),2, D, ¥eF,

NP

n=4,1=2

RS

FIGURE 2.7
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n=6, | =6

FIGURE 2.8

with (2.14), this shows U _(S)-skewness for <, >,, and thus u (G)-
invariance.

As for nondegeneracy and indefiniteness of( , ), for &, < F, we must
have

f—T+1—1-2p=0,
f+J—I+1+2g=0,

for some p, ¢ with 0 < p, ¢ </— 1. On this &

. ;» D" acts as multiplication by

(—1)’“[ I (.f+J—l+1+2m)][ [1 (va—l—l—1~2m):|,

O<msi—1 Os<ms</-1
m#q ms#p

so the sign of {(, >, on & ,is (—1)”*¢ (Fig. 2.8). 1

Remark 2.19. The inner products ¢, >, (for any/) on the positive
and negative frequency solution spaces W*/F seem to depend on a par-
ticular splitting of M” into space and time components, through the special
role played by ¢, or equivalently, by 2,. (D%, may also be described as the
formal polynomial derivative of D,, in the indeterminate d,.) This also
shows up in the polarization approach of Remark 2.10, in which the
Hamiltonian quantity corresponding to 0, is used to compute the complex
structure, and consequently the real part of {, >,.. But since the
intertwining operator which determines the representation spaces is confor-
mally covariant, one would expect these inner products to depend only on
the conformal structure of M”. Zuckerman [54] gives a formula for the
well-known invariant inner product on Maxwell fields which makes it easy
to see that only the conformal structure is involved (see Remark 4.3). The
idea behind his formula is also applicable to all the equations studied here.
(See [6, Sect. 3.6] for details in the cases of D,, D,, and the D,,, D, to
be defined in Section 3.)

Remark 2.20. 1f we want to consider the full conformal group O(2, n)

380/74:2-3
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of M", including the time reversal, we only get invariance of M, V* + V'~
W* + W™, and F. For /=1, unitarity of the wave equation subspace is
lost: on (W*+ W )/F, {,>w++<,>w- is not invariant, while
<, >w+—<, »w- is invariant but indefinite. However, for any |
M/(W*+W™), and (V*+V7)/(W*+ W) are unitary in O(2, n)-
invariant inner products.

Remark 221 (odd n). Some elementary remarks are in order concern-
ing the case of odd n. Solving the Cauchy problem for the equations
D, ® =0, one finds that all solutions on R x S" ! are 4n-periodic, even for
n <2l Indeed, the characteristic polynomials for the ODEs coming from
(2.10) have no double roots: if p and ¢ are integers of the same parity, the
Jjth eigenvalues of 2(B+ p) and —2(B+ ¢q) cannot agrec mod 4. Thus all

. ) . (4) =
solutions “live on” a double cover M" of M".

(4)
Scalar fields on M” can be grouped by frequency f (an integer or half-

integer), and homogeneity j=0, 1, 2,.... The conformal group of %4)” is a
double cover of O(2, n), and the orthochronous subgroup of this group
acts separately, under any u,, on 4 types of fields, corresponding to the
possible values of 2(f + ) (mod 4). The entire conformal group, including
the time-reversal, only distinguishes 2(f + j) (mod 2); that is, 2f (mod 2).
The analogues of W™* and W~ do not even lie within fields of the same
type, so they do not reduce the same representation. Still, much can be said
about decomposition and invariant inner products, but we shall not pursue
this here.

Remark 2.22. Back in_the case of even n, by looking at the universal
cover M"=RxS"~! of M" and its conformal group, the universal cover
0(2,n) of 0(2,n), we can include the non-periodic solutions of
Theorem 2.12 in the representation theory. The ODE argument in
Theorem 2.12 actually shows that the general solution of D,,® =0 on A"

is of the form @ + ¥, where @ is a periodic solution and ¥ € F. But

U(S)(t¥)=tU(S) ¥+ (sin ») P,

so that ¢F is not invariant, even under the orthochronous subgroup
0'(2,n). However, W' + W~ +1(F is u,_y,,(G)-invariant, so that in
addition to the representation spaces of Theorem 2.18, (W* + W~ +tF)/

* should also be considered.

Remark 223 (Representations of the Lorentz group). Consider now
Riemannian S* ! and its conformal group O(1, n). The Y of Remark 1.5 is
the “typical” proper conformal vector field on $” ! in the same sense that
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S is such on M". By the discussion preceding Lemma 2.8, if ¢ € E; and (as
before) J=(n—2)/2+ j,

1 -2 -2
e e I I

(2.15)

(Ifn=2and j=0,use £(Y)1=0, o 1€ E,.}) We already have one confor-
mally covariant differential operator on functions in S” ', that given
by (2.1)

(B> =5t 3plh) o =1y 1 p(hNB =) @, heO(l,n).

But the nonlocal operator B also satisfies a covariance relation with respect
to o(l, n),

B<$(Y)+"——2—w><p=<$()’)+gw> Bo. (2.16)

Indeed, if @ € E;, both sides of (2.16) are §((J+1)o* +(J—1)o ). (If
n=2, j=0, both sides are zero.) It can be shown (though we have not set
up the machinery here) that as a result, B is O(1, n)-covariant. Note that
by (2.15), we cannot use evenness and oddness under the antipodal map to

decompose the v (O(1, n)).
The above suggests looking at the sequence of operators B,
(B+)(B-1), (B—1)B(B+1),..,ie., at

p—1 —1
D,=1] (B—L+m>.
m=20 2
D, is o(1, n)-covariant: if p € E;,
DpU(n- 17,,)/2(Y)(P
1 4 p—1 N ? p+1 B
S i J_2T
A L G I I I
=Up 14 p2Y) Dy0.
(If n=2 and j=0, D, Uy.,pn(Y)1=[]§(m—-((p-1)2))=

Uiy oY) D,1.) The D,, are differential operators, so we immediately
have O(1, n)-covariance for these by Remark 1.4.
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The representation theoretic situation is as follows. For odd n,

n—1

{0} if g<

M (Ds,) = 0
Es® @E,__1)2 if g> 5

while A(D,,,,)=0. The D,, are differential operators, so we have
representations of O(1, n) on A'(D,,) and €/ A (D,,). The argument of
Theorem 2.9 shows that

P ¥ 22,= (0, Dogth),2

is a uy,_,_s,p (O(1, n))-invariant inner product on the infinite dimen-
sional factor C*/A"(D,,). <, > is clearly positive definite, so upon com-
pletion, we get continuous unitary representations. The {@,¥>,,, =
(@, Dy, , 1Y), are invariant (skew) for U, _, ,(0(1, n)) on C*, and
positive definite for g<(n—2)/2. For g>(n—2)/2, {, >y, is still
nondegenerate, but its sign on £, is

n—2
2

n—2
>

+1, Jj>q—

(_1).i+l+q7((n—1)/2), j<q—

For even n, the situation is similar, except that it is the nonlocal
operators D,, , ; that may have nontrivial null spaces. Note that O(1, n) is
the Lorentz group usually associated with (n + 1)-dimensional Minkowski
space, while O(2, n) is the conformal group associated to r-dimensional
Minkowski space. To some extent, the above generalizes the SL(2, C)-
Riemann sphere picture of the Lorentz group O(1, 3).

3. DIFFERENTIAL FORM REPRESENTATIONS

a. A General Second Order Conformally Covariant Operator on Forms of
Arbitrary Order

It is natural to ask whether a decomposition like that of Section 2 exists
for some of the representations u, of O'(2, n) on differential forms in M". A
partial answer is given by the theory of the Maxwell equations [8, 13, 327,
which gives information about n/2- and (n — 2)/2-forms (Sect. 4.2). But as it
turns out, the Maxwell picture is atypical of the general situation; after a
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gauge is fixed, it resembles the scalar picture more than it does the general
differential form picture.

The key to the composition structure of the u, on forms of arbitrary
order seems to be a general second order conformally covariant operator
D, on k-forms introduced by the author in [4].

THeOREM 3.1 [4]. Let (M, g) be a pseudo-Riemannian manifold of
dimension n = 3; let R be the scalar curvature and (R,;) the Ricci tensor of
(M, g). Then the operator

Dz.kz(s-f—1)5d+(s—1)d5+(s+1)(s—1)(§—2V#),
where

s=(n—2k)/2,
R=R/2(n—1), V,=(R,z—Rg,)/(n-2),

and V# =(V°p)# is as in Definition 1.1, is conformally covariant of
bidegree (s — 1,5+ 1),

D;yu, (b)) @=u,, (h) D, 0, he€(M, g). (3.1)

That is, D, intertwines the representations u,,,. As special cases, we
get the covariance of

Dyo=——

D,
2 2

and the “Maxwell operator on vector potentials”((n—2)/2-forms for
even n), od. _

Returning to the setting of M"=S' x §” ! and M”" =R x 8", the effect
of D,, can be seen concretely as follows. First decompose a k-form & as

S=dt A D+ P,

where @, (resp. @,) is a t-dependent k-form (resp. (k — 1)-form) on S" .
From now on, we shall reserve the symbols d and § for the exterior
derivative and coderivative in Riemannian S"~'; the analogous operators
in M” or M" will be called ", 5. Now the only harmonic forms on "'
are the constant O-forms and the (n— 1)-forms which are constant mul-
tiples of the normalized volume element, so we may Hodge decompose a p-
form ¢ on S" ! as

P=Qs;+ Qa,
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where
©s€ R(0), 0.€R(d), 1<p<sn-—2,

or p =g, for p=0, ¢ = ¢, for p=rn-1 (arbitrarily assigning the constants
to the “0 sector” in the bottom order, and the “dsector” in the top order).
At fixed ¢, the components of the above k-form & on M" or M" can be so
decomposed

Do=Do;5+ Doy, D =D;;+ Py,

We shall call the space of possible 00 components the 00 sector, and
similarly for 0d, 13, 1d. The (%%) secror will refer to the direct sum of the 06
and 1d sectors, and similarly for, ({4). _

The Ricci tensor of $”~' (and thus of M” and M")is (n—2) gg-1, and

AP = di A (3,8, — ddy) + db,, 42)
5B = —dt A 5B+ 3,y + 5D, '

so
Dy @=dit A {(s—1)0}Py+ (s+1)5dDy+ (s — 1) doD,
—200,®,+ (s+1)°(s—1) Py}
+{(s+ )PP, +(s+1)0dD, + (s— 1) doD,
—2d3, Py + (s+ 1)(s— 1), }.
Thus D, acts separately in the 0d, 15, and (§9) sectors
(D2sPloa=(s— 1)(07 +dd + (s +1)*) Dy,
(D ®)s=(s+1)(0?+6d+ (s —1)2) D,
((Dz,k d?)o‘;) _
(D24 @)1
((s—l)af+(s+1)5d+(s+1)2(s-1)) — 260,
ey | (s+1)af+(s—1)d5+(s+1)(s-1)2)

y (‘Poa)
Py

b. Wave Propagative Properties of D,

It is remarkable that the conformally covariant operator D, is exactly
the correct second-order differential operator on forms to produce results
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of automatic periodicity, oddness/evenness, and Huygens' principle. For
the moment, set aside the Maxwell case k = (n—2)/2 (s = 1) and its “mirror
image” under the Hodge star operator, k=(n+2)/2 (s= —1).

THEOREM 3.2 (Automatic periodicity). Suppose n>=4 is even, and
s# + 1. Then every C* solution of D,,® =0 o0on Rx S"" ! is 2n-periodic in t.

Proof. By [11], the eigenvalues of dé on closed p-forms in §" ',
I1<p<n—2,are

luzl‘l/':aﬁ’

where (3.3)

a=a,=j—1+p, p=B,=n—1—p+j

for j=1,2,3,., and the ecigenvalues of dd on coclosed p-forms,
I<p<n—2, are

A=4;=o0T,

where (3.4)

g=0;,=j+p, T=7,=n—-2-p+j

for j=1, 2, 3,.... (The parameters a, f§, 5, T will be important in our treat-
ment of the representation theory of D,, and its higher order
generalizations.) This means that the nonlocal operators

A=/dé+ (s +1)? in the 0d sector,

B=./dd+(s—1)? in the 1 sector,

s /0d + s* in the 06 sector,
T Jdb+5* in the 14 sector

have eigenvalues

for j=1, 2, 3,.., plus (taking account of the possible eigenvalue (n —2)/2 on
constant 0- or (n— 1)-forms) j=0 for B when k=0, for C in the 05 sector
when k=1, for C in the 1d sector when k=n—1, and for 4 when k =n.
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In terms of 4, B, and C, D,, acts as
(s— 1), +id)0,—iA) in 0d
(s+ 1)(0,+iB),—iB) in 1o

(s-1) & +(s+ (1) | 263, 05

RB= ( in ( )
—2do, l(s+1)a,2+(s-1)(c2—1) 1d

(3.5)

Let Ey, ; (resp. E; ;, Eqs ;5 E1y ;) be the (n—2)/2 + j eigenspace of A4
(resp. B, C, C) in the 0d (resp. 14, 04, 1d) sector. Note that

d: E05,j_>Eld,j’ (S: Eld,j—)E06,j’

and that 6 and d commute with C. By the compactness of S"~*, 8, com-
mutes, on C* forms, with the Hodge projections and the projections onto
the E-spaces. This reduces the Cauchy problem for D, ,@ =0 to initial
value problems for ODEs valued in the (finite-dimensional) E-spaces.
Periodicity for the 0d and 16 components is now immediate from (3.5) and
the fact that the eigenvalues of 4 and B are positive integers. For the (%)
component, left multiplication of the operator # of (3.5) by

(s+1)a$+(s-1)(c2—1)| 260,
P =

2do, l(s—1)6f+(s—l)(C2—1)

yields the block diagonal operator
BB=(s—1)
(a;‘+2(c2+1)a,2+(c2—1)2[ 0 )
» .

0 Ea;'+2(c2+1)af+(c2—1)2

But
*+2(C*+1)02+ (C*—1)?
=[0,+i{C+1)]1[0,~#C+1)][d,+iC-1)][d,—i(C-1)],

and the eigenvalues of C + 1 are positive integers. (C — 1 takes on the value
0 only for n=4, k=1 or 3, in which case s= +1.) Thus we also have
periodicity for the (%) component. |

Remark 3.3. We have not quite completed the solution of the Cauchy
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problem for D,,®=0 in the proof of Theorem 3.2. One way of dealing
with the (%) sector is to solve the Cauchy problem for @Q(ﬁ?ﬁ)=0, and
treat the equation #($%)=0 and its first (-derivative as (conserved)
Cauchy data constraints. The general solution of this Cauchy problem is a
linear combination of solutions of the 4 forms

+iC+ 1) ‘Poa(ﬂ)
¢ ((pld(x) | (3.6)

and the Cauchy data constraints on the solution (3.6) reduce to
+ idos + (C£'5) 91,=0,

or, equivalently,
+i(CF's) oy + 09 14=0.

Alternatively, one could work directly with the second-order ODE
problems produced by #(%*) = 0. First assume that k #0, n (the scalar case
has been dealt with in Sect.2). With s# + 1, this eliminates n=4 from
consideration. Next, note that the “constant” components (of ¢,; for k=1
or ¢,  for k=n— 1) must be harmonic oscillators of frequency + (n—4)/2.
Thus we may restrict to the space of fields with no “constant” components;
on this space, C + 1 and C + s are positive operators. Let y be the Cauchy
datum for d,¢, and make the change of variable

1
Yos =T {=(C+1) g +(C—5)" "0y},

1

por] {—(C=1) @y~ (C—s5) 'dos },

Yia=

( -

{—(C—- 1) Yos — (C2—1)0C—5) 00,4},

Zos

—

s+
= {—(CH DY+ (= 1= 5) ooy}
in Cauchy data space. The (¢, y) data may be recovered from the (y, z)
data by
2C(C+ 1) @os =(CH1INC —5) yos + 0214,
2C¢0s=(C—5) 2o — (C+ 1) 6y 14,
2C(C—- 1) @, =(C—1)(C—5s) y,—dzgs,
20y ,1,=(C—38) z,,+ (C— 1) dygs.
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In (y, z) coordinates, the evolution equation becomes

0, Yos = Zos» 0,205= ~—(C— 1)2 Yoss
0/ Y1a=Z1a 0,24= —(C+ 1)y,

This decomposes the system into harmonic oscillators, and separates the
“frequency C + 1” parts.

THEOREM 3.4 (oddness-evenness). Suppose n=4 is even, and s# + 1.
If @ is a C* solution of D5, ®=0on S'xS"~ ! and n(t, x)=(t + 7, —x),
then n*® = (—1)""'®. In particular, if s is odd, ® “lives on” (covers a field
on) M"=(S'x§"Y)/Z,.

Proof. The y, eigenspace of closed p-forms ¢ on §”~! (recall (3.3)) con-
sists of restrictions (pullbacks under inclusion) to "' of closed harmonic
pforms in R” whose components (in the standard basis
{dx, A -+ ndx,|ij<--- <i,}) are (j—1)-homogeneous polynomials in
the x; [11]. Such forms have parity (—1)’~'*7 under the antipodal map.
The 4, eigenspace of coclosed p-forms on S”~' (recall (3.4)) is dual to the
u; eigenspace of closed (n—1— p)-forms via the Hodge *=*g-i. If {
S§"~' > R" is the inclusion,

f(*o= +UX) rg,  X=Y xdx.
1

This shows that elements of the 4; eigenspace have parity (—1)’*” under
the antipodal map (using the evenness of »}.

For =0, +1, £2,., let &, ,, be the space of fields ¢”'¢(x), where
¢ € Eys ;, and similarly for &, ;, &5 ;. 64y ,- By the above,

n*@=(—1)*" /¢, Pe by, ;01 85

. | (37)
71*¢=('—1)'l7]+k+/¢, ¢Eéﬂld.ﬁj or g()(i/.[

But by our solution of the Cauchy problem, L’ solutions are spanned by
the &, ;® &5, ,; with f= +((n—2)/2+j), and by subspaces of the
Eoop ; ®E yy; With f= +((n—-2)/24+j+1). (See Remark 2.6 for a dis-
cussion of what L? means in this setting.) This and n*dt = dr show that the
total parity of solutions under 7 is

(_1)(('1*2)/2)+k=(_I)xwl‘ l

To picture the null space A"(D,,), draw an upper half-plane diagram,
this time separating ({4) and ($%) sectors (Fig. 3.1). A point now represents
a sum of &-spaces; for example, (f, j) in the (99) diagram represents
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N e
xOxO03%0xO0x \\x\ x O x xox/O/x/’
x x O x x O x x O\xo\xo Ox/Ox/O
O x x O ¥ 0 x x O xo\go\x x O7x 0" x
x O x x x &% 0O x O x x0 ¥ O x0Ox0O
0d 06
18/ sector 1d/ sector
n=4, k=2

FiGURE 3.1

6055, D&, ;. Evenness and oddness (x and o) are in the sense
n*® = + d. The dotted lines indicate that exactly half of the harmonic
oscillators at each point of f= +(J+'1) are included. The line j=0 is
sometimes empty, reflecting the fact that there are no harmonic forms in
the orders or sectors in question.

THeEOREM 3.5 (Huygens’ principle). Suppose n=4 is even, and s # + 1.
If ®eC*, D,, ®=0, and the support of the Cauchy data ®(0, x),
(8, D)0, x) contains no point at a distance t, from x,€ S" ', 0< t, < n, then
D(t,, x5)=0.

Proof. Since {(s+1) '6"d" + (s—1)"'d"6"} D, has leading term
(3% the equation D,,® =0 has finite propagation speed. (Treat the
Cauchy problem for D,,® =0 as that for (02 + lower order) ¢ =0, with
D, ,® =0 and its first t-derivative as conserved fixed-time constraints. By
Section 3.a, the constraints can be solved to give ?® and 0}@® at time 0 as
linear expressions in @ and ¢, at time 0. Thus Cauchy data for D,, & =0
with small support lead to Cauchy data for the fourth-order constrained
system with the same small support. Finite propagation speed for
(D2 +lower order)@=0 thus implies finite propagation speed for
D,,®=0.) But given finite propagation speed, the Lax—Phillips
oddness-evenness method of Theorem 2.4 now works perfectly. 1

Remark 3.6. The fact that the Hodge projections and the operators
A, B, C are nonlocal is not an issue in Theorem 3.5; all we need to apply
the Lax—Phillips argument is finite propagation speed, an oddness—even-
ness principle, and a well-posed Cauchy problem.
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. Representation Theoretic Content of D5,

Let S, Y, and w be as in Section 2. Our analysis of the composition
structure of the representations #, on k-forms will rest, as in the scalar case,
on the “moves” in Fig: 3.1 permitted under U,(S). Using elementary
properties of the Lie derivative, one finds that if @ is 2 C* k-form on M
or M",

U(S)y@=dt A {cost[L(Y)+ (a+1)w] Dy
4 sin t[wd, B + 1(dw) B, 1)
+cos t[L(Y)+aw]Pd,
+sin t{wd, D, + e(dw) Py 1. (3.8)
From now on, abbreviate ¢(dw) and i1(dw) by ¢ and /. The following four
lemmas, analogous to Lemma 2.7 in the scalar case, are needed to convert
(3.8) into hard information about Fig. 3.1. This same information will be

needed again in the analysis of higher order generalizations D, of the D,
(Sect. 3.e).

Lemma 3.7. Suppose n>2 (n need not be even here). Let A= 4;, u=y;,
etc., be as in (3.3) and (3.4), and let J=(n—2)/2+ j. If ¢ is a coclosed p-
form in the A, eigenspace E, s ; of dd on S" 7', j> 1, then

1
ot Em [O(wdp)+1oeQleE,; ¢y,
1
10) _-'5—2—]; [5((0(1({)) — 0’58(p] € Ep,é‘jA 1
1
@° E; dipe Ep.d.j’

where E,, ; is the y; eigenspace of closed p-forms. If Y€ E, ;4 ;, j> 1, then

1
yr =372 [dwoy)—oady 1€ E, 4,41,

o1
l// —2J)~ [d(wéljl).*-ﬁdlw]eEp,d.j—l’

P60, J°

OE_% oy eE
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Proof. Recall the identities (1.3), (dw),= — Y,, and
LP(N=uUVd+d(Y)= —id—d,
L(Y)*= —d¢—¢d,
d¥L(YY=%(Y)d,
L(Y)*6=56L(Y)*.

Using these, we get

dd(d(wdp)) = dd(wip —1dp)
= Ad(wdp +ep)+ 0L (Y) do

= A0(wdp +ep)+(—ZL(Y)*—(n—2p—-3)w) dy
= A0(wdp +ep)+0(ed—(n—2p—3)w) do

=[A—(n—2p—3)] d(wdep) + 21dcq,

and
od(dep)= —0dL(Y)*¢
=0d(L(Y)+(n-2p—1)w) o
=0L(Y)dp+ (n—2p—1)d(wde + cp)

241

= —dZL(YV*+(n—2p-3)w)de +(n—2p—1)é(wdp + cp)

= 6eddp + 20(wdp) + (n —2p — 1) deg
=(A+n—2p—1) e + 20(wdp).

But

Ay —A=n+2j—1,

so (after some calculation)

dd{d(wdp)+toep} =4, {d(wdp)+1deq},

dd{d(wdp)—cdep} =4, ,{d(wdp)—adep};

this proves the assertions about ¢*. As for ¢°,

dd(dip) = dé(— L(Y)—1d) @

=d(L(Y)V*+(n—2p— ) w—1d) p.
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But de= —ed implies 16 = — 1, and since ¢ is coclosed, 6.£(Y)*¢p =0.
Thus

do(dip)=d(—(n—2p— 1)1+ 15dp)
=[A—(n—2p—1)] drp.

Since
A—pu=n—2p—1, (3.9)
we have
dé(dip) = pdiep,
as desired.

Similar arguments (or an application of Hodge *-duality) yield

do(d(wdy)) = (u+n—2p+ 1) dlwdl) — 2udny,
do(n) = [t — (n—2p— 1)] diy = 2d(3Y );

these, along with
Ko —y=n+2j—1,

imply the assertions about  *. Similarly, using (3.9), we get
od(dey) = Adey,

as desired for the y° assertion. ||

Remark 3.8. “Inverting” the formulas of Lemma 3.7, we get

owdp)=p(ce ™ +107),
dep=plp* —7),
dip = pg®,

d(wdy)=A(BY* +ay ™),
dy=A—y*+y7),
ey = y°.
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LEMMA 3.9. Under the assumptions of Lemma 3.7,
wp=ap” + o —¢",
L(Y)p=0up* —1fo +(n~2p—1)¢"
o =ty * +oy +y°
LN Yy=ay" —47).
Proof. By the identities used in the proof of Lemma 3.7,

1 1
(.utpzj.wéd(p:/f {o(wdp)+1dp)

i
=7 lolwdo) —dip = 2(Y) 9.

But on coclosed p-forms,

—ZN=L(YV+(n—2p—1)ow=—de+(n—2p—1)w,

Mwde)—dip—decop=[A—(n—2p—1}] wp = pwe.

With Remark 3.8, this proves the assertion about we. Since

Yo=[-L(Y)*-(n—-2p-1)0]¢
=dep — (n—2p— 1) 0o,
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we also have the assertion about #(Y) ¢. The other two formulas follow

from similar arguments, or by Hodge *-duality. [I

LEmMMA 3.10.  Under the assumptions of Lemma 3.1,

ap+ =D ()
oo
do~ =—————*(G+lﬁ)(r_l)(d<p)’,
T
143}
RTINS TP
oo
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Proof. Let oV =d(wdp), o = dep, Yy" = d(wdy), Y'® = duy. Then

do") = dé(w do) = d(wd dp — 1 do)
= (do)'" — (do)?),

dp® =déep = —dL(Y)* ¢
=dZ(Y)+(n-2p—-1)w)e

—2p—1
— 2(Y) do +ﬁ-—f——d(w5 do)
= gy + "2 gy

Remark 3.8 and some computation now give the formulas for dp*, and
similar arguments or duality give the formulas for sy *. ||

LEMMA 3.11. Under the assumptions of Lemma 3.7,

19 = 3¢°,
—1 1
20 =" (do)* T2~ (dp) " - (do)"
o = dj°,
_a—l . Bl . 0
W= =2 o)+ ) — (0

Proof. By Lemma 3.9 and the fact that ¢, ¢* are coclosed,
19 = —8(wp)=6¢°. Also by Lemma 3.9,

o =d(wp)—wdp
=ade* +pde —[(r1—1)(d)* + (o +1)(dp)~ + (dp)°],
so Lemma 3.10 gives the formula for ¢¢. Similarly (or by duality), we get
the formulas for ey, ny. ||

We can now convert (3.8) into an analogue of (2.8) using Lemmas 3.7,
39, and 3.11. If @ is a k-form in M", express @ as

z Z e”'[dr A (Pos,j+ Pouy)+ Pis st Puaysls (3.10)

f=-o j=0
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TABLE 1
&os.s; Probe: @ =dt n e"'pos, pos€ Egs 5, j2 1. @' =U,(S)®

Possrrjrr1=3a—Da+a+1+ ) og

Posys1j =3B+ —B+a+1+) oy
Pouysr=3n—2k—~aF f) oy
Disre1,= F(12i)dogs)°

T
Plas+ris1= i(l/Zl);(leo‘s)‘

o
Plisrii-1= T’(l/zi)ﬁ(d‘l’o(sV

where Po; ;€ Egs s Pousi€ Eoujs Prsy € Ersy, and Dy, € £,y ;. Mem-
bership of @ in C*, L? or H™ is determined by the rate of decay of
[®os /Ml 12, etc., as | f] + j— oo, as in Section 2.b. The L? norm is defined
using any (artificial) Riemannian metric on M" (recall Remark 2.6). Now
consider an “&y,; ,.; probe,” ie., a k-form @ whose expansion (3.10) consists
of the one term dt A e”'¢ys, where @g;€ Eys,, j=1. The components of
U,(S) @ which are not identically zero are given in Table 1. Similarly, the
effect of U,(S) on &, ;> 65.1,> and &, ,; probes are given in Tables I, 111,
IV, where «, , 0, and 7 are given by (3.3) and (3.4) with p=k&.

We also need to take account of the constant 0— and (n — 1)-forms not
already considered in the scalar case. If k=1 and @ =dr A e/~ 1, then
U,S) D=’ where

i
65./‘¢1,1=§(a+ 1+ flw

(3.11)

1
(Dlld,fi 11 = i'z‘l. do,

TABLE II
oa,s, Probe: @ =di A e'goy, pog€ Egy ;s j2 1. D' = Uy (S) P

Dos.rer1=3a+12 1) ed,
Doursrj=3la+a+1xf) o
Podrerj1=3(~B+a+lx ) oy

Plurer,= £(1/2i) doly,

580/74/2-4
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TABLE III
15,1 Probe: @ =e"p 5, 0156 Eys s j2 1. ' =U,(S) &

¢(,)r$,,/'il,j= +(1/2i) 5(0?5
Pisrsrimi=(o+atf)o}
Pusrrj1=3p(—t+at o

Plurer,=3n—2k—1-a¥f) o}

and all other components are zero. Similarly, if k=n—1 and ®=e""- 0,
where 0 is the volume element of S” !, then U,(S) @ = @, where

1
(p()é,fi L= i’fi dw) O,
(3.12)

1
Plus+ii =5 (n—1+a+f)w0.

Superimposing the (%) and (%)) sectors in Fig. 3.1, Tables I-IV and
(3.11), (3.12) show that the general U,(S) move is as in Fig. 3.2. The “for-
bidden move” structure under U,_,(S) now provides us with 5 invariant

subspaces.

LEmma 3.12. Sup_pose n=4 is even. Within the k-forms (C* or H") of
parity (=1~ on M", let

ZEEF = {+i(CF's) Pos+ 0P, =0}

TABLE IV
Biay, Probe: @=e"p,,, 0,6 E 1y, j2 1. & =U,S) P

_ La—1
Posrarie1= +(1/2l)—“—ﬁ (S@10)*

p+1
o

Pos.rs1,—1= £(1/2i) (bo14)~

Poass1,= F(1/2i)(6¢14)°

P =Hat f) ol
Plarerj1=3c+atf) ol
Plssrj—1=3(—t+at o]
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4.

/ \ sector change

FIGURE 3.2

As usual, put J= (n—2)/2+ j, and let

wr={f=J} Od) ({f= J+1} aVARS

{f J_l}(oo)ﬁz ),

T={f= ~J}((l,g)‘@ {~f=J+l}((l,Z NZ )
S —f=J-1} % NZ),
{feJ+1}+Wr,
{~f=2J+1}+ W,
={fI<I-1}+ W+ W,

where, of course, the subscript (99 (resp. (9%)) indicates that the designated

subspace is cut from the (39) (resp. (%)) sector. Then W*, V* and M are

u,_(G)-invariant, G = 0'(2, n).

Proof. As in Lemma 2.8, it suffices to show U, ,(S)-invariance. The
covariance relation (3.1), along with Fig. 3.2, shows that one cannot escape
from W* or W~ by U,_,(S)-moves. To get the invariance of V¥ and M,
we need this plus the following observation: For an &; ., or &, ,; probe
with f'= +(J+ 1), any move to the adjacent line f= +(JF 1) in the (%)
sector lands in .4°(D,,). This says that the pairs of dotted lines in Fig. 3.1,
along with the corresponding solid line, are “strong enough” to “catch” any
probe originating in V* or M.

Indeed, for an &, ,; probe @ =dr A e”¢p, with f=J+1, Table1 gives
(with @' =U,_(S) D)

, 1
DPossrye1 = 'E(J—S“ 1) g5,

, 1 J+s5—1
Plurrj41= —E.Tj;—( ®0s) ™

by Lemma 3.10, we have

(C+s)DPos 111 +0Pyy 1,1 =0
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For an & ; probe with f=J—1,

, 1
Posrerj 1= ~5(J+s+ 1) @05,

, 1J—s+1 B
Plaseii-1= ~5 5 (@00)

by Lemma 3.10,

i(C—ys) ¢65./‘+ -1+ 5qy14.f+ 1j—1 =0.

By similar calculations or Hodge duality, we get the analogous statements
for an &,,,.,, probe, and by similar calculations or time reversal, we get
the desired results on the negative frequency side. ||

The representation spaces of interest are now W32, VE/W* and
Mj)(W* + W), all carrying u,_,(G). As in the scalar case, each admits a
nondegenerate invariant Hermitian inner product, but fewer of these
representations are unitary. Recall that the natural inner product (, ) on
k-forms (indefinite for £ #0, n) is

P

(@, W)ZJ- gl (@ Y)=2n 3 @1V )as-)

IV fe

‘((Po,;" Wo‘f')Ll(M*Hs"*‘)i}*
where @=3%7_ __ e"(dt A 9o+ 0, ).

THEOREM 3.13.  Suppose n=4 is even, and s# +1. The inner products

(D, ¥>u=(D,D,, V) on M/(W* +W~),
(D, V) ys= —(®,D,,¥) on VE/W*,
(B, ¥ e = +i(P, D), V) on W*,

where D5, = [D,,, t], are Hermitian, nondegenerate, and u, _ (G)-invariant.
If we are not in the scalar case (k=0,n) already treated, all these inner
products are indefinite, except {, >+ when s=0(k =n/2). In this case, the
completion of V/W=* in {, >« carries u,_,(G) as a continuous unitary
representation.

Proof. The inner products are Hermitian because D, and (1/i) D, are
differential operators formally sclf-adjoint in (, ). The argument for
invariance of {, >,, and {, >+ proceeds exactly as in Theorem 2.9 (using
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the covariance relation (3.1)), once we note that if 4 is a conformal trans-
formation, h- g= Q%g, then

h-gh=Q gk (3.13)

For nondegeneracy of {, >,, and {, >+, note that both (, ) and D, are
diagonalized by the decomposition of k-forms into &, ,,, & ,,;, and
eg’((l)z)_ +; spaces. Within one of these spaces, if

(¢’ Dl,k .II) == O a“ ¢,

then Dz.k (I]__: 0
If k # n/2, then s # 0; by assumption s# +1, so s+ 1 and s— 1 have the
same sign. For an &, ,, probe @ =dt A "¢y, 9o, € Eou s

(@, Dy @)= —(s— D=/ + ) 21 | @oull T2 51513y (3.14)
for an S, probe ¢=€’WCP15€ Es
(D, D, P)=(s+ 1) —f*+J*) 2 @15l 220505 1))- (3.15)

For | f| #J, (3.14) and (3.15) have opposite sign; thus {, >, and {, >+
are indefinite.

Now let k=n/2, and consider the complementary subspaces
Zt=7%* = [ +iCdy;+ 6®,=0} of the (%) sector. Since dd=C?, Z* is
self-orthogonal in (,), as is Z~. But D,,:Z*—>Z"*. Indeed, if
Dedos) N Z" and Yedo) ,,nZ", say

D=e"dt AT 004t @14),
Y= E!ﬂ(—dt PN iJil 5¢1d+wld)’
Poss Wos € Evoj»

then
D, ®=[1- (f=I)Y1e"(—dt AT 3044 @14
Dy ¥=[1—(f+J)]e"(dr A 70+ ).
This shows that Z* 1L Z~ in (-, D, ), and that for @ and ¥ as above,

(2, Dz.k(p): ‘475[(f"-])2_ 1] ”(pldnsz(A"'(S"*l),
(l[l’ Dz,k lIl)z -47'6[(f+.])2—- l] ” 'Illd“zamk(snfl)]'

Thus ¢, ), and ¢, >,: are negative definite in the (%)) sector. But by
(3.5), (-, D, ") has the sign of J>— f? in the ({{) sector; that is, is positive
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on M/(W* + W~) and negative on V*/W=. This shows that {, ), is
indefinite, b}xt that (, >,: is positive definite. On & 0d) 7. (resp.
98).5.5 " ZY), ,dpx s f2—J* (resp. (f+'J)>—1) times the _inner
product induced by the artificial Riemannian metric dt* + g-1 on M", so
the strength of the {, >, - uniform structure is between that derived from
H'”? and that derived from H!; thus, after completion, we get a continuous
unitary representation.

The proof of invariance for {, >, proceeds exactly as in Theorem 2.9
or 2.18; to show that U,  ((S)*=U,_,(S) in (, ), we need (3.13). For
nondegeneracy and indefiniteness, note that D5, acts as

2(s—1)a, in 0d
2(s+1)0, in 16

Y 2As-1)3,| -2 ) <05)
—2d |2+ 1)a, 1)’
Thus on f= iJ, an 6”0‘1._/:,[ pl‘Obe b= dt A e"ﬂ(p()d has

(D, D) yr= —dn(s—1)J ol iz(Ak‘l(S"‘l))’

while an &,; ; probe @ =e”¢p; has

(D, Pyys=4n(s+1)J @l ZLZ(Ak(s"-*))-

(This already shows indefiniteness unless s=0.) For @ € §00y ,,,,nZ o
say @ =e”'(dt A @gs+ @,4) With

=i5(01d
(p05 J—‘—-S’
the formula
dé(pldz(cz_sz)(pldz(-]z—sz)(ﬂld (3.16)

implies that

—sJ+1 5
g/ <(p05) =2 ( J?s (pltl)
= i(sT+ ) o/
By another application of (3.16) and the fact that § and 4 are formal
adjoints,
4n(s*—1)J

(@, Pows =F—3= 10 1all 22gagsm-1)y
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Since s # +1, this completes the proof of the nondegeneracy of ¢, >+,
and shows that the sign of (®, ®),. on f=J+ 1 disagrees with the sign
on f=J—1.Thus {, )+ is indefinite even in the case s = 0. The situation
for {, > - is entirely similar. |

Remark 3.14 (Hodge * duality). We have not decomposed the n/2-
forms into “self-dual and anti-self-dual” summands (+1 or +i eigenspaces
of ", the Hodge star operator on M" or M") because the “space reversal”
P, being orientation-reversing, reverses duality: +"P* = —P* +(" (where
P* is the pullback by P), so

«P =g = +"PEDP = —cP*D.

We would be allowed such a decomposition, however, if we restricted to
the identity component G, = SOy(2, n) of G = 0'(2, n). This, however, does
not produce any additional unitarity.

More specifically, on an n-dimensional pseudo-Riemannian manifold
with g minus signs in its metric signature, we have

**x=(—1)K"=0+a  on k-forms.

Thus in Lorentzian M” or M for n even,

*(n)*(n) — ( _ 1 )(;1,’2)+ l'
This means " has + 1 eigenspaces for n=2 (mod 4) and +i eigenspaces
for n=0. Moreover, each u,(G,) acts separately on these eigenspaces

"y () D=u,h)x"®,  heG,, ®ann/2-form,

since *" is invariant under orientation-preserving conformal transfor-
mations in the middle order. Since

* B =dt A (—=1)"7? xD, — 5D,
where * = x o1, the condition for ¢-duality **'® =¢® is
Dy= —¢ 5D,
or
Pos= =& Py, (3.17)
Bos= —& %D,

Let W** be the space of ¢-dual forms in W*. By the proof of
Theorem 3.13, u, ,(Gy) will still be nonunitary on W=** provided

Ween {+f=J+ 1} # {0). (3.18)
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But dieé"((l)a),m with +f/=J+'1 is in the space on the left of (3.18) if
8
and only if (3.17) and

that is, if and only if (3.17) and
0P ;= +iJe D, (3.19)

Now on E,,,;, (#0)>=(d¥)’=(—1)"?dd=(—1)">J? so the possible
eigenvalues of *§ on this space are +iJe™'. Both eigenvalues are realized,
since the space reversal P, viewed as a transformation on S"~!, reverses
duality
xP*o=(—1)1dx P*p= —(~1)1dP*x ¢
= —(—I)gP*d* o= —P*xd¢.

This shows that both signs in (3.19) are possible for nonzero @,,, which in
turn proves (3.18).

The proof of Theorem 3.13 also shows that u,_,(G,) is nonunitary on
the e-dual summand of M/(W* + W™).

Remark 3.15 ( Polarization of symplectic structure). There is a u,_,(G)-
invariant symplectic form on the space of real C* solutions to D,,® =0,
viz. (with ¥ the d,® Cauchy datum)

(o) ()
- Ln {5+ 1Py, F1>— (P}, ¥,))

— (s =1} Py, ¥ — P, ¥o?)
—2({D,, dDyy — (D}, dDy )} dx.
(Compare formula (4.1) of [44] for flat Minkowski space.) The <, > are

the natural pointwise inner products on forms in $”~ !, and the integral can
be taken at any fixed 7 The corresponding conserved energy is

é”%f {(s+ 1) [dD, >+ (s = 1) |62 + (s + 1)(s — 1)* |,
sn—1
+(s+ 1) P12 = (s+1) [dDo|* — (s — 1) [6D,|*
—(s=1)(s+1)% || = (s— 1) |¥o|?} dx.
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Thus the energy Hessian 4 is not positive definite for s # +1, £ #0, n. But
we can still define a linear transformation " on phase space by

H (X, Y)=d(X, 1Y),

and get a complex structure

as in Remark 2.10.

These structures are most easily seen in a modified version of the y, z
coordinates of Remark 3.3. After a tedious calculation, one finds that

o 12 qj’)
()} (v))
SRR I ST EREIOY
N

— (s = 1) DPoy, You> — {Pous You>)

=) (ot ”">
+( B 2C(C+1)}’ld"lll
C-s >)
“<2C(C+1)}ld’kld
C—ys
2_ B ————— e B ’,7’;
+ (s 1)<<2C(C——1)}0m~00>

C—-s
N <‘z‘c<c— 0 Z>>} dx‘

First assume s> 1 (the s < —1 case can be handled by duality), and let
1 2C(C—1) p
= TN T D(C )
y, ! [2C(C=T) o
T C—s\ (- 1)(CHs)

1 2CCH_
1T TN = D(C ) M

b ! [2C(C+1) 5
BT C—sV(sT=1)C+s)
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a;= ! @

16 \/S_-I—_l 189
1

bs;= Yis»

16 \/.-S‘—+—l %
1

e [/ JR

0d \/s—-—i' od
1

bOd— I Wod-
5 —

In a, b coordinates,

A (()(3)= 1. ant>—<ai b

—{ag, b +{ag, by } dx,

and the energy is

E=1]  {1by12 = Ibol? +1Bay,|> — | Aag,”

S

+UC=1)a, > = [(C+ 1) ay|*} dx.

Thus, acting on the column vector (ag;, bos, Aoy, bous 4,5, bis, @iy b1y),

[ 0 (Ct+1) A
0 0 0
—(C+1) 0
0 4!
0 o 0 0
s = :
0 —B
0 U D 0
0 —(C—1)""
. 0 0 O ey 0
(3.20)

The Hermitian inner product # + iof, where Z(X, Y)=o/(X, #Y), is thus
positive definite on the 16 sector and the “frequency C— 1 part” of the (%
sector, and negative definite on the Od sector and the “frequency C+ 1
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part” of the (%) sector. This agrees with our findings for W* in the proof of
Theorem 3.13.
fs=0, let

a =~/ 2(C+1) y4 biy=V2(C+ 1)z,
a05=\/2(C~1)y05, bos =/ 2€UC — 1) z¢;,

5= Yiso bis=2zs, Aoy = You> boy= Zoy-

() (3)) =L, (<anti>=<aib

+ {aoys boad — {ou> bou)

— {@gs» bos > + ags, bos )} dx,
G4 [ b+ 1bod — b + 1Byl

+ |Aag)* + (C+ Va2 = (C— 1)005{2} dx,

and in the notation of (3.20),

[ 0 (-1 )
-1 o 0 0 0
0 —A4!
0
4 o 0 0
g = )
0 —B-
0
U DR 0
0 —(Cc+1n!
0 0 0
L C+1 0 J

Thus & + i/ is negative only in the “frequency C — 1 part” of the ({3) sec-
tor; and this agrees with our findings for W™ in the proof of Theorem 3.13.

Remark 3.16. The full force of the information in Tables 1-1V, (3.11),
and (3.12) has not yet been used; for the invariance of W*, V*, and M
{Lemma 3.12), we needed only the information in Fig. 3.2 and part of
Tables I, II. However, to prove the covariance of the higher order
generalizations D,,, of D,, introduced below and to get invariant sub-
spaces analogous to W*, V*, M, we shall need all this information.
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d. Higher Order Generalizations of the D,, and Their Wave Propagative
Properties

The “correct” way to generalize D,, to an operator D, of order 2/ on
k-forms in M" or M" is as follows. Let

(s—l)6,2+(s+l)(C2—12)‘ —2140,
|

—21do, \ (s+1) o2+ (s—INC*=1P)

as an operator in the (%) sector, and let D, act by

(s—D[0,+iA]J[0,—iA] “ﬁ'/z [0,+i(A4 +2p)]Lo,— (4 +2p)]

p=1
x[d,+i(4—=2p)][0,— A —2p)] in the Od sector,

(/1—=1)2
(s+0[o,+iB1(a,—iB] [] [0.+i(B+2p)]

p=1
x [8,—i(B+2p)][0,+i(B—2p)]
x [8,— i{B—2p)] in the 19 sector,

lodd

(I—1)2
{ [T [6,4i(C+(2p— 1), —KC+(2p—1))]

r=1

x[0,+i{(C—(2p—1))][0,—i{C~(2p— 1))]}:@

in the ({9) sector,
(3.21)

/2
(s=0) [1 (8, +i4+@2p—1)]L0,—i4+(2p—1)]
x [0, +i(A—(2p—1)1[0,—i(A—(2p—1))]  in0d,
{2
(s+) [ [0, +iB+(2p—1)]L0,—iB+(2p—1))]

p=1

x [0, +iB~(2p—1))][0,—i(B—(2p—1))]in 1J,

leven

(—2)2
[8,+iC][0,—iC] { IH)/ [é,+iC+2p)1le,—iC+2p)]

p=1

% (8,4 KC —2p)100,~ i(C—zpn} B in (%)
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(For k=1, the “constants” C(dr A e”") may be assigned arbitrarily to either
the 00 or 0d sector; the two definitions of D,,, @ given by (3.21) agree. The
same is true of the “constants” Ce”'(), where ¢ is the volume element of
§"~!, for k=n—1)) It is shown immediately below that D,,, is a differen-
tial operator, in spite of the fact that its ingredients, the Hodge projections
and 4, B, C, are noniocal. It is shown in Section ¢ that D,,, is conformally
covariant (on M") of bidegree (s —1, s+ [), where, as before, s = (n— 2k)/2.
D,, is a spacial case of a general fourth order conformally covariant
operator introduced by the author in [6]. For k=0, D,,, specializes to the
scalar operator D,,,

LemMMA 3.17. Dy, is a differential operator with leading term
(s + DAY + (s — 1) (d™sY
= ((9+1) St 4 +(s l) d(n)(s(n)) M-t

Proof. Let D= D,,,. We shall exhibit differential operators %, and %,
such that: (i) 2, agrees with D in the (%) sector, and acts as a real
polynomial #,(0,) (resp. #,0,)) in 8, in the 05 (resp. 1d) sector; (ii) &,
agrees with D in the ({9) sector, and acts as a real polynomial %/¢,) (resp.
#s0,)) in 8, in the Od (resp. 1) sector; and (iii) 240,) = P$(2,) = $(¢E,)
and 2 5(6,)=2,40,)=%(0,), so that

A0, 0
D - @1 + @2 - 5
0 | #(0,)
where the blocks are relative to the (3°) decomposition.
Let
" 0
9[ =< 0 @(ll)>3
where
(—1)2
(s=D@7+do+ (s+1)°) [] [0%+2(do+(s+1)>+(2p)*) &>
r=1
2 232
P +(do+ (s+1)"—(2p)*)*], { odd

(s—1) ﬁ [344+2(dS+ (s+ 1)+ (2p—1)?) &2

p=1

+(do+(s+ 12— (2p—1)))?], ! even,
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(s+ (32 +dd+ (s—1)%) U_rl[)/z [0 +2(8d + (s—1)*+ (2p)?) 0?
+(8d+ (s —1)* = (2p)*)*], ! odd
(s+1 ﬁ [0 +2(6d+(s— 1)+ (2p—1)?) 0?

p=1

+(dd+(s—1)2=(2p—1)*)?], Ieven

1)
M=

Then 2, is as in (i), where 2 is a real polynomial of degree 2/ with lead
coefficient s —/ and roots
-1
+i(s+1), +is+1+'2p), p=1,.,——;lodd,
2 (3.22)

+is+1+"(2p—1)), p=1,.,10/2;1even,

and #,, is a real polynomial of degree 2/ with lead coefficient s+/ and
roots

[—1
ti(s—1); tils—1£"2p),  p=1..,——:lodd,
(3.23)

+is—1+"(2p—1)), p=1,.,142; 1 even.

u 1)/2 od | 0
0t +2 +52+(2p—1)*) o2
0 |do
5d| 0 ?
(( )+s —(2p—1)° ) :I} A, [ odd,
0 |db
0 (22 éd | 0
D= o+ (+ +52 g I1 8‘,‘+2((+
0 | do p=! 0 |do

+ 57+ (2p)2> 0?

éd | 0 2
+ + 5% — (2p)2) g o,  leven,
0 |do

Let
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where

o =

((s—l) 2+ (s+ )(od+ 52— I?) — 2160, )
~21dd, |(s+1)a,2+(s—1)(d5+s2—12) '

Then &, is as in (ii), where 2, is a real polynomial of degree 2! with lead
coefficient s —/ and roots

-1
ti(s+1); ti(s+ ' (2p—1)), p=1,. T; !/ odd,

- (3.24)
+is; +i(s+1); +i(s+'2p), p= 1,...,—;—;leven,
and Z; is a real polynomial of degree 27 with lead coefficient s+/ and
roots

I—1
Tils—1); Ti(s+' (2p—1)), p=1,...,—2~;10dd,

", (3.25)
+is;  +i(s—1);  +i(s+ 2p), p=1,...,—;—;leven.

But the list (3.22) agrees with the list (3.24); and (3.23) agrees with (3.25),
so (ii1) holds, and D is a differential operator.
The leading term of 2, is

((s—l)(az +d8)! ‘ 0 )
0 ' (s +1)(0? + 6d)'

(in the sense that 2, minus this operator is of lower order); the leading
term of &, is

od | 0 =1 (s—l)a$+(s+l)6d| —2/4é0,
o2+ ;
0 |do —214de, ‘(s+l)6f+(s—l)d5

and the leading term of diag (#(4,), A(8,)) is

((s—l)a}' 0 )
o0 |s+nar)

(3.2) now implies the statement about the leading term of D. |
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It is clear from the above that the cases s = +/ will be qualitatively dif-
ferent from the typical case; as shown in Section 4, these cases can be
viewed as higher-order generalizations of the Maxwell equations. Leaving
out the cases s = +/ for now, we can find all solutions of D, ® =0 in M"
or M" (n even) in much the same way as for D, ,® = 0. It is clear from the
definition of D,,, that periodic solutions occupy the 2/ lines

J-(-1)< tf<I+1-1, J+f=l—-1 (mod?2)
in the (%) sector, and include the 2(/— 1) lines
J—{U-)< +f<J+1-2, J+f=1 (mod2)
in the (%) sector. For the rest of the periodic solutions, note that if
((s+l) 2+ (s—N(C2=P) ‘ 2180, )

21 db, ‘ (s—=D o+ (s+1)(C? =),

B =

as an operator in the (99) sector, then
BB = (5"~ )
014+ 2C*+ )} 4 (CP= P | 0
X
12)2

0

*+2(C*+P) o+ (C* -

Thus the “extra” solutions lie on the lines
f==x(J1")),
and, arguing as in Section 3.b, satisfy

Fi(JF's) Doy +6@,,=0.

The periodic null space of D, is pictured in Fig. 3.3. The dotted lines
again indicate that exactly half of the harmonic oscillators at each point are
included. Where two dotted lines intersect, @/l harmonic oscillators are
included.

THEOREM 3.18 (Automatic periodicity). Suppose n>=4 is even, and
s# I Let Z*'*' be the space of C* periodic solutions of D, @ =0 in the
9) sector satisfying

THC F'5)Dys + 6P ,=0, (3.26)
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\\ //
x x N x\ x x X yd
x x « X X
* x \(\ x| X X
x x x X X x

x
(0 d) (0 6)
16/ sector 1d/ sector

n=b, kz2,l=2

~ /
x X \x !/
\E\\\ /)j/// " "N’ P
. M ~ < <
Y vd . v
06

(3%) (e
16/ sector 1d/ sector

(%)
16/ sector

(2
1d/ sector

n=6,k=2,1=6

FIGURE 3.3

and let W* be the space of C™ periodic solutions given by
Wwr={J—(I-1)< ﬂ<J+l—1,J+f'=—l—lmod2)}(05)
1d
@J-(-)< +f<J+1-2,J+ f=](mod 2)}(0,;)
1d
e(f= i(J+1)}(oa)f\Zi’+)
1d
®({/= £U=D} (@) N Z*").
1d

Let F=W™* n W™, Then the general solution of D,;,® =0 on M" is of the
form @+ t¥, where @ and W are 2n-periodic solutions, and in fact Y€ F. In

380/74°2-5
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particular, if l<(n—2)/2, or if k#0, 1, n— 1, n and [ <n/2, all solutions are
2n-periodic.

Proof. The proof is similar to that of Theorem 3.2; the Cauchy problem
is again solved by solving initial value ODE problems. The only
complication comes when the characteristic polynomial of one of these
ODEs has double roots (higher multiplicity roots do not occur). These
correspond exactly to fields in F. |

THEOREM 3.19 (Oddness—evenness). Suppose n=4 is even, and s # +1.
Then every periodic solution of D, ®=0 has parity (—1)°"' under the
product n of antipodal maps.

Proof. This follows immediately from the discussion in the proof of
Theorem 3.4, together with the above characterization of the periodic
solutions. [

THEOREM 3.20 (Huygens’ principle). Suppose n>=4 is even, and s# +1.
Suppose I <(n—2)/2, or k#0, 1, n—1, n and [ <n/2. Then if @ is a C*
solution of D, ®@=0 on M”, and the support of the Cauchy data &(0, x),
(8,®)0, x),..., (0%~ '®)(0, x) contains no point at a distance t, from
Xo€S" ', 0<ty< 7w, we have D(tg, xo) =0.

Proof. Since {(s+1)""'6"d"™ + (s—1)"1 d"6"} D,,, has leading term
[17*1 the equation D,,,® =0 has finite propagation speed, by the same
argument used in the proof of Theorem 3.5. (The crucial point is that the
fixed-time constraints D,,, #=0, d,D,,,® =0 can be solved to give 0%
and 0%+'® at time O as linear expressions in @, 3,®,..., 0%~ '@ at time 0;
but this is clear from the proof of Lemma 3.17.) Given finite propagation
speed, with the above solution of the Cauchy problem, the Lax—Phillips
oddness—evenness argument of Theorem 2.4 implies the result. ||

Remark 3.21. The guiding principle behind the inequality conditions
l<(n—2)/2, or I<n/2 for k#0,1,n— 1, n, is the need to avoid the case
F#0. Even when F#0, however, a modified Huygens’ principle
(analogous to that of Remark 2.5) holds.

e. Representation Theoretic Content of the D,

In analogy with the situation for D,, D,, and D,,, the operator D,;,
determines a decomposition of u, _(G) on k-forms into 5 or 6 composition
factors, and some infinite families of unitary representations emerge. We
first prove the conformal covariance of D,,, on M", n even, “eigenspace by
eigenspace.”
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TueorReM_3.22 (Covariance of D,;,). Suppose n is even. For @ a C’
k-form on M™ and he0(2, n),

Doy _(h)P=u,, (h) Dy .

Proof. By the obvious covariance under isometries and Remark 1.4, we
are reduced to g-covariance; by symmetry, this reduces to S-covariance

Dy U, (S)® = U, (S) Dy, ®. (3.27)

It is enough to prove this on “simple” fields, i.e., &/, €ous,» €15, and
614 Probes, using the definition of D,,;,, Tables -1V, (3.11), and (3.12).
For convenience, we rewrite the information in Tables I-1V for the special
representations U,,, in terms of f, J, [, and s. Let D=D,,, and
U, =U,,, Note that

x=J—s, p=J+s.
o=J—s+1, T=J+s5s—1.

(Again, these are the «, f§, g, T parameters for k-forms.) The “translation” of
Lemma 3.10 into J, s terms is given in Table IX.

Consider first an &,; ., probe ®=¢"¢,;, ¢ ;e E,,. DU (S)® or
U . (S) D® has possibly nonvanishing components only in

Bisrsriz 1 AN

TABLE V
&us.r.; Probe: @ =dit A e"py;, pos€ Egs ;. j2 1. O =U, (S) D

+
Pos

Poays 1 ji1=3J—s=1)0Jxl+1%'f)
J L' f) o4

Possr 1 =3 +s+1)(=J 1+
Pods 1, =3 FIF )@l
Pl on,= F (1/2)(dpys)°

. , J+s—1
D11 = £(1/20)

(dpos)™

+1
(plhl\/fi.jr 1= (1/23) {dpos) ~
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TABLE VI
6oz Probe: @ =dt A e oy, 9oa€ Egyj, j2 1.9 =U (S) P

Posye1,; =32 l+11" )0,
Do+ 1,j+1 =§(J+s)(JLI+13 fog
Pous+11=3T =) =TI+ 11" fog,
Plysar,= £'(1/2i) dpf,

For the &5 ;. ;4 component,
(DU _(S)Pisss1j1

_ (s+zr){[ﬁl [-(f+1)2+(J—l+2+2m)2]}

m=0
X J=sWJI—1+1+f)of;,
(U+(S)D¢ 16./+1,;+ 1
= (s+1) {]’[ [—f34+(J—1+142m) ]}Z(J ST+I+1+f) o}

m=0

Factoring the quadratics and shifting indices, we find that these two
expressions are equal. The equality of &5 ,_,,,, components follows by
time reversal (from the equality of &5 _,,, ;,, components for an &5 ,;
probe). As for &5 ,, , ;_, components,

(DU _(8) Pisr+1.j-1

=(s+1 {H [—-(f+1) +(J——l+2m)2]}%(l+s)(—J—l+1+f)<,01_5

=(s+/) {]‘[ [-f*+ (- l+1+2m)2]}%(J+s)(—]+l+1+f)(pl‘5
= (U+(S) D¢)15,_/‘+ Lj—1>

and the equality of &, , ; , components follows by time-reversal.

TABLE VII
&5,y Probe: @=e"@ 5, 015€ E5,, j2 1. @' =U,(S) D

Disrv 1= 1'(1/20) 60Y4
Py rr =3 —s)WI2I+1L fofhs
Py 1=HI+sN=JtI+1+" o
Plse 1, =3s—1FIF f)of;
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TABLE VIII
14, Probe: @ = e, 0u€E L, j2 1L O =U_(S)P

265

, —_ J—s—1
Pos pyrj-1= F(1/2i) Ts (6@ "
, , LSS+
Dospe1,-1= (120 — (00 1,)

s
Doy 1= F'(1/2i)8¢,,)°
(b,lrs‘/t'],,:%(sili'f)(P(lj‘/

Pljr = +s=DHJxl+1%" o],

Pluyeya = —s+IN=J£l+1%" o,

The relevant &,; ,, , ; components are

(DU (S) Plos.r+1.

= { H [—(f+1)2+(J—/+2+2M)2]}Zil.{~(s—l)(f+1)2

m=0
S+ =P)+2f+ D ls—1+1= 1)} d9l;,
(U (S)DD)os s41;
/o
= (s+1){ [1 (=7 +—=1+1 +2m)2]}§1—[6(p‘|‘(,.

m=0

TABLE IX

Pos € Eon.,w Do € EO{I./v ©€E . 0uE Em./

(J—s+1)(J+s—1)
(J—s—1)J~5)
d(p7=(1~x+l)(J+s—l)
O s+ 1T +s)

(s =2)J+5+2)

S5 = m (3¢oa)

(J—s=2)J+s5+2)
(J~s—1}J—s)
(J—s+2)J+5-2)
(J=sHJ—s+1)
(J—s+2)(J+s—2)
(J+s)J+s+1)
5¢+=(J-x-l)(l+s+1)
14 (J+sHJ+s—1)
6(pf=(J—s—1)(J+s+l)
M J—s)J—s+1)

dpg; = (depgs) ™

(dpys)

S@oq= (0904}~

do = (dos}*

do;= (do )~
(0 0) "

(6¢14)~
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These two expressions will be equal if

(s+1)[J-l+1+f][J+1——l——f]§1;

(3.28)
="2—{—(s—l)(f+l + G+ =P)+2f+ D) Us—1+1—1f)}.
But both sides of (3.28) reduce to
%{-(s-}-l)(f+1)2+21(S+l)(f+ D+ (s+ (7= 1)}
The relevant &, , ., ; components are
(DU _(S)P)iasa,
i—2
= { H [—(f+ 1)2+(J—1+2+2m)2]}
xH(s—1+I1=N[—(s+D(f+1)
+(s= D=V =20+ D =5°)} 0,
(U A(S)DP)yyin,
/-1
- { [1I[-+—1+1 +2m)2]}%(s— 1 —1—f) Y.
m=0
These expressions will be equal if
(s+DH[J=1+1+fIJ+I-1=f1Hs—1—=1—f)
2 Hs—=1+I= = G+Df+ 1)+ (s == P)]
=2 =$)f+ 1)} (3.29)

But both sides of (3.29) reduce to
Us+D{(f+ 1Y = (s+ D+ 1) = (JP+ > =2Is)
X(f+ 1)+ (=2 =)}

The equality of é”((l)z)x,, 1.; components now follows by time-reversal. This
completes the argument for an &, ;; probe.

The covariance relation (3.27) for an &, ,, probe now follows by a
similar argument, or by an application of Hodge duality.

Next consider an &, probe ¢=¢"¢,,, ¢,,€E,, ;. The only com-
ponents of DU _(S) @ or U _(S) D® that might not vanish are in

g(?g)ﬂ/’i L2 ‘g(?z),./‘t Ljt 1
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Starting with the components in the Od sector,

(DU _(S)P)ousi1,;

= (s—1) {H {— f+1)2+(J”‘1+1+2m)2]}<"2i’.>(5(l’1d)07

m=0

(U ( )Od/+1j

{Hz[ I+ ~1+2+2m)2]}2ll.{(S+l)f3*(s~1)(J2~[3)

m=0

+2f(s =1~ [)}(09,0)".
These two expressions will be equal if

1
5 {s+D 2= (=D =)+ 2Uf(s—1- 1)}

—il—i(s-—l)(J—Iff)(J+l+f). (3.30)

But (3.28) was proved as an equality of polynomials; replacing / by —/ and
/by [+ 1, (3.30) becomes exactly problem (3.28). The equality of &, ,. |,
components also follows, by time-reversal. As for 16 components,

(DU (S) P)iays,

= (s+1) {[] [—(f+1)2+(J —1+1+2m)2]}5(s—l+f)c/>?d,

m=0

(U (S)DDPY iy

:{Inz[—f2+(J——l+2+2m)2]}§ s+HI+N[—-(s+D[f?

m=10

(s =P =)+ 2 (P =)} 0l

These expressions will be equal if

HE+HI+ L=+ 2+ (s— DI =)+ 2 (J* — 5}
L s+ DI == )T+ 1+ s — 1+ /)

But after changing f to —(f + 1), this is exactly problem (3.29). We also
get equality of &, , , ; components by time-reversal.



268 THOMAS P. BRANSON

Next consider the effect of the &, ,; probe on the 06 sector. The relevant
Gos.r+1,;+1 components are (using Lemma3.10 in addition to
Tables V-VIII)

(DU—(S) ¢)0«S._l'+l.;‘+1
= { M [—(f+1)2+(J+3—l+2m)2]}

m=0

[RAWAKES|
x{[—(s—l)(f—i—1)2+(s+l)((J+1)2—12)](—Z) Jj—s

| (J=s—D(J+s5+1)
~li(f+ D) +s-)I=I+1+]) (J+s—1)(J+5)

(U+(S) D¢)06,v/’+l./+l
_ -2 3 , (_l)
= {”EO[—fH(J I+2+2m) ]} 5

J—s—1 5 2 N AT
x{ T [+ fP+-NIF=1)]-2(J-s-1)

x(J+I{+ 1+ )},

These expressions will be equal if
J+1
2i+f{—(s—l)(f+ D24+ G+ DI+ =P
=2A(f+ NI =1+ 1+ YT +s+ 1)}
y  J=14+2+

= ——E——f{—(s-kl)fz*k(s—i)(ﬁ—lz)
“2fJ+S)JI+HI+1+ 1)} (3.31)
After a tedious calculation, one find that (3.31) holds as an equality of
polynomials in f, J, [, s. Equality of the &, , , ;,, components for an &), ;;

probe follows by time-reversal.
For the &,; ,_,;_, component (using Lemma 3.10),

(DU#(S) (p)oa.f— 1j—1

}(5(pld)+7

_ {'ﬂz [—(f—1)2+(J+1—l+2m)2]}

m=0

[—G=DU+ D)+ s+~ 1)=1)]

1J+s+1
2i J—s

i —s+ D) (=T —1+1—f)f—1)

(J=s—D)(J+s+1)
(J—s+ L)(T—ys)

} (0@ 14) s
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(U AS) DP)os 1,1

12
={ﬂ[ﬂ+u
=0
1
S LD D= P )

—l+2)2]}{-lif(J+s+ I(=J+I+1-1)

These expressions will be equal if

(J= I+ N {s—Df =

+(—=J =+ 1= )20 - 1)

= (U+1=24 NA(—T+ 1+ 1= /)~

+(s+DfP=(s—DI =)}

But changing J to —J and f'to —/, this is exactly problem (3.31). This also

gives (by time-reversal) equality of &, ,,; | components.
As for &4, ., 1 components,

(DU (S)d))lrlf+l/+l

{n [—(f+1)
— Vs DU e

{f+1J i
J+1 (J—s—IHJ+'+ )

(s+D(f+1P+(s=D(J+1)

12— (s+D((J=1) =)
J—s—1)

+(J+3—1+2m)’ ]}

+[—- P15 +s—1)

x (J—I1+1 +f)}(01+(/v

(U+(S) D(p)ld./'+ tji+1

1-2
={H [—A/'2+(J—l+2+2m)3]}
m=0
J+s—1 5 .
x{— Y PP —s)+3(J+s— DI +1+1+ 1)

X [—(s+l)f2+(s—1)(12’12)]}<Pn+d-

These expressions will be equal if
J+HI+ NS+ DT+ =)+ [ (s+ DS+ 1V +(s=1)
x((J+1YP =PI -I+1+/)}

LT 1+2+ N =2f T+ )+ (J+1+1+])

x[—(s+D P+ - =]}, (3.32)
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and a tedious calculation shows that (3.32) is true as a polynomial identity.
By time-reversal, this also gives the equality of &, ,_, ;, ; components. For
the &, ., components,

(DU _(S) D)1

{ﬂ [— +(J+1—1+2m)? ]}
J+s+1 J—s+1)(J—=s}(J—-1+5s)
X{ 7= U= J+s+1

W —s+ 1) (=T =1+ 1= )[—(s+Df—1)
+(s—=H((J— 1)2‘12)]} (22N
(Ui (SYDP)yp— 11
- {,,20 [—f2+(J——l+2+2m)2]}

x{—If(J—s+ D) =s)+i[—(s+]) P+ (s— )T — )]
(—s+1)(—J+l+l—. )} @4

These two expressions will be equal if

(J—=I+ )2 — DI =1+s5)+(=T=I+1=f)[—(s+D(f=1)°
+ (=N —1Y=P)]}
= (J+I=2+ =2 —s)+[—(s+]) S
F (=D =P)YN=T+I1+1=1)}.

But after changing J to —J and f to —f, this is exactly problem (3.32). By
time-reversal, we also get the equality of &, ., ,,_ | components.

The covariance relation (3.27) for a ®,; ., probe now follows by a
similar argument, or by an application of Hodge duality.

We still need to treat the special cases of (3.11), (3.12); this just involves
more routine calculations of the type above. Finally, since DU_(S) and
U, (S) D are differential operators, the “eigenspace by eigenspace” proof of
covariance, along with the fact that C* = H™, prove (3.27) for C* forms
o. 1

Recalling Fig. 3.2, we now get 5 or 6 u, _,(G)-invariant subspaces as was
the case for D,;.
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LEMMA 3.23. Suppose n>4 is even. Within the k-forms (C* or Sobolev
class) of parity (—1)° " on M", let W* and F be as in Theorem 3.18. Then
the 6 subspaces F, W+,

Vi
M

(+f=J+1+ W
W=+ wr+w

I

are u,_ AG)-invariant, G = O1(2, n).

Proof. As for Lemma 2.8, it suffices to establish U, (S)-invariance.
Recalling Fig. 3.2, this reduces to the following 6 calculations
(corresponding to arrows 1-6 in Fig. 3.4) and their analogues on the other
“edge” of W*. (Time-reversal then takes care of W . The observation in
the proof of Lemma 3.12 is also needed if /=1.)

(1) Let d=¢"¢p,, be an &, probe, f=J—1+1. By Table VIL
(U, AS) D)5, 1,41 =0. Hodge duality gives a corresponding statement
about &, ,; probes.

(2) For @ as above, by Table VI,

1.
(U, (S) ¢)ols._t = ‘Eo@(\)u-

| 1
(U, AS) D)y 1./25(5‘ 1 +1+f)(0(|),5:§(*]+5) @\

Thus by (3.26), the (%) component of U,_ (@) is in W*, and similarly for
an &5, probe.

FIGURE 3.4
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(3) Let d=e"¢p,, be an &, probe, f=J—[+2. By Tables VIII
and IX,

J—s5—-1
(U, _(S) ‘p)ols,f— Li+1 =_i(7s:s_)_ (0017,
(J—s—1)J+s5+1)

5(Ux—1(5) ‘p)ld,f- Lji+1= —

T+ (00,

By (3.26), the é”((l)fl)‘_,;l_jﬂ component of U,_,(S) @ thus lies in W*, and
similarly for an & ., probe.
(4) Let @ be an (5’(?3)‘,;, probe on

_ i 0@
{f=J-1}nZ*, P =¥ {thJ+’S‘I+(p,d}.

By Tables V and VIII,
(U.\‘v/(S) ‘D)oa._r» Lj+1= (Ui\,,(S) ‘p)u/.f/ Lj+1 =0.
(5) For @ as immediately above, by Tables V and VIII,

1 1 0@, \°
(U, _(S) Pouy »1./2:2”’.(5(,01‘1)0*"2'(J+S)(‘J—(:i—‘!;) =0,

1 1 [ idp,\°
(U.\»—/(S)‘D)m._/‘fl._/:'z'(s—-]) (p?‘,+z(dj+lsl> =0.

(6) The exceptional cases corresponding to (3.11) and (3.12) can also
be handled routinely. |

The representation spaces of interest are F, W*/F, V*/W=*, and
MW+ W)

THEOREM 3.24. Suppose n=4 is even, and s# +1. Then the inner
products

P, ¥)1=(P, Dy ¥) on M/(W* + W7™),
(D, ¥ppe=(=1) (D, Dy ¥)  onV*/WH,
(D, ¥>ws = Ti(P, D,2/,k ¥) on W=,

<(pa q’>l~‘=(¢7 D,Z’[,k ql) on F;



REPRESENTATIONS AND LORENTZ CONFORMAL GEOMETRY 273

where D3, = [Dy,, t] and D5, = [ D5y, t], are Hermitian, nondegenerate,
and u,_ (G)-invariant, { , )« is positive definite provided I > |s|, and in this
case VW= completes to a Hilbert space carrying u, (G) as a continuous
unitary representation. With the possible exception of {, >, all the other
inner products are indefinite except in the following limiting cases already
treated. {, >y and {, >y+ for k=0,n, and {, >y« for k=0,n and [=1.
{Recall that () itself is indefinite unless k =0, n.)

Remark 3.25. The theorem says that we get a unitary quotient if k is
close enough to the middle order n/2, or if the order of the fundamental
intertwining differential operator is high enough. For /=1, this unitarity
condition reduces to the condition s =0 of Theorem 3.13.

Proof of Theorem 3.24. Assume throughout that s> 0, ie., that k <n/2.
(The cases s <0 can be taken care of by applying Hodge duality.) Assume
that k #0, », for in these cases, the conclusion of the theorem is contained
in Theorem 2.18. For k = 1, assign the “constants” C dt to the 04 sector, so
that C —s>0 in the (%) sector.

All inner products are Hermitian because D, (1/i) D, and D3, are
differential operators formally self-adjoint in (,). The argument for
invariance of (, >, and {, ),. proceeds along the lines of the
corresponding argument for Theorem 2.9; the key points are the covariance
relation (3.27), the fact that (s — ) + (s + ) = n — 2k, and the fact that if £ is
a conformal transformation, - g=Q%g, then h- g¥=Q ~%*g* The proof of
nondegeneracy for (. >,, and {, ), is exactly as in Theorem 3.13.

Let D= D,,,, and consider now the definiteness question for (®, D¥).
For an &, probe @ =dit A e”¢,,,

(@, DP)= —2n(s—1) {H [—f*+ —1+1+2m)2]} lpoall?,
while for an &, ,, probe @ =e"¢;,

(&, Do) = zns+1){n [+ —1+1+2m)2]}||<p15u2,

where the norms are in the L? spaces of forms in §”~'. This already shows
the indefiniteness of (, >,, and {, >,: when /<s. When I>s, {, >, is
positive definite on the (J4) sector, while the sign of <, >,. on the (%
sector is {—1)".
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For the analysis of the sign of (&, D®) in the (9%) sector, assume that
[> s, since this is the only case in which unitarity is still possible for {, >+
or {, Y. Suppose that |[f|=J+1 or |f|<J—1but (f,J)#(0,!). Then
we claim there are two (-, D-)-orthogonal subspaces &= of & =& .,

&t = {@gs= £ibo®,,}

with 0<b=>b(f, J,s,1) (so that & =" @& ), such that (-, D-) is definite
or zero on & *. Since for e &0, ;,

D® = { [1:[2 [—f2+ (J—l+2+2m)2]} BP,

m=0

we need only show that &+ and & are (-, % -)-orthogonal, and that
(-, B ) is definite or zero on &*.
The orthogonality condition will be used to determine b. Let

¢=e(’7(dt A lb 5(p;d+(/)|(1)€@¢+,
Y=e(—dt nibY ,+Y)EE.

Then
(®, BY)=21{ (2= s+ W =)+ (I—s) f71b°
—[(+s) P+ U—=s)J— /2)]}<<P111s WiaD b s 1))

The orthogonality condition thus forces

(I+5) 2+ (U—=s)I* =)

S B TS TN o Sy e

(3.33)

Both the numerator p and denominator ¢ on the right in (3.33) are positive
for |fI=J+1or |fI<J—1 (f,J)#(0,1). Indeed,

Plini=ss
= 2(J+I)J+5)>0, __5_17__=[+S>0;
of*)
qlifi=ssr

= 2(J+I)(J = s)J*— %) >0, 5(6;2) = (I—s)J2—5%) > 0;
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Plisi=s
(/H#(O/)
= U(J—1)J—5)>0 P50
B o o) ’
qlii=s-
(1) 01)
= UJ =D+ —)>0,  —a = (I+5)(J*—5*)>0.
29

Thus we can define b to be the positive square root of the expression on the
right in (3.33), and get (-, D -)-orthogonality of &* and & .
For & and ¥ as above,

(D, BD) =2n{ —qb> +4If(J2—s) b—p} lo,i%
(P, BY)=2n{—qb> — Al (S —~5°)b—p} Y .".

{-,#) will certainly be negative definite on both &% and &~ if the
quadratic polynomial

Oc)= —q> +4lf( —s*) e~ p
takes on only negative values. But @(0)= —p <0, and the discriminant of
Q is
v = 1652(J* — s?)* — dpq.
In the special case f =0, J>/,
y= —4pq <0,

o (-, 4% ) is negative definite, as is (-, D). With the fact that {, >, is
positive definite in the (9%) sector, this shows that {, >, is indefinite. But
for {, >ypx,

a 2 2 2 2 )
i—re=0, sz): T e Ve ) Ay Ly

<0 for |fl=zJ+1

This shows that (-, %) is negative definite, so that (-, D-) is (—1)-

definite, on é”o N, w1th IfI>J+1 To finish the analysis of the sign of
<y Dy, We neeg to look at the cases f = +(J+/), in which 6= (J—5}" !,

and

0’

+'b)= s
o+ )-{_41(J+1)(J+s), +

W
H H
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That is, on é”((l)j),ﬂ,,ij*'* cW* and é“’(?z),_(n,,,ij"* S W,
(-, %) =0 as expected, but on &3y ;,,;NZ™" " and &%) _;.);NZ 77,
(-, # ") is negative definite, so that (-, D) is (— 1)-definite. This completes
the proof that <, »,: is positive definite. The strength of the ¢, >,
uniform structure is between that derived from H"? and that derived from
H', so after completion, we get a continuous unitary representation. All
statements about {, >,, and <{, >, have now been proved.

The proof of invariance for {, ), proceeds exactly as in Theorem 2.9
or 2.18; to show that U, (S) and U,_/S) are (, )-formal adjoints, (3.13)
is needed.

{, > w+ 1s nondegenerate because (, ) is nondegenerate on each & ;, and
A°(D') is exactly F. Indefiniteness for the case /=1 has already been taken
care of in Theorem 3.13. If /> 1, an &,; ;,; probe ® =e”¢ ;s with &5 ., ¢ F,

[P=(J—-1+1+42p)% 0<p<gi—1,

has

(¢,D'¢>=<s+1){ 1 [—f2+(J—1+1+2m)2]}4¥n<pwn2. (3:34)
Osm<i—1

Thus on adjacent solid lines of W*/F in the 15 sector, which will exist if
I>1, {, >y takes on opposing signs. Therefore <, > : is always
indefinite for /> 1. J

Remark 3.26 (n=2). Versions of Theorems 3.18, 3.19, 3.20, 3.22, and
3.24, and Lemma 3.23 hold for n=2, k=1 (so that s =0); but some care
must be taken in the proofs concerning the special case J=0. We omit the
details here.

Remark 327 (Odd n). The situation for odd » in the case of forms is
similar to the scalar field situation described in Remark 2.21. A/l solutions
of Dy, ®=0in M", s # +1, are 4n-periodic in t, even if /> |s|. There are 4
“parities,” corresponding to +1 and +/ eigenspaces of the operator com-
ing from (under any u,) either element of the double cover of O(2, n) which
covers diag (—1,., —1). The parity of positive frequency solutions
disagrees with that of negative frequency solutions, so the analogues of W~
and W~ reduce different representations.

Remark 3.28. Back in the case of even n, the non-periodic solution
space tF of Theorem 3.23 can be brought into the representation theoretic
picture by passing to universal covers (of M” and of G). In addition to the
representation spaces of the theorem, (W*+ W~ +F)/W* is also
u, [(G)-invariant.
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Remark 3.29 (Hodge * duality). For k=n/2 (s=0), each u,(G,) acts
on the e¢-dual forms, &= (—1)"2*! (recall Remark 3.14). But even
restricting to G, we get no unitary representations beyond those guaran-
teed by Theorem 3.24. The case /=1 has been taken care of in
Remark 3.14, and the proof of Theorem 3.24 shows that the e¢-dual sum-
mand of M/(W™* + W) is still nonunitary. To show that the e-dual part of
W*/F is nonunitary, note that the analogue of (3.34) for an &,,,, probe
di A ey, s

(<1>,D'd>)=f<s—1>{ I [—f2+u—1+1+zrn>2]}3"—’uww;é

0sm<!t -1 !
m#*p

Thus for s =0, the signs of {, >+ on adjacent solid lines in the (%) sector
differ, even after restriction to ¢-dual forms.

Remark 3.30 (Representations of the Lorentz group). Some interesting
observations can be made concerning representations of the Lorentz group
O(1,n) on k-forms in S” ', using the machinery built up above. Let
I <k<n—2, s=(n—-2k)/2, let B be the operator \/dd+ (s— 1)’ on A(3),
and let C be the operator /dd + s* on #(d). (The eigenvalues of B on C
are the (n—2)/2+j,j=1,2....) For [=1,2,.., define an operator L,, on
C™ k-forms in " ' by

_ 11 _
(nzlﬁk’*";—) ﬂ (B—-l—2—1—+m> on A(d)

nr =0

n—1 JANAR -1 )
( 5 -k—§> 11 (C-——2—+m> on A(d).

n =4

k=

For even /, L,, is a differential operator with leading term ((n —1)/2 —
k+12) (6d)*+((n—1)2~k~112) (d) =[((n—1)2—k+1/2)dd+
((n=1)2—k—=1/2)ds] 47> "

L,‘k=<n; ! —k+é) ﬁ <5d+(s— 1)2~<m—%>~)

m=1

n—1 I AL 1\?
k= P m—=
+< 2 2>,}1<d5+‘ (”’ 2>>

2 (n K 1
- 11 (5— +m—§>, {even.

m=—1f2

S80.74/2-6
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By Lemma 3.9, L,, is Y-covariant
Ll,k U((n) 1)/2)y—k— ([/2)( Y) = U((n— 1/2)—k+ (I/2)( Y) Ll‘k'

By symmetry and the obvious O(n)-invariance, L,, is o(l, n)-covariant,
and for even / is O(1, n)-covariant by Remark 1.4

Lystgn- 1)/2)-k-(//2)(h)= Un - 1)/2)—k+(l/2)(h) Ly, heO(l1, n), l even.
(3.35)

The infinite-dimensional representation space is C*(A*)/A"(L,,), which
admits the invariant inner product (¢, ¥, =(@, L, ¥),;:. (That is,
covariance shows that (, >,, is U, 2«2 (0(1, n))-skew, and for
even /18 U, _ 1,2, - 2 (O(1, n))-invariant.)

The null space of L, is easily computed:

rit={h =n (a2
1@ @E [—1=n (mod2),

where E;=E; ;,,®E,;x. {, >, cannot be definite if n—1—2k—/ and
n—1—2k+1! have opposite signs, ie, if />|n—1—2k|. The case
[=|n—1-2k| is treated in Remark 4.12. If /< |n—1-—2k|, then /I<n—1,
and A'(L;,)={0} regardless of the parity of /+n; {, ), is definite
(positive for 2k <n—1—1, negative for 2k >n—1+1/), and continuous
unitary representations result for even /

4. MAXWELL’S EQUATIONS AND THE CASE s = +/

a. Maxwell’s Equations

Maxwell’s equations in an »n-dimensional pseudo-Riemannian manifold,
n even, are the conditions 6F =dF=0 on an n/2-form F. In M", we have

THEOREM 4.1. Suppose n>4 is even. Then C™ n/2-form solutions of

SWF=d"F=0 (4.1)

in M" are 2m-periodic in t and even under the antipodal map in M".
Equations (4.1) satisfy Huygens’ principle in the following sense. if the sup-
port of the data (F,, F,, 8,F,, 0,F, )0, x) contains no point at a distance 1,
from x,e 8", 0<t,< m, then F(ty, xo) =0.
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Proof. 1f (4.1) holds, then

OF=0,
F16=F0d=0

by (3.2). By (4.2),

@$F0(;+5dF05=5,2F1d+d5F1d=0.

By (3.3) and (3.4), the eigenvalues of dd on coclosed (n—2)/2-forms or of
dé on n/2-forms are (n—2)/2+j, j=1, 2, 3,.... This proves periodicity, and
evenness follows immediately from (3.7). The Lax-Phillips oddness—even-
ness argument of Theorem 2.2 and finite propagation speed (from (4.2))
give Huygens’ principle. ||

The connection of Maxwell’s equations to the D, is as follows. Since the
cohomology H">(M")_vanishes, d"’F=0 implies that F=d"4 for some
(n—2)/2-form A on M”". As a condition on A, Maxwell’s equations read
3" d"4=0, and 6" d" is exactly D, _,,,. Conformal covariance is
expressed by

8 @y (h) = uy(h) 8™d™,  he O(2, n). (4.3)

The vector potential A is not uniquely defined; it is subject to the gauge
ambiguity A A+ d" a for a an (n— 4)/2-form. This is at the root of the
representation theoretic differences between D, ,_,» (or its “mirror
image” D, ,,,,) and the other D,,. For the higher order D, this
generalizes to a difference between the cases s = +/ and s # +/ The impor-
tant representations in the Maxwell case can be described either in terms of
Mazxwell fields F, or in terms of gauge equivalence classes of Maxwell
potentials 4; we choose the latter course here. Note that by (3.2), the pure
gauges R(d")= A" (d") (within the (n—2)/2-forms) occupy the entire 0d
sector, and the subspace {J,4,,—dA4,s =0} of the (%) sector. The property
of being a pure gauge is uy(0(2, #)))-invariant:

d"ug(h) = ug(h) d". (4.4)

By (3.2),
S"d"A=dt A (8dAy—50,4,)~dd, Ay + (02 +5d) A,.

Thus A47(6"d'™) is generated by the pure gauges, together with solutions
of (0?2 +6d) ®@,;=0 (i.e, the lines f= £J) in the 1 sector. In particular,



280 THOMAS P. BRANSON

the Coulomb gauge can be fixed: if §"7d"4 =0, some gauge equivalent
A+ d™f has only a 15 component.

Lemma 3.12 still provides us with the 5 wuy(G)-invariant subspaces
W+, V* M, and by (44), 4 =A4(d") is also invariant. To get represen-
tation spaces with nondegenerate invariant inner products, we must
“deflate” by the pure gauges ¥:

THEOREM 4.2. Suppose n>4 is even, and let W*, V*, M be the sub-
spaces of the (n—2)/2-forms on M" (C* or H™) given in Lemma 3.12. The
inner products

(D, W)= (P, "d"P) on (M+9)/(W"+ W~ +9)
(B, P y: = —(B, §"d"¥) on (VE+9)(W* +9)
(B, P>y = +i(P, [6™MdD, 1]¥)  on (W*+9)/%

are well-defined, Hermitian, nondegenerate, and uy(G)-invariant. {, 5, is
indefinite but {, >+ and {, ).+ are positive definite and result, after com-
pletion, in continuous unitary representations.

Proof. The inner products are well defined (gauge invariant) because
5™ and 4" are (, )-formal adjoints, and

[8Ud"), t] = 6'"e(dt) — i(dr) d™.
They are Hermitian because 6d" and (1/i)[6"d"™, t] are formally self-
adjoint. Invariance of {, >, and (, >,: follows from the argument of
Theorem 2.7, using the covariance relation (4.3) and Eq. (3.13). The proof

of invariance for {, >, is just as in Theorem 2.9,
For an &, ,, probe A=e"4,;,

(A4, 6dWA)=2n(~f2+J?) | 4,5]|%,

while for an éa((;z)h,;j probe A=e"(dt A Ags+ A,,),

(4,87d"A)= 21 [|0,4,,— dAgs*.
Since 0,A4,,~dA,s=0 is the pure gauge condition, this proves non-
degeneracy of (, >,, and {, >+, indefiniteness of ¢, >,,, and positive

definiteness of {, > p:.
For an &5, probe A=e""4,

(4, [67d™, 1] A) = —4nif | 4,5]%;
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by gauge invariance and the possibility of fixing the Coulomb gauge, this
shows that {, >« is positive definite.

The strength of the {, >,+ uniform structure is between those of the
uniform structures derived from H'Y? and H'; the ¢, >, uniform struc-
ture is that derived from H'? Thus the representations with positive
definite invariant inner products complete to continuous unitary represen-
tations. §

Remark 4.3 (Polarization of symplectic structure). On real fields, the
inner product {, >, is a gauge-invariant symplectic form, which may be
polarized (on W* /%) as in Remarks 2.10 and 3.15 to give the complex
inner product <, . This inner product also agrees with that given by
Zuckerman [54] for n=4, viz.

1 e —
<(p’ lII> :?J (¢ AxUD JUOP T p g dln)d;)’
lJgn-1

the integral being taken at any fixed 1 {, >+ =4n{, >. After puiling
back to Minkowski space, it also agrees with that found by Gross [13] in
the case n =4,

Remark 44 (Hodge = duality). Restricting to G, the solutions of
3" d"4=0 can be split into those leading to +e-dual fields,
82:(_])(nr’1)+l:

£ g = ted™ 4.

This splits the (already unitary) representation on W™ into two summands
carrying uy(G,).

Remark 4.5. As is easily verified by applying *', the “mirror image”
operator D, , . 1,,=d"6" carries the same representation theoretic
information as D, ;5.

b. The Case s=1

The “correct” way to view solutions of D,,, @ =0 with s=/is as vector
potentials for a Maxwell-type system on (k + 1)-forms. The case s= —/is a
“mirror image” under *".

LEMMA 4.6. Suppose nz4. If s=1 (so that n is necessarily even),

D= 0"Pd™,
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where @ is a differential operator of order 2(I—1), with leading term
(d™6")' =), on (k + 1)-forms, acting as

0 in the 16 sector
1—2
20 [] [24+(C—1+2+2m)°] in the Od sector

0

~3 (4.5)
21{ Il [63+(B—1+3+2m)2]}

6,2+4(l—1)2l5d, 06
X in the (1 d> sector,
do, ’ do

where C*=db + s> =dé + I* on closed k-forms, and

B dd+ (I-1)? on coclosed k-forms
T lds+(1—1)? on closed (k + 1)-forms.

Proof. 1t is straightforward to compute that if & is defined by (4.5),
then 6" 2d"™ = D,,, (using the definition of D, and (3.3), (3.4)). That 2
is a differential operator with leading term (d"6"")'~ ' is established by an
argument like that of Lemma 3.17. |}

LemMMA 4.7. For n>=4, s=1, and 2 as above, the system

d"F=0,
(4.6)
SWPF=0
on (k + 1)-forms is conformally invariant in the sense that
dug(h) F=uy(h) d"'F, (4.7)

d"F=0=>8"%uy(h) F=u,(h) ""9F

Sfor all he0(2, n).

Proof. (4.7) is a general differential geometric identity. If d"’F=0, the
vanishing of the cohomology H**'(M") implies that F=d"® for some
k-form &. By the covariance of D,;,,

3" Duy(h) F = 8" Dug(h) d"
= 6"MDduy(h) ® = u,(h) 6" Dd"'D
=uy(h) 3MDF. |
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THEOREM 4.8. Suppose n24, s=1, and k+#0. Then solutions of the
system (4.6) on M" are automatically 2n-periodic in t, and even under the
antipodal map in M". The system (4.6) satisfies Huygens’ principle in the
following sense: if the support of the data (F, d,F,..., 0¥~ 'F)0, x) contains
no point at a distance t, from xo€ S" "', 0 <ty < 7, then F(t,, x,)=0.

Proof. d"F=0 implies that

F;=0,
5,Fld~dF05=0.

3" PF =0 implies that

/-2
I (2 +(C—1+2+2m)*] Fou=0,

m=0

(a,|5){lff [6,2+(B—l+3+2m)2]}

m=0
2 )2
(a,+4(1 1) laa,)<Fw>
X F =0.
do, | g5 | \Fua

The latter equation, together with (4.8), implies that

I—1
[l [22+(B—1+1+2m)’] F,,=0,
m=0

since

(@ [5)([5“4(1*1)2 ‘50’)([32—(1—1)2]"56,1%)
' a8, |d5 Fiy

= [B2—(I—1)*]7 " 86(8* + 2(B2 + (- 1)%) &*

1

+(B*—(I-1)))F,, (4.10)

Now the characteristic polynomiais of the ODE determined by (4.9) and
(4.10) have no double roots:

n n-—2
—I4+1=J- 12—————+1=2.
J + J—s+ 3 3 +
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This shows periodicity, and (3.7) immediately gives evenness. Huygens’
principle follows from the Lax-Phillips oddness/evenness argument of
Theorem 2.2, once we note that the leading term of d™6" P + (§™d™) is
00, so that solutions of (4.6) have finite propagation speed. |

Of course, F above plays the role of the Maxwell field in this setting, and
the solution A4 of D,,, A=0 is the analogue of the vector potential. The
case k =0 has been eliminated because it has already been treated in Sec. 1;
it is qualitatively different because there is no gauge ambiguity in the
definition of A. Since the cohomology H**'(M")=0, each solution F of
(4.6) admits a vector potential. A pure gauge is again defined to be a
(k—1)-form in #(d"’). Lemma 3.23 provides the 5 u,(G)-invariant sub-
spaces W*, VE, M. Since uy(G) and d" commute, ¥ =R(d") is also
uy{G)-invariant. Theorem 4.2 generalizes to

THEOREM 4.9. Suppose n=4 is even, s=1, and k #0. Let W*, V', M be
the subspaces of the k-forms on M” (C™ or H™) given in Lemma 3.23. The
inner products

(D, ¥>u=(D, Dy, V) on (M+9)/(W"+W +9),
KD, ¥y =(—1)(D, Dy, ¥}y on(VE+G)(W*+ %),
(D, ¥y = +i(®D, Dby, P) on (W* +9)/4,

where D5, =Dy, t], are well defined, Hermitian, nondegenerate, and
uo(G)-invariant. <, >,, is indefinite, and <, >, is indefinite for 1> 1.
{, >+ Is positive definite, and results, after completion, in a continuous
unitary represeniation.

Proof. <, >y and {, >, are clearly well defined (gauge invariant).
Since

[Dy> t1=[6""2d"™, 1]
=6MR[d™, 11+ 6"[D, t]1d"™ + [6, t] Dd™
=6"Pe(dt) +6"[D, 1] d"™ —i(dt) Dd'™,

{, Dwe is also well-defined. Since D,,, and D5, are formally self-adjoint
(¢ is formally self-adjoint on 7" and [D,,, ¢] has periodic coefficients), all
the inner products are Hermitian. By the covariance of Dy, (3.13), and
the argument of Theorem 2.7, {, >,, and <, ).+ are uy(G)-invariant. The
proof of invariance for {, >, is just a slightly modified version of the
argument of Theorem 2.9.
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As in the Maxwell case, the pure gauges occupy the entire Od sector,
and the subspace {0,4,,=dAq;} of the (§9) sector. For an &, ,, probe
A=e"4,;,

-1
(A4, Dy A)=dnl [] [+ (J~{+1+42m)*],

m=10

while for an &) ., probe A =e"(dt A Ags + A, ),

{-2
(4, Dy A) = —4n1{ 1 [—f2+<J—1+2+2m)2]} 18,4,0— Ao

m=0

Since J,4,,—dA,; =0 is the pure gauge condition, {, >,, and {, >, are
nondegenerate, <, »,, is indefinite, and <{, >,: is positive definite. The
strength of the ¢, >,. uniform structure is between those derived from H'?
and H'; thus the representation on (V* +%)/(W* + %) completes to a
continuous unitary representation.

For an &, ,, probe 4 =e""4,; with f=J—1+1+2p, 0< p<i—1,

Dy A=8nifl [ [—f?+U—I1+1+2m)*]
0gmgi |
me#Ep

Thus the sign of ¢, >+ in the 16 sector alternates

sgn{ A, A) o =(—1) " 1+r

This shows that <, >, (and similarly, {, >, ) is indefinite for /> 1. |

Remark 4.10 (Gauge-fixing). If /> 1, solutions of D, , 4 =0 with s=/
cannot be reduced to the Coulomb gauge Ao=A4,,=0;if 4 —4")fis in the
Coulomb gauge,

&ﬁézAw,
atfld_dfO(s = Ao
dfm:Auh

This can be arranged only if ddys=2,4,,; for I> 1, this is not necessarily
true of solutions. What can be done, however, is to give a unique represen-
tative in each gauge equivalence class with components only on the lines

+/=J—i4+1+2m, O<m</~1
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of the 16 sector, and the lines
tf=J—14+2+2m, osm<i-2

of the 1d sector. We shall call this the canonical gauge.

Remark 4.11 (A partial gauge). In [34] Paneitz showed, in the case
n =4, that even though the space L of Coulomb gauge Maxwell potentials
is not conformally (#,(0(2, n))) invariant, the space

L=L+d"A(D,)

is. (Recall that D, is the fourth-order operator on scalar fields intertwining
u, and u,.) Thus to compensate for the non-Coulomb gauge part of a con-
formal transform of A€ L, only the special pure gauges d™a, ae A'(D,),
are needed. The analogous statement is true for even n>4: if k= (n—2)/2
and L, is the Coulomb gauge subspace of 4 (6d™), then

L,=L,+d" A (D, a)
is u5(0(2, n))-invariant. For by Table VI, if A =¢""4,; is an & r.; probe,
f=4J, and 4’ = Uy(S) 4, then

’ 1 1
Aospa1= L z‘iafp?a’

, 1.,
ld,fi'l.j=§(1 F 1) el

so that

i - ’ l ’
This implies that
ei(fi' ”'{dl A Aé)&.fi’ 1,j+ Alld,fi' l,j} = d‘")a,

where the (n—4)/2-form a has nonzero components only on the lines
+f=J+"1 of the 19 sector; in particular, D, 4,,a=0.

The analogue of this for the general s=/ case is as follows. If N is the
space of canonical gauge solutions of D,,, 4 =0, s=1, then

N=N+d" ¥ (Dys1x—1)

is uo(0(2, n))-invariant. Indeed, for an “interior” &5 ., probe 4, ie., one
with +f=J—14+14+2m, 1<m</-2, it is clear from Fig. 3.2 that
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Up(S)AeN. For an ‘“exterior” &, probe A4, ie, one with
+f=J+'(I-1), it follows from Table VII that Uy(S) 4 € N. For example,
for the case f=J — (/—1), the key point is that

1 1
dAf)a.fel,jz T (Jz - 12) (p?,; =0, Ay 1

For A4 an “interior” &, ,, probe (+f=J—/4+2+2m, 1<m<(-12), it is
clear from Fig 3.2 that Uy(S)AeN. For A an “exterior” &, ,, probe
(+f=J+’ (I—2)), the result follows from Tables VIII, IX. For example, in
the case = J— (I—2), the key point is that

1
sy 1= =5 U= DU =1+ 1) o,

i

= atAld./’— Lj+ 1"

The positive and negative frequency subspaces of I, and N above are
easily shown to be uy(G)-invariant.

Remark 4.12  (Representations of the Lorentz group). For
I=n—1-2k, the operators L,, of Remark 3.29 (on k-forms in S"~ '),
k #0, act as

-1 _
1] (B—I—E—l+m> on Z(5)

0 on #(d),

ie, as O[TI, 2 (B—(({—1)2)+m)]d (The case —/=n—1—-2k is a
“mirror image” under the Hodge *.) For /=2, k=(n—3)/2, L, is the
(Riemannian) Maxwell operator dd on vector potentials. In any case, #(d)
can be considered as a space of pure gauges. If / is even (so that n» must be

odd), the covariance relation (3.35) becomes
Lug(hy=u/h) L, he0(l, n).

The infinite-dimensional representation space is C™(A*)/A(L,,), which
admits the u,(0(1, n))-invariant inner product (@, ¥ >, = (@, L),
Note that AL, )=R(A)DE;® - ®Es 41 nyns Where E; ;=E; ;.
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5. REMARKS

a. Complete Decomposition

The principal weakness of the above results compared to, say, those of
[40, 31, 32] in special cases, is that we have no proof of the irreducibility of
the 5 or 6 composition factors of the representations decomposed here. The
tool needed to show that the decomposition is complete, or to find the
complete composition lattice, would seem to be the so-called Gegenbauer
forms. In the scalar field case, a K= S0(2)x O(n)-type is given by a fre-
quency f together with an O(n)-type. Each SO(n)-type can be represented
by its unique (up to a scalar factor) SO(n— 1)-invariant member, or
Gegenbauer polynomial. The action of K, together with the action of g on
the Gegenbauer polynomials, give complete information on the com-
position series (see [31] for n =4). The same approach should apply in the
case of forms, and in arbitrary dimension.

_An alternate approach, suggested by [28], is to realize certain forms on
M" as boundary values of holomorphic forms in a complex domain. In the
presence of a nondegenerate invariant inner product, some reducibility
questions become elementary questions in meromorphic function theory.

b. Dirac Operators

All the intertwining differential operators treated in this paper are of even
order; they are generalizations of the wave and Maxwell operators, and of
hybrids (the D, ) of these two. The full physical picture includes odd-order
operators based on the wave, Maxwell, and Dirac operators, and the bun-
dle of spinors, a “tensor product square root” of the bundie of forms. Some
results on the decomposition of representations of the conformal group on
higher spin bundles are already in place [33, 5]. Eventually, one would like
to have complete decompositions, in the sense of Section 5.a, of all such
representations.

c. Particles

The explicit correlation of the irreducible unitary representations with
physical particles, where applicable, should be made. (It should be possible
to tap into known information by restricting to the Lorentz group.) One
consequence of working on compactified Minkowski space is that all our
field operators (intertwining differential operators) have discrete spectra. In
the case of the wave equation, the eigenvalues of D, correspond to the
Klein—Gordon equations

D2¢+m2¢=0,

which have solutions; that is, D, can be thought of mass-squared operator.
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The corresponding V*/W* is the corresponding positive mass-squared,
positive frequency representation of G, and massive particles are obtained
by decomposing this representation under a smaller (Poincaré-like) group
(see [17]). In this sense, all the D,,, are prospective mass operators, and
their eigenvalues may have content for the prediction of physical particle
mass ratios.

d. General Conformal Covariants

The idea behind the intertwining differential operators D5, of this paper
comes from work of the author [4, 6] on “general” conformally covariant
differential operators (those covariant under conformal deformation of
arbitrary pseudo-Riemannian manifolds). This is also the impetus behind
[43]. But, intriguingly, the solution of the general classification problem
for conformally covariant operators (including conformal tensors, which are
just zeroth-order conformally covariant operators) may be entirely bound
up in these special cases. The “method of Cartan™ [51, Sect. IV] reduces
the classification problem in principle to questions about representations of
O(p, q) and its parabolic subgroups. (See also [47, Sect. 1].) The prospect
of solving this classification problem (which is motivated by physics, and,
more recently, by the theory of CR manifolds [45, 477) is part of the
motivation for the present work.
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