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Abstract

In this article we show that the large time asymptotics for the Grinevich–Zakharov rational solutions of
the Novikov–Veselov equation at positive energy (an analog of KdV in 2 + 1 dimensions) is given by a
finite sum of localized travel waves (solitons).
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following 2 + 1-dimensional analog of the KdV equation (Novikov–Veselov
equation):

∂tv = 4 Re
(
4∂3

z v + ∂z(vw) − E∂zw
)
,

∂z̄w = −3∂zv, v = v̄, E ∈ R,

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R
2, t ∈ R, (1.1)

where

∂t = ∂

∂t
, ∂z = 1

2

(
∂

∂x1
− i

∂

∂x2

)
, ∂z̄ = 1

2

(
∂

∂x1
+ i

∂

∂x2

)
. (1.2)
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We assume that

v is sufficiently regular and has sufficient decay as |x| → ∞,

w is decaying as |x| → ∞. (1.3)

Eq. (1.1) is contained implicitly in the paper of S.V. Manakov [8] as an equation possessing
the following representation:

∂(L − E)

∂t
= [L − E,A] + B(L − E) (1.4)

(Manakov L–A–B triple), where L = −�+v(x, t), � = 4∂z∂z̄, A and B are suitable differential
operators of the third and zero order respectively. Eq. (1.1) was written in an explicit form by
S.P. Novikov and A.P. Veselov in [11,12], where higher analogs of (1.1) were also constructed.
Note that both Kadomtsev–Petviashvili equations can be obtained from (1.1) by considering an
appropriate limit E → ±∞ (see [15,5]).

In the present article we are focused on a very interesting family of solutions for Eq. (1.1)
for E = Efix > 0 constructed by P.G. Grinevich and V.E. Zakharov, see [4,5] (containing also a
reference to private communication from V.E. Zakharov). The solutions of this family are given
by

v(x, t) = −4∂z∂z̄ ln detA,

w(x, t) = 12∂2
z ln detA, (1.5)

where A = (Alm) is 4N × 4N -matrix,

All = iE1/2

2

(
z̄ − z

λ2
l

)
− 3iE3/2t

(
λ2

l − 1

λ4
l

)
− γl,

Alm = 1

λl − λm

for l �= m, (1.6)

E1/2 > 0, z = x1 + ix2, z̄ = x1 − ix2, ∂z, ∂z̄ are defined in (1.2), and λ1, . . . , λ4N , γ1, . . . , γ4N

are complex numbers such that

λj �= 0, |λj | �= 1, j = 1, . . . ,4N, λl �= λm for l �= m,

λ2j = −λ2j−1, γ2j−1 − γ2j = 1

λ2j−1
, j = 1, . . . ,2N,

λ4j−1 = 1

λ4j−3
, γ4j−1 = λ̄2

4j−3γ̄4j−3, j = 1, . . . ,N. (1.7)

The functions v, w of (1.5)–(1.7) satisfy the Novikov–Veselov equation (1.1) for positive E

of (1.6) and have also, in particular, the following properties (see [4,5]):

v = v̄, v,w ∈ C∞(
R

2 × R
)
,

v(x, t),w(x, t) are rational functions of x and t,

v(x, t) = O
(|x|−2), w(x, t) = O

(|x|−2), |x| → ∞, for each t ∈ R; (1.8)

the Schrödinger equation Lψ = Eψ , where L = −� + v(x, t),

has zero scattering amplitude for fixed E > 0 and t ∈ R. (1.9)



376 A.V. Kazeykina, R.G. Novikov / Bull. Sci. math. 135 (2011) 374–382
Because of property (1.9) the potentials v of (1.5)–(1.7) are called transparent potentials.
Note that in many respects the solutions (1.5)–(1.7) of (1.1) are similar to related solutions of

the KP1 equation, see [1,4,5].
Note that the potentials v of (1.5)–(1.7) play an important role in the direct and inverse scat-

tering theory for the aforementioned Schrödinger equation Lψ = Eψ at fixed energy E > 0 and
in the theory of integrable systems, see [5,6,13,14,2,10] and references therein. However, the
properties of these potentials were not yet studied sufficiently in the literature.

In order to formulate our results we use the following definition. We say that a solution (v,w)

of (1.1) is a travel wave iff

v(x, t) = V (x − ct), w(x, t) = W(x − ct), x ∈ R
2, t ∈ R, (1.10)

for some functions V , W on R
2 and some velocity c ∈ R

2. In addition, we identify c =
(c1, c2) ∈ R

2 with c = c1 + ic2 ∈ C.
The main results of the present note consist of the following:

(1) We show that (v,w) of the form (1.5)–(1.7) is a travel wave iff N = 1. See Lemma 2.1 of
Section 2.

(2) We show that there are no travel waves of the form (1.5)–(1.7), N = 1, for c ∈ UE , and
that there is an unique (modulo translations) travel wave of the form (1.5)–(1.7), N = 1,
for c ∈ C \ UE , where c denotes travel wave velocity and UE is defined by formula (2.2).
In addition we show that there is one-to-one correspondence between permitted velocities
c ∈ C \ UE and λ-sets {λ1, λ2, λ3, λ4} of (1.5)–(1.7), N = 1. See Lemma 2.2 of Section 2.

(3) We show that the large time asymptotics for the Grinevich–Zakharov potentials, that is for
(v,w) defined by (1.5)–(1.7), is described by a sum of N localized travel waves propagating
with different velocities. See Theorem 2.1 of Section 2. For KP1 equation a prototype of this
result was given for the first time in [9].

2. Main results

The main results of this article consist of Lemmas 2.1, 2.2 and Theorem 2.1 presented below.

Lemma 2.1. Let (v,w) be defined by (1.5)–(1.7). Then (v,w) admits the representation (1.10)
(and is a travel wave solution for (1.1)) if and only if N = 1. In addition,

c = 6E

(
λ̄2 + 1

λ2
+ λ2

λ2

)
(2.1)

where c is the travel wave velocity and λ is any of λj , j = 1,2,3,4, which, in virtue of (1.7),
determines uniquely the λ set {λ1, λ2, λ3, λ4} for E > 0.

Lemma 2.1 is proved in Section 3.
Let

U = {
u ∈ C: u = reiϕ, r �

∣∣6(
2e−iϕ + e2iϕ

)∣∣, ϕ ∈ [0,2π]},
UE = {u ∈ C: u/E ∈ U}. (2.2)

One can see that U1 = U.
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Lemma 2.2.

(a) Let c ∈ UE . Then there is no travel wave solution of (1.1) of the form (1.5)–(1.7) with N = 1
and the given travel wave velocity c.

(b) Let c ∈ C \ UE . Then there exists unique (modulo translations) solution of (1.1) of the form
(1.5)–(1.7) with N = 1 and the given travel wave velocity c.

(c) There is a one-to-one correspondence between c ∈ C \ UE and the sets {λ1, λ2, λ3, λ4} sat-
isfying (1.7).

The proof of this lemma is given in Section 3 and is based principally on the following auxil-
iary lemma.

Lemma 2.3.

(a) Let c ∈ UE . Then Eq. (2.1) has no solution λ satisfying |λ| �= 1.
(b) Let c ∈ C \ UE , then Eq. (2.1) has exactly four solutions λ1, λ2, λ3, λ4 satisfying the condi-

tions indicated in (1.7) for N = 1.

This lemma is a corollary of Lemma 3.1 from [7] and is based on an analysis of the following
algebraic equation

λ6 − c̄

6E
λ4 + c

6E
λ2 − 1 = 0

depending on the complex parameter u = c/E.

Theorem 2.1. Let (v,w) be a solution of (1.1) constructed via (1.5)–(1.7). Then the asymptotical
behavior of (v,w) can be described as follows:

v ∼
N∑

k=1

νk(ξk), w ∼
N∑

k=1

ωk(ξk) as t → ∞, (2.3)

where ξk = z − c4kt and

cl = 6E

(
λ̄2

l + 1

λ2
l

+ λ2
l

λ2
l

)
. (2.4)

The functions νk , ωk are defined by the formulas

νk = −4∂z∂z̄ ln detA(k),

ωk = 12∂2
z ln detA(k), (2.5)

where matrix A(k) is a 4 × 4-submatrix of matrix A, defined by formulas (1.6), such that

A(k) = {Alm}4k
l,m=4(k−1)+1. (2.6)

Remark. The relation (2.3) is understood in the following sense:

lim
t→∞v = lim

t→∞

N∑
νk(ξk) for fixed ξ = z − ct, (2.7)
k=1
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where

lim
t→∞νk(ξk) =

{
0, for fixed ξ = z − ct, c �= c4k,

νk(ξ), for fixed ξ = z − c4kt.
(2.8)

One can see that the asymptotics (2.3) are the same for ∞ specified as +∞ or as −∞. Thus
the solitons of (1.5)–(1.7) for the Novikov–Veselov equation (1.1) do not interact at all in a
similar way with the result of [9] for a family of rational soliton solutions for the KP1 equation.

Theorem 2.1 is proved in Section 3. The scheme of the proof of this theorem follows princi-
pally the scheme of the derivation of the large time asymptotics for the multi-soliton solutions of
the classic KdV equation (see, for example, [3]).

3. Proofs of Lemmas 2.1, 2.2 and Theorem 2.1

The text of the proofs presented below does not completely follow the order of statements in
Section 2 as it was constructed to form a whole logical unit. However, we specify in due course
which statement is being proved.

3.1. Proof of the sufficiency part of Lemma 2.1

Let us first consider the Grinevich–Zakharov potentials defined by (1.5)–(1.7) with N = 1.
Then A is a 4 × 4 matrix and, in virtue of (1.7), the choice of any of λj , j = 1,2,3,4, uniquely
determines the set {λ1, λ2, λ3, λ4}. Let us find cj such that Ajj = Ajj (z − cj t). Such value cj is
a solution of the following equation

i

2
E1/2

(
z̄ − c̄t − 1

λ2
j

(z − ct)

)
= i

2
E1/2

(
z̄ − z

λ2
j

)
− 3iE3/2t

(
λ2

j − 1

λ4
j

)
. (3.1)

If |λj | �= 1, then this equation is uniquely solvable and its solution is given by

cj = 6E

(
λ̄2

j + 1

λ2
j

+ λ2
j

λ̄2
j

)
. (3.2)

It is easy to see that due to (1.7) c1 = c2 = c3 = c4. Thus A = A(z − ct), and the representa-
tion (1.10) with c defined by (2.1) holds. Thus sufficiency in Lemma 2.1 is proved.

3.2. Proof of Lemma 2.2

If c ∈ UE , then, as follows from item (a) of Lemma 2.3, c �= cj , defined by (3.2), j = 1,2,3,4
for any λ1, λ2, λ3, λ4 satisfying the conditions indicated in (1.7) for N = 1. This and the suffi-
ciency part of Lemma 2.1 imply item (a) of Lemma 2.2.

If c ∈ C \ UE , then, as follows from item (b) of Lemma 2.3, it determines via (3.2) uniquely
the set of λ1, λ2, λ3, λ4 satisfying the conditions indicated in (1.7) for N = 1. Then the solution
(v,w), constructed according to formulas (1.5)–(1.7) with N = 1, constitutes a travel wave so-
lution of Eq. (1.1) with the given velocity c. In the construction procedure one of the parameters
γj can be chosen arbitrarily and it determines uniquely the whole set {γ1, . . . , γ4}.

One can see that the transform

z → z + ζ,

t → t + τ
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turns the potential (v,w) into another Grinevich–Zakharov potential (ṽ, w̃) with the parameters
{λ1, . . . , λ4, γ̃1, . . . , γ̃4}, where

γj − γ̃j = iE

2

(
ζ̄ − ζ

λ2
j

)
− 3iE3/2τ

(
λ2

j − 1

λ4
j

)
(3.3)

for j = 1,2,3,4.
On the other hand, if (ṽ, w̃) is a Grinevich–Zakharov potential with the set of parameters

{λ1, . . . , λ4, γ̃1, . . . , γ̃4}, then it can be obtained from (v,w) by a translation, i.e. ṽ(z, t) = v(z +
ζ, t +τ), w̃(z, t) = w(z+ζ, t +τ) for appropriate ζ ∈ C and t ∈ R such that (3.3) holds for some
j (Eqs. (3.3) are equivalent for j = 1,2,3,4 in virtue of (1.7)). In addition, one can assume, for
example, that τ = 0 in this translation.

Thus we have proved that any c ∈ C \ UE determines uniquely, modulo translations, the solu-
tion of (1.1) of the form (1.5)–(1.7) with N = 1 and the given travel velocity c. This proves the
point (b) of Lemma 2.2.

Item (c) of Lemma 2.2 follows immediately from Lemma 2.3. Lemma 2.2 is proved.

3.3. Proof of Theorem 2.1

Let us consider a more convenient representation of (v,w) defined by (1.5)–(1.7). For this
purpose we first perform the differentiation with respect to z̄ in the right-hand side of formula
for v in (1.5):

v = −4∂z

[
(detA)−1∂z̄(detA)

] = −4∂z

[
(detA)−1

4N∑
i,j=1

∂Aij

∂z̄
Âij

]
, (3.4)

where Âij is the (i, j) cofactor of the matrix A. Similarly,

w = 12∂z

[
(detA)−1

4N∑
i,j=1

∂Aij

∂z
Âij

]
. (3.5)

In matrix A only diagonal elements depend on z, z̄, thus

v = −2iE1/2∂z

[
(detA)−1

4N∑
j=1

Âjj

]
, w = −6iE1/2∂z

[
(detA)−1

4N∑
j=1

1

λ2
j

Âjj

]
. (3.6)

Let us consider the following families V (j) and W(j) of systems of linear algebraic equations
for functions ψ

(j)
k , η

(j)
k , j, k = 1, . . . ,4N :

V (j):
4N∑
k=1

Amkψ
(j)
k = −2iE1/2δmj , m = 1, . . . ,4N, (3.7)

W(j):
4N∑
k=1

Amkη
(j)
k = −6iE1/2 1

λ2
j

δmj , m = 1, . . . ,4N. (3.8)

Then the functions v, w can be represented in the following form

v =
4N∑ ∂ψ

(j)
j

∂z
, w =

4N∑ ∂η
(j)
j

∂z
. (3.9)
j=1 j=1
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In order to write a system of linear algebraic equations for
∂ψ

(j)
k

∂z
= (ψ

(j)
k )z, we differentiate

(3.7) with respect to z:

4N∑
k=1

(Amk)zψ
(j)
k +

4N∑
k=1

Amk

(
ψ

(j)
k

)
z
= 0, m = 1, . . . ,4N,

and thus obtain
4N∑
k=1

Amk

(
ψ

(j)
k

)
z
= iE1/2

2λ2
m

ψ
(j)
m , m = 1, . . . ,4N. (3.10)

Now let us note that Ajj can be represented in the form

Ajj = iE1/2

2

[
(z̄ − c̄j t) − 1

λ2
j

(z − cj t)

]
− γj ,

where cj is given by formula (2.4). As follows from item (c) of Lemma 2.2 cj = ck iff �(j −
1)/4	 = �(k − 1)/4	, where �x	 denotes the integer part of x.

Now let us fix

ξ = z − ct

and find the limits ψ
(j)
k

∣∣ t→∞
ξ fixed

, (ψ
(j)
k )z

∣∣ t→∞
ξ fixed

. We note that

Ajj = iE1/2

2

[{
ξ̄ + (c̄ − c̄j )t

} − 1

λ2
j

{
ξ + (c − cj )t

}]
.

If c = cj , then Ajj = iE1/2

2 [ξ̄ − 1
λ2

j

ξ ] and is independent of t . Otherwise, |Ajj | → ∞ as t → ∞
at fixed ξ . We substitute this into (3.7) and consider the leading term in the Cramer’s formula for
ψ

(j)
k as t → ∞. Thus we obtain

ψ
(j)
k

∣∣ t→∞
ξ fixed

= ψ̂
(j)
k (ξ), k, j : ck = cj = c,

ψ
(j)
k

∣∣ t→∞
ξ fixed

= 0, k: ck �= c or j : cj �= c.

Here ψ̂
(j)
k (ξ) denotes some function of ξ independent of t at fixed ξ .

Similarly, from (3.10) we obtain that(
ψ

(j)
k

)
z

∣∣ t→∞
ξ fixed

= ψ̄
(j)
k (ξ), k, j : ck = cj = c,(

ψ
(j)
k

)
z

∣∣ t→∞
ξ fixed

= 0, k: ck �= c or j : cj �= c,

and, as previously, ψ̄
(j)
k (ξ) denotes some function of ξ independent of t at fixed ξ .

In addition, one can see that if there exists k such that c = c4(k−1)+1 = · · · = c4k , then

v| t→∞
ξ fixed

=
4k∑

j=4(k−1)+1

ψ̄
(j)
j (ξ) = νk(ξ), (3.11)

where νk is defined by formula
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νk = −4∂z∂z̄ ln detA(k), (3.12)

matrix A(k) is a 4 × 4-submatrix of matrix A from (1.6), such that A(k) = {Alm}4k
l,m=4(k−1)+1.

Similarly, for the case of function w we have

η
(j)
k

∣∣ t→∞
ξ fixed

= η̂
(j)
k (ξ),

(
η

(j)
k

)
z

∣∣ t→∞
ξ fixed

= η̄
(j)
k (ξ), k, j : ck = cj = c,

η
(j)
k

∣∣ t→∞
ξ fixed

= 0,
(
η

(j)
k

)
z

∣∣ t→∞
ξ fixed

= 0, k: ck �= c or j : cj �= c,

where η̂
j
k (ξ), η̄

j
k (ξ) are some functions of ξ independent of t at fixed ξ . If there exists k such that

c = c4(k−1)+1 = · · · = c4k , then

w| t→∞
ξ fixed

=
4k∑

j=4(k−1)+1

η̄
(j)
j (ξ) = ωk(ξ), (3.13)

where ωk is defined by formula

ωk = 12∂2
z ln detA(k) (3.14)

and matrix A(k) is the same as in (3.12).
From (3.9), (3.11)–(3.14) it follows that

v ∼
N∑

k=1

νk(ξk), w ∼
N∑

k=1

ωk(ξk), t → ∞. (3.15)

Here ξk = z − c4kt , νk , ωk are defined by (2.5)–(2.6) and the meaning of the relation (3.15) is
specified by (2.7)–(2.8). Theorem 2.1 is proved.

3.4. Proof of the necessity part of Lemma 2.1

From (3.15), taking into account (2.7)–(2.8), one can see that (v,w) can be a travel wave only
if N = 1. This completes the proof of Lemma 2.1.
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