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Abstract 

A subset X of vertices and edges of a graph G is totally matching if no two elements of X are 
adjacent or incident. In this paper we determine all graphs in which every maximal total 
matching is maximum. 

1. Introduction 

A graph G is well-covered if every maximal independent set of vertices in G is 
maximum. The edge analogue of the well-covered property for graphs is the property 
that every maximal matching in a graph is maximum. Such graphs are called 
equimatchable. Certainly, a graph G is equimatchable if and only if its line graph L(G) 
is well-covered. Well-covered graphs are of interest because whereas the problem of 
determining the size of the largest independent set of an arbitrary graph is NP- 
complete, it is trivially polynomial for well-covered graphs. The concept of well- 
coveredness was introduced by Plummer [6] in 1970, and studied in subsequent 
papers. The reader is referred to [-7] for a recent survey of results about well-covered 
graphs. In this paper we consider the total analogue of the well-covered and 
equimatchable properties and we characterize graphs in which every maximal total 
matching is maximum. 

2. Notation and preliminary results 

We use [1, 2] for basic terminology and notation. Let G be a graph with vertex set 
V(G) and edge set E(G). The elements of the set V(G)uE(G) are called elements of the 
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graph G. A vertex v of G is said to cover itself, all edges incident with v, and all vertices 
adjacent to v. Similarly, an edge e of G covers itself, the two end vertices of e, and all 
edges adjacent to e. Two elements of G are called independent if neither one covers the 
other. A set C of elements of G is called a total cover if the elements of C cover all 
elements of G. A set M of elements of G is called a total matching if the elements of 
M are pairwise independent. A set X of elements of G is totally irredundant if for every 
x in X, x covers an element of G which is uncovered by any element of X - {x}. Let 
ot2(G) and ct~(G) denote, respectively, the smallest and the largest number of elements 
in a minimal total cover of G. Similarly, let fl~(G) and fl2(G) denote, respectively, the 
smallest and the largest number of elements in a maximal total matching of G. Finally, 
let ir~(G) and ir2(G) denote, respectively, the smallest and the largest number of 
elements in a maximal totally irredundant set of G. Clearly, every maximal total 
matching of G is a minimal total cover of G. It is also a simple matter to observe that 
a total cover C of G is minimal if and only if every element x belonging to C covers an 
element of G which is uncovered by any element of C - {x}. This implies that every 
minimal total cover of G is a maximal totally irredundant set of G. Therefore, the 
parameters defined above are related by inequalities. 

ir~(G) ~< ~2(G) ~< fl'a(G) <~ fl2(G) ~< ~(G) ~< ir2(G). 

A graph G is totally equimatchable if every maximal total matching of G is maximum. 
Equivalently, G is totally equimatchable if I~&(G)= fl2(G). Similarly, a graph G is 
totally well-covered (totally well-irredundant, resp.) if ~2(G) = ~(G) (ir~(G) = ir2(G), 
resp.). Clearly, every totally well-irredundant graph is totally well-covered and every 
totally well-covered graph is totally equimatchable. Our purpose in this paper is to 
characterize totally equimatchable graphs (or, equivalently, graphs which total graphs 
(see [-4, p. 823) are well-covered). 

In Table 1, precise values of the above-defined parameters are given for complete 
graphs K,,  complete bipartite graphs K .... and complete windmills K1 + U ~'= i K2m, 
where KI + U~=IK2m, is the graph obtained from the disjoint union of K1, 
K2,~1, ... ,K2,.. by joining the only vertex of K~ to every vertex in U~'=I V(K2.,,). 
(Some of these values are also given in [ 13 and the verification of the table, though not 
trivial, is left to the reader.) It follows from Table 1 that the graphs K., K,. .  and 
K1 + ~7= x K2m, are totally equimatchable. We will show that, in fact, these are the 
only such connected graphs. In order to simplify the proof of this result, we need 
additional terminology and three lemmas. 

For a vertex v of a graph G, we denote the neighbourhood of v by No(v) and the 
closed neighbourhood, N~(v)w{v}, by No[v]. For a subset M of edges of G, let V(M) 
denote the set of vertices which are covered by some edge belonging to M. A set M of 
pairwise independent edges of G is called a matchin9 of G, and a matching M of G is 
perfect if V(M) = V(G). A graph G is said to be factor-critical if G - v has a perfect 
matching for every vertex v of G. Certainly, every factor-critical graph is a connected 
graph of odd order and it easily follows from the Gallai-Edmonds theorem (see [5, 
p. 94]) that we have the following property of factor-critical graphs. 
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Table  1 

Pa rame te r s  
ir~(G) = ~2(G) = fl'2(G) = fl2(G) ct~(G) = ir2(G) 

G r a p h s  G 

K. V n/2 7 n--  1 (n >>- 2) 
K . , .  n 2n -- 2 (n >I 2) 
K ,  + ~ = ,  K2,., 1 + ZT=, rn ,  2 Z T = , m /  
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Lemma 1. A connected graph G is factor-critical if and only if every vertex of G is 
uncovered by at least one maximum matching of G. 

The next lemma due to Sumner [8] characterizes randomly matchable graphs, 
graphs in which every maximal matching is perfect. 

Lemma 2 (Sumner [8]). A connected equimatchable graph has a perfect matching if 
and only if it is one of the graphs K2., and K. . ,  where n is any positive integer. 

The following lemma due to Favaron [3] describes the structure of equimatchable 
factor-critical graphs with a cut vertex. 

Lemma 3 (Favaron [3]). A connected graph G with a cut vertex is equimatchable and 
factor-critical if and only if'. 

(l) G has exactly one cut vertex c, say; 
(2) Every connected component Gi of G - c is isomorphic to K2m , or to Km, ra , for 

some positive integer mi; 
(3) c is adjacent to at least two adjacent vertices of each component Gi of G - c. 

3. The characterization 

We can now prove our main result. 

Theorem. A connected graph is totally equimatchable if and only if it is one of the graphs 
K, ,  K, , ,  and KI + Un=IK2m, where n and ml . . . . .  m. are any positive integers. 

Proof. It follows from Table 1 that the graphs K., K.,. and Kx + Un=lK2rn, are 

totally equimatchable for any positive integers n and rex, . . . ,  m.. 
Now let G be a connected totally equimatchable graph. Observe that for any 

maximal matching M of G, Mw(V(G) - V(M)) is a maximal (and therefore maxi- 
mum) total matching of G, and certainly [ M u ( V ( G ) -  V(M))[ = IV(G)[- [MI = 
fl2(G). Thus every maximal matching M of G has the same cardinality 
[MI = IV(G)I - f l z ( G )  and this implies that G is equimatchable. In addition, if G has 
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a perfect matching,  then every maximal  match ing  of G is perfect and it follows from 

L e m m a  2 that  G = K2,  or  G = K, , ,  for n /> 1. Thus  assume that  G is equ imatchable  
but  it has no perfect matching.  Then it suffices to show that  G = K2 , -~  or 

G = K1 + ~ = ~  K2m, for some posit ive integers n, ml ,  ... ,m,.  In the p roof  we fre- 
quent ly use the following claim. 

Cla im 1. Let  M be a maximum matching of  G. Then for  every xy  c M and t c 

V(G) - V(M),  either {x ,y}  ~ NG(t) or { x , y } ~ N a ( t )  = O. 

Proof. Suppose  to the con t ra ry  that  x ~ N~(t) and yCNG(t). Let A and I denote  the sets 
NG(x)~Na(y)ca(V(G) - V(M)) and (M - { x y } ) u { x } u ( V ( G )  - (V(M)uNG(x))) ,  

respectively. It is easy to observe  that  if A = 0, then I is a maximal  total  match ing  of 

G and III < fl2(G), a contradict ion.  Similarly, if A ~ 0, then for any s c A ,  lw{ys }  is 

a maximal  total  match ing  of G and IIu{ys}l  < fl2(G), a final contradict ion.  

Claim 2. G is factor-critical. 

Proof.  Let D(G) be the set of vertices of  G which are uncovered by at least one 

m a x i m u m  match ing  of G. By L e m m a  1, it suffices to p rove  that  D(G) = V(G). Since 
G is connected and D(G) v L 0 (as G has no perfect matching),  it suffices to show that  

Na(t) c D(G) for every t eD(G).  Take  any t eD(G)  and a m a x i m u m  match ing  M of 
G that  does not  cover  t. Then  t ~V(M)  and N6(t)  ~_ V(M).  Take  any  x ~Na(t) .  Since 
x c V ( M ) ,  there is y e V ( M )  such that  x y c M .  By Cla im 1, {x ,y}  ~_Na(t). N o w  
m '  = (M - {xy} )u{y t }  is a m a x i m u m  match ing  avoiding x. Therefore  x cO(G)  and 
consequent ly  Na(t)  ~_ D(G). 

To comple te  the p roof  of  the theorem,  we consider two cases. 

Case 1: G contains a cut vertex c, say. 

Since G is equ imatchable  and  factor-critical, L e m m a  3 implies that  c is the only cut 

vertex of G. In addition, if Gi is a c o m p o n e n t  of  G - c, then Gi = Kzm, or Gi = K,, ..... 
and c is adjacent  to at least two adjacent  vertices of  G~. Let n be the n u m b e r  of  
componen t s  of  G c. F o r i  1, ,n, le tv~,  i u~, i . . . . .  . . . .  , Vm,, ... Urn, be the vertices of G~. 

" ~ is adjacent  to We m a y  assume that  vl  and u] are neighbours  of  c in G and every vt 

every Uk, l, k --- 1, ... ,mi. We shall p rove  that  G = K1 + (K2, , ,~ . . .  uK2m.). 
It is obvious that  M~ = {v~uik:k = 1, . . . ,  m~} is a perfect matching of Gi (i = 1, . . . ,  n) 

and M = U ~'= 1M~ is a m a x i m u m  matching of G. We  shall prove  that  c is adjacent to 
every vertex of Gi, and that  G~ is a complete graph, i = 1, . . . ,  n. This is clear if m~ = 1. 

= - {V,U,,VkUk}) {v uk, v k u , }  Thus,  a s s u m e t h a t m i > ~ 2 .  F o r k = 2  . . . . .  mi, Mik (M i i i i i i i i 
i i is a m a x i m u m  match ing  of G. Since, cCV(Mik) and c is adjacent  to the vertex V l(Ul, 

resp.) of  the edge V]U~k(V'kU], resp.) which belongs to Mik, we conclude f rom 
Claim 1 that c is adjacent to u~ (v~,, resp.). Thus, c is adjacent to every vertex of G~. N o w  
for k = 1 . . . .  ,mi, the set M~k = (M -- {VikUik})W{UikC} is a m a x i m u m  match ing  of G 
which does not  cover  v~. Since v~ is adjacent  to every vertex ul and i ~ , vtu I CMik i f / ~  k, 

• . t v~, is adjacent  to every vertex v} with 1 # k (by Claim 1). Similarly, replacing M~k by 
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M'i'k = ( M -  {v~Uik})W{V~,C}, we observe that u/k is adjacent to every vertex ul, 
1 ~ k. Thus, Gi is a complete graph of order 2mi, Gi = K2r,,. Finally, since the cut 
vertex c of G is adjacent to every vertex of G~, i = 1 . . . . .  n, we conclude that 

G = K1 + (K2mlu... wK2m.). 
Case 2: G has no cut vertex. 

We claim that G is a complete graph (of odd order). Suppose this is not true. Then 
there exists a vertex p in G for which NG[_p] # V(G). Consequently, since G is con- 
nected, the two sets S = {v ~N~(p): NG(v) f: N~[p]} and R = {x e V(G) - Nc[p] :  
NG(x)c~N~(p) ~ 0} are nonempty. Let M be a perfect matching of G - p. For  a vertex 
w of G - p, let w* denote the unique neighbour ofw such that ww* ~ M. It is clear from 
Claim 1 that for every vertex w of G - p ,  either {w,w*} ~--NG(p) or 
{w, w*} ___ V(G) - NG[p]. We make four additional observations. 

(1) For every v e S  and x eR ,  either {x,x*} c N6(v) or {x,x*}c~N~(v) = O. 

Assume {x,x*}c~NG(v)¢0.  Because M' =(M--{vv*})~{v*p} is a maximum 
matching of G for which vqW(M') and xx* e M', we conclude from Claim 1 that 
{x,x*} c NG(V). 

(2) For every v e S  and x eR ,  /f {x,x*} ~ N~(v), then {x,x*}~NG(v*) = O. 
Assume {x,x*} c N~(v) and suppose that {x,x*}nNG(v*) ~ 0 .  Then 

{x,x*} c NG(v*) by (1). But now M' = (M - {vv*,xx*})w{vx, v*x*} is a maximum 
matching of G. Because pCV(M') and vx, v*x* e M '  while {v,x} and {v*,x*} are 
contained neither in N~(p) nor in V(G) - NG[p], we get a contradiction to Claim 1. 

(3) For every v e S  and x eR ,  if x eNd(v), then N~(x)~S = {v}. 
Assume x e NG(v) and suppose that there exists u ~ NG(x)nS -- {v}. Then u ~ v* (by 

(2)) and {x,x*} c NG(u) (by (1)). Now M' = (M - {xx*,vv*,uu*})w{vx, ux*,pu*} is 
a maximum matching of G and it does not cover v*. Since vx e M '  and neither 

{v,x} ___ N~(v*) nor {v,x}~NG(v*) = 0, we reach a contradiction to Claim 1. 
(4) The set S has exactly one vertex. 
Suppose ISI >1 2 and let v and u be distinct vertices of S. Let x eN~(v)~R and 

y eNG(u)c~R. It follows from (3) that x ¢ y. In addition, xyCM; for otherwise (1) 
implies that {x, y} c Na(v) and {x, y} c NG(u) which contradicts (3). If vu e M, then 
considering a maximum matching M' of G containing (M - {vu, xx*, yy*})w{vx, uy} 

(and then necessarily also x'y*),  we get a contradiction just as in the proof 
of (2). If vuCM, then let M' be a maximum matching of G containing 
(M - {vv*, uu*, xx*, yy*})w {vx, uy, pu*}. Because the vertex v* is adjacent neither to 
x* (see (2)) nor to y* (see (3)), v*~V(M'). But now since v x e M '  and neither 
{v,x} c NG(v*) nor {v,x}~NG(v*) = 0, we get a contradiction to Claim 1. 

It is obvious from (4) and from definitions of S and R that the unique vertex of S is 
a cut vertex of G. This, however, contradicts the assumption that G has no cut vertex 
and completes the proof of the theorem. []  

The following corollary is immediate from Theorem, Table 1 and the observation 
that K1 is a totally well-irredundant graph, and it shows that the classes of totally 
well-covered and totally well-irredundant graphs are quite restricted. 
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Corol lary .  Let G be a connected #raph. Then the following statements are equivalent: 
(1) G is totally well-covered; 
(2) G is totally well-irredundant; 

(3) G is one of the graphs K1,K2,K3 and K2,2. 
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