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In this paper, we prove the nonexistence of L2 harmonic 1-forms on a complete super
stable minimal submanifold M in hyperbolic space under the assumption that the first
eigenvalue λ1(M) for the Laplace operator on M is bounded below by (2n − 1)(n − 1).
Moreover, we provide sufficient conditions for minimal submanifolds in hyperbolic space
to be super stable.
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1. Introduction

Let M be an n-dimensional complete minimal submanifold in R
n+m . In [11], Miyaoka showed that if M is a complete

stable minimal hypersurface in R
n+1, then there are no nontrivial L2 harmonic 1-forms on M . Recall that a minimal sub-

manifold is said to be stable if the second variation of its volume is always nonnegative for any normal variation with

compact support. Yun [20] proved that if M is a complete minimal hypersurface with (
∫

M |A|n dv)
1
n < C2 =

√
C−1

s , then

there are no nontrivial L2 harmonic 1-forms on M . Here Cs is a Sobolev constant in [10]. Recently, the author extended this
result to higher codimension cases in a Euclidean space and hyperbolic space [13,15]. We denote by −|A|2 and

∫
M |A|n dv

the scalar curvature and the total scalar curvature of a minimal submanifold M in a Euclidean space, respectively.
This paper is concerned with the nonexistence of L2 harmonic 1-forms on complete minimal submanifolds in hyperbolic

space. We shall denote by H
n the n-dimensional hyperbolic space of constant sectional curvature −1. For an n-dimensional

minimal submanifold M in H
n+m , a simple computation shows that for a variational vector field E = ϕν , the second varia-

tion of its volume Vol(Mt) satisfies [6]

d2 Vol(Mt)

dt2
�

∫
M

|∇ϕ|2 − (|A|2 − n
)
ϕ2 dv,

where ϕ ∈ W 1,2
0 (M) and ν is the unit normal vector field. (See also [16].) Motivated by this, we introduce the concept of

super stability in hyperbolic space as follows:

Definition 1. We call a minimal submanifold M in H
n+m super stable if for any ϕ ∈ W 1,2

0 (M)∫
M

|∇ϕ|2 − (|A|2 − n
)
ϕ2 dv � 0.
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Note that when m = 1, the concept of super stability is the same as the usual definition of stability. It should be men-
tioned that Q. Wang [17] introduced the concept of super stability for minimal submanifolds in a Euclidean space and
proved that the only complete super stable minimal submanifold Mn (n � 3) of finite total scalar curvature in a Euclidean
space is an affine n-plane. Recently the author [14] proved that if M is a complete immersed super stable minimal subman-
ifold in a Euclidean space with flat normal bundle satisfying that

∫
M |A|2 < ∞, then M is an affine n-plane.

The first eigenvalue for the Laplace operator � on a Riemannian manifold M is defined as

λ1(M) = inf
f

∫
M |∇ f |2∫

M f 2
,

where the infimum is taken over all compactly supported smooth functions on M . It was proved by Cheung and Leung [2]
that for an n-dimensional complete minimal submanifold M in H

n+m , the first eigenvalue λ1(M) satisfies

1

4
(n − 1)2 � λ1(M). (1.1)

Here this inequality is sharp because equality holds when M is totally geodesic [9]. In Section 2, we shall prove a gap
theorem for L2 harmonic 1-forms on a complete super stable minimal submanifold in hyperbolic space. More precisely, we
prove

Theorem. Let M be a complete super stable minimal submanifold in H
n+m. Assume that the first eigenvalue of M satisfies

(2n − 1)(n − 1) < λ1(M).

Then there are no nontrivial L2 harmonic 1-forms on M.

For a harmonic function f on a complete Riemannian manifold with finite Dirichlet energy, it is well known that its
differential df is L2 harmonic 1-form on M . The topology of a stable minimal hypersurface in a nonnegatively curved
manifold is closely related with the space of bounded harmonic functions with finite Dirichlet energy [1,8,19]. In this
direction, our main theorem provides the nonexistence of nontrivial harmonic functions on a complete super stable minimal
submanifold in hyperbolic space with finite Dirichlet energy under the first eigenvalue assumption.

In Section 3, we find sufficient conditions for minimal submanifolds in hyperbolic space to be super stable.

2. A gap theorem for L2 harmonic 1-forms

We begin with the following lemma.

Lemma 2. (See [7].) Let M be an n-dimensional complete immersed minimal submanifold in H
n+m. Then the Ricci curvature of M

satisfies

Ric(M) � −(n − 1) − n − 1

n
|A|2.

We are now ready to prove our main theorem.

Theorem 3. Let M be a complete super stable minimal submanifold in H
n+m. Assume that the first eigenvalue of M satisfies

(2n − 1)(n − 1) < λ1(M).

Then there are no nontrivial L2 harmonic 1-forms on M.

Proof. Let ω be an L2 harmonic 1-form on M , i.e.,

�ω = 0 and
∫
M

|ω|2 dv < ∞.

In an abuse of notation, we will refer to a harmonic 1-form and its dual harmonic vector field both by ω. Bochner formula
says

�|ω|2 = 2
(|∇ω|2 + Ric(ω,ω)

)
.

Moreover, we have

�|ω|2 = 2
(|ω|�|ω| + ∣∣∇|ω|∣∣2)

.
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Thus using Kato type inequality [18] we get

|ω|�|ω| − Ric(ω,ω) = |∇ω|2 − ∣∣∇|ω|∣∣2 � 1

n − 1

∣∣∇|ω|∣∣2
.

Therefore applying Lemma 2 gives

|ω|�|ω| + n − 1

n
|A|2|ω|2 + (n − 1)|ω|2 � 1

n − 1

∣∣∇|ω|∣∣2
. (2.1)

Furthermore, the super stability of M implies
∫
M

|∇φ|2 − (|A|2 − n
)
φ2 dv � 0

for all φ ∈ W 1,2
0 (M). Substituting |ω|φ for φ gives

∫
M

∣∣∇(|ω|φ)∣∣2 − (|A|2 − n
)|ω|2φ2 dv � 0.

Thus applying integration by parts and divergence theorem we have

0 � −
∫
M

|ω|φ�
(|ω|φ)

dv −
∫
M

(|A|2 − n
)|ω|2φ2 dv

= −
∫
M

|ω|φ(|ω|�φ + φ�|ω| + 2
〈∇|ω|,∇φ

〉)
dv −

∫
M

(|A|2 − n
)|ω|2φ2 dv

= −
∫
M

φ|ω|2�φ dv −
∫
M

φ2(|ω|�|ω| + |A|2|ω|2)dv

− 2
∫
M

|ω|φ〈∇|ω|,∇φ
〉
dv + n

∫
M

|ω|2φ2 dv

=
∫
M

〈∇(
φ|ω|2),∇φ

〉
dv −

∫
M

φ2(|ω|�|ω| + |A|2|ω|2)dv

− 2
∫
M

|ω|φ〈∇|ω|,∇φ
〉
dv + n

∫
M

|ω|2φ2 dv

=
∫
M

|ω|2|∇φ|2 dv −
∫
M

φ2(|ω|�|ω| + |A|2|ω|2)dv + n

∫
M

|ω|2φ2 dv. (2.2)

Combining the inequalities (2.1) and (2.2) gives

0 � (2n − 1)

∫
M

|ω|2φ2 dv +
∫
M

|ω|2|∇φ|2 dv − 1

n − 1

∫
M

∣∣∇|ω|∣∣2
φ2 dv − 1

n

∫
M

|A|2|ω|2φ2 dv. (2.3)

On the other hand, since the first eigenvalue satisfies

λ1(M) �
∫

M |∇φ|2 dv∫
M |φ|2 dv

for all φ ∈ W 1,2
0 (M), we substitute |ω|φ for φ. Then we get

λ1(M)

∫
M

|ω|2φ2 dv �
∫
M

|ω|2|∇φ|2 + |φ|2∣∣∇|ω|∣∣2 + 2φ|ω|〈∇φ,∇|ω|〉dv. (2.4)

It follows from the inequalities (2.3) and (2.4) that
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0 �
(

2n − 1

λ1(M)
+ 1

)∫
M

|ω|2|∇φ|2 dv +
(

2n − 1

λ1(M)
− 1

n − 1

)∫
M

∣∣∇|ω|∣∣2
φ2 dv

+ 2(2n − 1)

λ1(M)

∫
M

φ|ω|〈∇φ,∇|ω|〉dv − 1

n

∫
M

|A|2|ω|2φ2 dv.

Combining the Cauchy–Schwarz inequality with Young’s inequality for ε > 0 yields

2
∫
M

φ|ω|〈∇φ,∇|ω|〉dv � ε

2

∫
M

∣∣∇|ω|∣∣2
φ2 dv + 2

ε

∫
M

|ω|2|∇φ|2 dv.

Thus we have

0 �
{(

1 + 2

ε

)
2n − 1

λ1(M)
+ 1

}∫
M

|ω|2|∇φ|2 dv

+
{(

1 + ε

2

)
2n − 1

λ1(M)
− 1

n − 1

}∫
M

∣∣∇|ω|∣∣2
φ2 dv − 1

n

∫
M

|A|2|ω|2φ2 dv.

Now fix a point p ∈ M and for R > 0 choose a cut-off function satisfying 0 � φ � 1, φ ≡ 1 on B p(R), φ = 0 on M \ B p(2R),
and |∇φ| � 1

R . Since λ1(M) > (2n − 1)(n − 1) by assumption, choosing ε > 0 sufficiently small and letting R → ∞, we
obtain |ω| ≡ 0 or |A| ≡ 0. If |ω| ≡ 0, then there is no nontrivial L2 harmonic 1-form on M . If |A| ≡ 0, M is isometric
to H

n . However, it was proved by Dodziuk [3] that there is no nontrivial L2 harmonic 1-form on H
n . Hence we get the

conclusion. �
As mentioned in the introduction, when m = 1, the definition of super stability is the same as that of stability. Thus it

immediately follows

Corollary 4. Let M be a complete stable minimal hypersurface in H
n+1 satisfying that

(2n − 1)(n − 1) < λ1(M).

Then there are no nontrivial L2 harmonic 1-forms on M.

It was shown by Palmer [12] that if there exists a codimension one cycle C in a complete minimal hypersurface M
in R

n+1 which does not separate M , then M is unstable. We prove an analogue of his result in hyperbolic space.

Corollary 5. Let M be a complete minimal submanifold in H
n+m satisfying that

(2n − 1)(n − 1) < λ1(M).

Suppose there exists a codimension one cycle C in M which does not separate M. Then M cannot be super stable.

Proof. By the results of Dodziuk [4], there exists a nontrivial L2 harmonic 1-form on M . However this is impossible by
Theorem 3. �

Let f be a harmonic function on M with finite Dirichlet energy, i.e., � f = 0 and
∫

M |∇ f |2 dv < ∞. Then its differential df
is L2 harmonic 1-form on M . Hence we get

Corollary 6. Let M be a complete super stable minimal submanifold in H
n+m satisfying that

(2n − 1)(n − 1) < λ1(M).

Then there are no nontrivial harmonic functions on M with finite Dirichlet energy.

3. Super stability of minimal submanifolds in hyperbolic space

In this section, we provide two sufficient conditions for minimal submanifolds in hyperbolic space to be super stable.

Theorem 7. Let M be a complete minimal submanifold in H
n+m. If |A| � (n+1)2

at every point in M, then M is super stable.
4
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Proof. Using the inequality (1.1), we have

(n − 1)2

4
� λ1(M) �

∫
M |∇ f |2 dv∫

M f 2 dv

for all f ∈ W 1,2
0 (M). Hence the assumption that |A|2 � (n+1)2

4 implies∫
M

|∇ f |2 − (|A|2 − n
)

f 2 dv �
∫
M

(
λ1(M) + n − |A|2) f 2 dv � 0,

which completes the proof. �
It is well known that the following Sobolev inequality [5] on an n-dimensional minimal submanifold M in H

n+m (n � 3)

holds

(∫
M

| f | 2n
n−2 dv

) n−2
n

� Cs

∫
M

|∇ f |2 dv for f ∈ W 1,2
0 (M), (3.1)

where Cs is the Sobolev constant in [5]. We shall make use of this inequality to prove the following theorem, which gives
another sufficient condition for super stability of minimal submanifolds in hyperbolic space.

Theorem 8. Let M be an n-dimensional complete minimal submanifold in H
n+m, n � 3. If

∫
M |A|n dv � ( 1

Cs
)

n
2 , then M is super stable.

Proof. It is sufficient to show that∫
M

|∇ f |2 − (|A|2 − n
)

f 2 dv � 0

for all f ∈ W 1,2
0 (M). By the Sobolev inequality (3.1), we have

∫
M

|∇ f |2 − (|A|2 − n
)

f 2 dv � 1

Cs

(∫
M

| f | 2n
n−2 dv

) n−2
n

−
∫
M

|A|2 f 2 dv. (3.2)

On the other hand, it follows from Hölder inequality that

∫
M

|A|2 f 2 dv �
(∫

M

|A|n dv

) 2
n
(∫

M

| f | 2n
n−2 dv

) n−2
n

. (3.3)

Combining (3.2) with (3.3) we have

∫
M

|∇ f |2 − (|A|2 − n
)

f 2 dv �
{

1

Cs
−

(∫
M

|A|n dv

) 2
n
}(∫

M

| f | 2n
n−2 dv

) n−2
n

� 0 (by assumption),

which completes the proof. �
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