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Use of algebraically independent numbers for
zero recognition of polynomial terms

Daniel Richardson�,1 and Ahmed El-Sonbaty2

Department of Computer Science, Bath University, Bath BA2 7AY, UK

Abstract

A polynomial term is a tree with operators �;þ;� on the interior nodes and natural

numbers and variables on the frontier.

We attempt to decide whether or not such a tree represents the zero polynomial by

substituting algebraically independent real numbers for the variables and attempting to decide

whether or not the resulting constant is zero.

From this we get a probabilistic zero recognition test which is somewhat more expensive

computationally than the usual method of choosing random integers in a large interval and

evaluating, but which depends on the ability to choose a random point in the unit cube and to

approximate a polynomial at that point.

We also state a conjecture about algebraic independence measure which would give us a

deterministic test with a uniformly chosen test point. The result is that if a polynomial term

has sðTÞ nodes, then the bit complexity of deterministic zero recognition is bounded by

OðsðTÞMðsðTÞ lengthðTÞÞÞ; where lengthðTÞ measures the length of the term T ; and MðnÞ is
the bit complexity of multiplication of two n-digit natural numbers.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Consider representation of polynomials as trees with þ;�; � on the interior nodes
and with variables and natural numbers on the leaves. Such a representation is
significantly more succinct than any of the usual canonical representations of
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Z½x1;y; xn�: On the other hand, it is much weaker than the standard straight line
program representation.
A probabilistic method which can be used for zero recognition among such terms

is independently to pick n integers ðx1;y; xnÞ at random in the range ½0; d � n � N�;
where d is an upper bound on the degree and N is some large multiplier, and then
substitute these integers into the polynomial and evaluate. The following theorem
implies that the probability of an error (caused by accidentally choosing a root of the
polynomial) would be no more than ð1=NÞ; provided that the polynomial is
independent of the random number generator.
Let degðT ; xiÞ be the degree of variable xi in polynomial term T : Suppose T has

variables x1;y; xn: Define dðTÞ ¼
Pn

i¼1 degðT ; xiÞ:

Theorem 1. Let pAA½x1;y; xn� be a not identically zero polynomial over an integral

domain A: Let S be a subset of A of cardinality B: Suppose x1;y; xn are chosen

independently, with uniform probability, from S: Then the probability that

pðx1;y; xnÞ ¼ 0 is bounded by dðTÞ=B:

See [Zippel] for a proof.
Define hðnÞ where n is a natural number to be the number of digits used in the

canonical base 10 representation of n: We will call hðnÞ the logarithmic height of n:
For polynomial terms T ; define hðTÞ to be the maximum of hðnÞ for n on the frontier
of T : Define lengthðnÞ ¼ hðnÞ; and lengthðxnÞ ¼ hðnÞ þ 1: Extend this notion of
length to polynomial terms by setting lengthðA þ BÞ ¼ lengthðA � BÞ ¼ lengthðA �
BÞ ¼ lengthðAÞ þ lengthðBÞ þ 1:
According to the above theorem, if we want the probability of an error to be, for

example, less than 10�100; we need to evaluate the polynomial with n natural number
arguments of logarithmic height no more than 100þ hðdðTÞÞ: After substitution, the
length of the term is bounded by lengthðTÞ � ð50þ hðdðTÞÞÞ: Assume that there are
no more than sðTÞ nodes in the tree. The largest integer in the computation has
length no more than lengthðTÞ � ð50þ hðdðTÞÞÞ: There are no more than sðTÞ
computations to be done. So the total complexity is bounded by sðTÞMðlengthðTÞ �
ð50þ hðdðTÞÞÞÞ; where MðkÞ is the complexity of multiplication of two natural
numbers of length k:
We next prove an analogous theorem about points X chosen at random in the unit

cube in Rn:

Let fjTðXÞjo10�kg be the subset of Rn in which jTðXÞjo10�k:

Theorem 2. If polynomial term T is not identically zero, then the intersection of the

unit cube in Rn with fjTðXÞjo10�kg has Lebesgue measure p2dðTÞ10�k=dðTÞ:

Proof. We use induction on n and the fact that if ja1yad j4jb1ybd j then for some i

we must have jaij4jbij:
Assume TðXÞ is not identically zero. Let x be one of the variables in T ; d ¼

degðT ; xÞ; D ¼ dðTÞ � d:
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For almost all values of the variables,

TðXÞ ¼ adðx � a1Þyðx � adÞ;

where a1;y; ad depend algebraically on the other variables, and ad is a nonzero
polynomial in the other variables.

fjTðXÞjo10�kg

¼ fjad jjmðxÞjo10�kg

Dfjad jo10�kag,fjmðxÞjo10�kbg;

where a ¼ D=ðd þ DÞ; b ¼ d=ðd þ DÞ; and mðxÞ ¼ ðx � a1Þyðx � adÞ:
Observe that fmðxÞo10�kbgD

Sd
i¼1 fjx � aijo10�kb=dg:

Let L be Lebesgue measure, and In the unit cube in Rn:
We apply our induction hypothesis to get an upper bound on

LðIn-fjad jo10�kagÞ (using the fact that the measure of a projection parallel to
the x-axis of a subset of the unit cube is an upper bound on the measure of the
subset) and then apply the observation above.

LðIn-fjTðXÞjo10�kgÞ

pLðIn-fjad jo10�kagÞ þ LðIn-jmðxÞjo10�kbgÞ

p2D10�ka=D þ 2d10�kb=d

p2ðd þ DÞ10�k=ðdþDÞ

(since a=D and b=d are both 1=ðd þ DÞ), which verifies the theorem. &

Remark. For the sake of simplicity the theorem is stated in terms of the unit cube.

We could change the scale so that it would apply to any cube ½0;B�n in Rn by
multiplying the measure by a factor of Bn:

To compare with the method stated earlier, suppose we choose X at random and

we want the probability of an error to be less than 10�100: According to the theorem
it would be acceptable, from this point of view, to assume that T ¼ 0 if

jTðXÞjo10�k; where k=dðTÞ4hð2dðTÞÞ þ 100: Therefore it suffices to choose:

k4dðTÞðhð2dðTÞÞ þ 100Þ:

We have a bound of B ¼ 10lengthðTÞ on the absolute values of the numbers which
appear in the tree.
At each operation þ; �;� within the polynomial term we lose no more than

lengthðTÞ decimal places of precision.
During the whole computation the total precision lost is bounded by sðTÞ �

lengthðTÞ:
It suffices, according to the above theorem, to finish the computation with

precision k:
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The precision needed for the whole computation is bounded by

precision ¼ sðTÞ � lengthðTÞ þ dðTÞ � ðhð2dðTÞÞ þ 100Þ:

Since we have sðTÞ interior nodes (operations), the bit complexity of the
computation is sðTÞ MðprecisionÞ: It can be seen that this test is more expensive
computationally than the previously described integer test.

2. Choice of points in the unit cube

When we choose integers to test whether or not a polynomial term is zero, we
make a different random choice each time we have a term to test. Otherwise,
someone could discredit the test by constructing a polynomial which happened to be
zero at the test point. However, it may not be necessary to choose a new point for
each test if we use a randomly chosen point in the unit cube. That is, it may be
possible to use always the same point.
Suppose that kðTÞ; mapping polynomial terms into natural numbers, is such thatP
dðTÞ10�kðTÞ (taken over all polynomial terms) converges to a finite limit. (For

example, kðTÞ ¼ 2 � lengthðTÞ would do.) It is a consequence of the theorem above
that for almost all points X in the unit cube there is a number N so that for all

nonzero polynomial terms T ; dðTÞ4N-jTðX ÞjX10�kðTÞdðTÞ:
We also have:

Theorem 3. For almost all points X in the unit cube, there is a number C so that for all

nonzero polynomial terms T we have

jTðX Þj410�C�kðTÞdðTÞ:

Proof. Let ðTiÞi40 enumerate all the polynomial terms. We assume thatP
dðTiÞ10�kðTiÞ converges. This implies that for any e40 there is an N such that

X

i4N

dðTiÞ10�kðTiÞoe:

This means, as a consequence of the theorem above, that the points X so that

jTiðXÞjo10�kðTÞdðTÞ for some Ti with i4N; have measure no more than e: We can
choose e as small as we wish. The probability is therefore zero that

jTðXÞjo10�kðTÞdðTÞ for infinitely many T ; when X is chosen at random. Let S be
a subset of the unit cube of measure 1 so that for points X picked in S there are only

finitely many polynomial terms T with jTðX Þjo10�kðTÞdðTÞ: For each point in S

there is a constant C so that jTðXÞj410�C�kðTÞdðTÞ for all polynomial terms T which
are not the zero polynomial. &

Thus if we had a way of computing with any of these very common values, and we
could find an appropriate constant C; we could have a deterministic zero test for
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polynomial terms, and always use the same test point. This possibility is discussed
below.

3. Algebraic independence

Definition 1. Complex numbers a1;y; an are algebraically independent if
pða1;y; anÞa0 for all not identically zero polynomials p in Z½x1;y; xn�:

3.1. Lindemann’s theorem

Theorem 4. For any distinct algebraic numbers a1;y; an and nonzero algebraic

numbers b1;y; bn we have

b1e
a
1 þ?þ bneana0:

Corollary 1. If the algebraic numbers a1;y; an are linearly independent over Q; then

ea1 ;y; ean are algebraically independent.

For proof, see [Baker].
The following is well known. See [Besicovitch].

Lemma 1. If q1;y; qn are different square free natural numbers, then

1=
ffiffiffiffiffi
q1

p
;y; 1=

ffiffiffiffiffi
qn

p
are linearly independent over the rationals.

4. A conjecture about independence

We extend our notion of length by defining lengthðA1=nÞ to be lengthðAÞ þ
lengthðnÞ þ 1; lengthð1=AÞ ¼ lengthðeAÞ ¼ lengthðAÞ þ 1; and lengthðA þ BÞ ¼
lengthðA � BÞ ¼ lengthðA � BÞ ¼ lengthðAÞ þ lengthðBÞ þ 1:

Conjecture. Let Tðx1;y;xnÞ be a polynomial term, and let A be the term which is

obtained by substituting e�1=
ffiffiffiffi
q1

p
;y; e�1=

ffiffiffiffi
qn

p
for x1;y; xn respectively, where q1;y; qn

are natural numbers. Then

Aa0 - jAj410�2 lengthðAÞ:

This is a special version of the uniformity conjecture, which is part of an attempt
to solve the zero recognition problem for some of the constants which appear
frequently in scientific computing. See [Richardson97,Richardson2001,Richard-
son2000,RichardsonLa] for discussion of this problem and the conjecture. This is
also related to a family of conjectures, called witness conjectures, stated by Van Der
Hoeven, see [VDHoeven]. The general form of the uniformity conjecture, and the
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strongest version of the witness conjecture, have recently been shown to be incorrect,
via a counterexample found by Van Der Hoeven. However the more specialised
conjecture above still seems plausible.
We note that the substitution chosen is in the unit cube.

Theorem 5 (Using the conjecture). Let T be a polynomial term, and let A be the term

obtained by the substitution used in the conjecture above, with q1;y; qn the first n

square free numbers. Then T is identically zero if and only if

jAjo10�10 lengthðTÞ:

Proof. The substituted values are algebraically independent, as a consequence of the
Lindemann theorem and the lemma of Besicovitch stated in the previous section. So
T represents the zero polynomial if and only if A is zero. According to the

conjecture, A is zero if and only if jAjo10�2 lengthðAÞ: The first n square free numbers
all have length bounded by n: (This follows from the Bertrand postulate. See
[Zippel]. Much stronger results can be obtained by more careful consideration of the

density of the primes.) So lengthðe�1=
ffiffiffiffi
qn

p
Þ is bounded by hðnÞ þ 5; and therefore

lengthðAÞ is bounded by 5 lengthðTÞ: &

Corollary 2 (Using the conjecture). There is a deterministic test for zero equivalence

of a polynomial term T which has bit complexity which is polynomial in lengthðTÞ:

Proof. We need to approximate A with precision at least k ¼ 10 � lengthðTÞ: The
numbers which occur in the computation have absolute value bounded by 10lengthðTÞ:
Therefore the precision lost at each step of the computation is bounded by lengthðTÞ:
There are sðTÞ steps. Thus the total precision lost in the computation is bounded by
sðTÞlengthðTÞ: We need to do the whole computation with precision no more than
k2 ¼ ðsðTÞ þ 10Þ lengthðTÞ: At the beginning of the computation, we approximate

the numbers e�1=
ffiffiffi
qi

p
with precision k2:Using the results in [Borwein,Borwein1988,Br-

ent] we can do this in OðMðk2ÞÞ bit operations, where MðkÞ is the bit complexity of
multiplying two k-digit natural numbers. Thus the whole computation has bit
complexity bounded by OðsðTÞMðsðTÞ lengthðTÞÞÞ; which is bounded by a
polynomial in the length of the term T :
Note that a much weaker form of the conjecture will still give a polynomial time

deterministic solution of the zero recognition problem for polynomial terms. The
bound k on the precision could be any polynomial in the length of T : For example,
the bound obtained in the first part of this paper for the random substitution from
the unit cube would also establish the corollary. In spite of this, we have not so far
been able to establish the existence of such a deterministic decision procedure
without use of some as yet unproved statement of independence measure such as the
conjecture above. We also note the somewhat surprising fact that the nonexistence of
a polynomial time deterministic solution to the zero recognition problem for
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polynomial terms would have very interesting consequences for independence
measure of many familiar numbers, including exponentials of algebraic numbers.
We remark also that our zero recognition algorithm for polynomial terms is in

complexity class NC, since there exists an efficient parallelisation of evaluation of
such terms. See [Brent74,Brent].
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