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Dimethylfumarate Impairs Neutrophil
Functions

Susen Müller1,4, Martina Behnen2,4, Katja Bieber1, Sonja Möller2, Lars Hellberg2,3, Mareike Witte1,
Martin Hänsel1, Detlef Zillikens1, Werner Solbach2, Tamás Laskay2,4 and Ralf J. Ludwig1,4
Host defense against pathogens relies on neutrophil activation. Inadequate neutrophil activation is often
associated with chronic inflammatory diseases. Neutrophils also constitute a significant portion of infiltrating
cells in chronic inflammatory diseases, for example, psoriasis and multiple sclerosis. Fumarates improve the
latter diseases, which so far has been attributed to the effects on lymphocytes and dendritic cells. Here, we
focused on the effects of dimethylfumarate (DMF) on neutrophils. In vitro, DMF inhibited neutrophil activation,
including changes in surface marker expression, reactive oxygen species production, formation of neutrophil
extracellular traps, and migration. Phagocytic ability and autoantibody-induced, neutrophil-dependent tissue
injury ex vivo was also impaired by DMF. Regarding the mode of action, DMF modulates—in a stimulus-
dependent manner-neutrophil activation using the phosphoinositide 3-kinase/Akt-p38 mitogen-activated
protein kinase and extracellular signal-regulated kinase 1/2 pathways. For in vivo validation, mouse models
of epidermolysis bullosa acquisita, an organ-specific autoimmune disease caused by autoantibodies to type VII
collagen, were employed. In the presence of DMF, blistering induced by injection of anti-type VII collagen
antibodies into mice was significantly impaired. DMF treatment of mice with clinically already-manifested
epidermolysis bullosa acquisita led to disease improvement. Collectively, we demonstrate a profound inhibi-
tory activity of DMF on neutrophil functions. These findings encourage wider use of DMF in patients with
neutrophil-mediated diseases.
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INTRODUCTION
Neutrophils are the vanguard of the cellular innate immune
system to invading pathogens (Amulic et al., 2012). In addi-
tion, they have been recently shown to orchestrate important
functions of the adaptive immune system (Puga et al., 2012).
The overall importance of neutrophils for host defense is
underscored by the detrimental effects of congenital or ac-
quired defects in neutrophil function, that is, recurrent in-
fections in patients with chronic granulomatous disease
(Leiding and Holland, 1993). Furthermore, the dysregulation
of neutrophil function also leads to chronic inflammation
(Leiding and Holland, 1993). Uncontrolled neutrophil acti-
vation has also been demonstrated to contribute to the
pathogenesis of several chronic inflammatory diseases. For
example, in the absence of neutrophils, mice are completely
resistant to the arthritogenic and inflammatory effects of the
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K/BxN serum. Furthermore, the depletion of neutrophils in
mice with already-established arthritis reverses the inflam-
matory reaction (Wipke and Allen, 2001). Similar observa-
tions were made in murine experimental autoimmune
encephalomyelitis, a model for multiple sclerosis (McColl
et al., 1998). The key role of neutrophils has also been
documented in several models of autoimmune skin blistering
diseases (Ludwig et al., 2013). In autoimmune skin blistering
diseases, autoantibodies to structural proteins directly or
indirectly induce blister formation in skin and/or mucous
membranes (Schmidt and Zillikens, 2013; Stanley and
Amagai, 2006). In two model systems of autoimmune skin
blistering diseases, bullous pemphigoid (BP) with autoim-
munity to type XVII collagen (COL17) and epidermolysis
bullosa acquisita (EBA) with autoimmunity to type VII
collagen (COL7), the depletion of neutrophils completely
protected mice from blistering induced by transfer of auto-
antibodies (Chiriac et al., 2007; Liu et al., 1997, 2008).

In addition to the diseases described above, where the
pathogenic relevance of neutrophils has been demonstrated
in experimental models, the presence of neutrophils has been
documented in several chronic inflammatory diseases, such
as psoriasis (Schön and Boehncke, 2005), severe asthma (Fahy
et al., 1995; Nakagome et al., 2012), and systemic lupus er-
ythematosus (Hakkim et al., 2010; Kaplan, 2011; Villanueva
et al., 2011). Over the past decades, the incidence of
chronic inflammatory diseases has increased dramatically
(Bach, 2002). Despite improved treatments, morbidity and
mortality of these patients are still high (Bernatsky et al., 2006;
Joly et al., 2002). The associated cardiovascular comorbidity
further adds to the high medical burden (Asanuma et al.,
estigative Dermatology. www.jidonline.org 117
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2003; Gelfand et al., 2006; Ludwig et al., 2007). Hence, there
is a great medical need for the development of novel, safe,
and effective treatment modalities for these patients.

Intriguingly, Fumaria officinalis, a plant rich in fumaric
acid, has been used as a remedy for inflammatory skin com-
plaints since the 17th century. The clinical use of fumaric acid
derivatives started in the late 1950s when the German chemist
Schweckendiek, suffering from psoriasis, successfully treated
himself with fumaric acid derivatives (Schweckendiek, 1959).
Several decades later, a more standardized preparation of
fumaric acid derivatives was approved for the treatment of
psoriasis in Germany (Mrowietz and Asadullah, 2005). On
an anecdotal basis, fumarates have been noted to be thera-
peutically effective in other diseases associated with neutro-
phil infiltration (Meissner et al., 2012).

Different modes of action of fumaric acid derivatives
have been described, including modulation of cytokine pro-
duction, lymphocyte apoptosis, lymphocyte as well as endo-
thelial cell adhesion molecule expression, NF-kB activity, and
cellular redox systems (Ghoreschi and Rocken, 2004;
Ghoreschi et al., 2011; Milenkovic et al., 2008; Mrowietz
and Asadullah, 2005; Rubant et al., 2008; Treumer et al.,
2003; Vandermeeren et al., 1997; Wallbrecht et al., 2011).
However, only a few studies have addressed the role of
fumaric acid derivatives, namely dimethylfumarate (DMF) and
its main metabolites methylhydrogenfumarate and mono-
methylfumarate, in human monocytes and neutrophils after
activation. One study demonstrated that monomethylfumarate
activated neutrophils evidenced by increased elastase release
and intracellular killing of bacteria; in this study, mono-
methylfumarate also inhibited formyl-methionyl-leucyl-
phenylalanine (fMLP)-induced reactive oxygen species (ROS)
burst (Nibbering et al., 1993). In another study, DMF and
methylhydrogenfumarate dose-dependently enhanced super-
oxide anion generation from monocytes, but not from neu-
trophils (Zhu and Mrowietz, 2005). Despite the latter
observations, based on the effectiveness of fumaric acid de-
rivatives in psoriasis and multiple sclerosis as well as the pre-
dominance of neutrophils in these diseases (Braun-Falco and
Burg, 1970; McColl et al., 1998), we hypothesized that fuma-
ric acid derivatives, namely DMF, impair neutrophil functions.

To address this assumption, we first evaluated the effect of
DMF on neutrophil function in vitro and then went on to
characterize the prophylactic and therapeutic effect of DMF
in animal models of an organ-specific autoimmune disease,
where tissue injury depends on neutrophils.

RESULTS
In vitro effects of DMF on neutrophil effector function and
activation

The luminol-amplified chemiluminescence assay was used to
measure the sum of intra- and extracellular ROS (Briheim
et al., 1984; Hasegawa et al., 1997; Stevens and Hong,
1984). We here demonstrate that DMF significantly and
dose-dependently (doses ranging from 5 to 15 mg/ml) reduced
the lipopolysaccharide (LPS)/fMLP, phorbol 12-myristate
13-acetate (PMA), tumor necrosis factor-a (TNF-a), and
immobilized immune complex (iIC)-induced ROS production
of human neutrophils (Figure 1a and b). Furthermore, PMA-
and iIC-induced neutrophil extracellular trap (NET) formation
Journal of Investigative Dermatology (2016), Volume 136
was sensitive to DMF (Figure 1cee). All used DMF concen-
trations (5, 10, and 15 mg/ml) significantly impaired the PMA-
induced NET formation (Figure 1d), whereas only 15 mg/ml
DMF had a significant inhibitory effect on iIC-induced NET
formation (Figure 1d). The effects on PMA-induced NET pro-
duction were verified by fluorescence microscopy of
SYTOXgreen-stained neutrophils, which confirmed a dose-
dependent inhibitory effect of DMF on PMA-induced NET
release (Figure 1e). TNF-a and IL-8 did not induce NETs in our
experimental settings (data not shown). We also assessed the
impact of DMF on phagocytosis. The LPSþIFN-g-induced
phagocytosis was inhibited by the pretreatment of neutrophils
with DMF (Supplementary Figure S1 online). Whereas DMF
doses below 15 mg/ml had no significant effect on phagocy-
tosis, 15 mg/ml of DMF significantly reduced the number
of neutrophils with phagocytosed beads (Supplementary
Figure S1a and c). Similarly, the number of beads per neutro-
phil was also reduced (Supplementary Figure S1b and c). The
shedding of CD62L and degranulation (increased expression
of CD11c and CD66b) are also key features of neutrophil
activation. The exposure of resting neutrophils to DMF had
no effect on CD62L expression (data not shown). In iIC-
activated neutrophils, 15 mg/ml DMF led to increased
CD62L shedding, whereas DMF treatment (10 and 15 mg/ml)
of LPSþIFN-g-activated neutrophils significantly inhibited
CD62L shedding (Supplementary Figure S2a and b online).
DMF had no significant effect on IL-8- or TNF-a-induced
CD62L shedding. In resting neutrophils, exposure to DMF had
no effect on the expression of the granule markers CD11b and
CD66b (not shown). DMF treatment also had no effect on the
IL-8-, TNF-a-, or iIC-induced enhanced cell surface expression
of CD11b (Supplementary Figure S2c and d) and CD66b
(Supplementary Figure S2e and f). Preincubation with DMF,
however, strongly diminished the LPSþIFN-g-induced
enhanced CD11b (Supplementary Figure S2c and d, 15 mg/ml
DMF has an effect) and CD66b (Supplementary Figure S2e and
f) expression in a dose-dependent manner. Lastly, the effect
of DMF on neutrophil migration was evaluated in vitro. DMF
had no effect on neutrophil chemotaxis in the transwell
system when IL-8 was added to the lower chamber (Figure 2a).
By using TNF-a as chemoattractant, DMF significantly
blocked migration in a dose-dependent manner (Figure 2b).
Whereas 5 mg/ml DMF had no significant effect, 10 or
15 mg/ml of DMF significantly reduced migration (Figure 2b).
Similar observations, that is, no effect on IL-8-induced
migration (Figure 2c), but the impairment of TNF-a-directed
migration (Figure 2d), were obtained when the effect of DMF
on neutrophil transendothelial migration was evaluated
(Figure 2c and d). These results indicate that inhibitory effects
by DMF on neutrophils functions are dependent on the stim-
ulus and may involve specific intracellular signaling cascades.
All of the above-mentioned changes were achieved at
nontoxic doses of DMF (Supplementary Figure S3 online).

DMF treatment results in reduced autoantibody-induced
neutrophil-dependent tissue injury ex vivo

Autoantibodies directed against antigens located at the
dermal-epidermal junction (e.g., type VII or type XVII
collagen) induce subepidermal split formation in the pres-
ence of neutrophils on cyrosections of human skin (Gammon
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Figure 1. DMF dose-dependently

lowers ROS production and NET

generation by activated neutrophils.

Neutrophils were exposed to different

stimuli in the presence of various

concentrations of DMF. (a, b) Intra-

and extracellular ROS production

of neutrophils was measured

by the luminol-amplified

chemiluminescence assay after

stimulation with LPSþfMLP, PMA,

TNF-a, or immobilized immune

complexes (iIC). (a) Representative

time kinetics curves and (b) mean

AUC values (n ¼ 3 for LPSþfMLP;

n ¼ 4 for PMA; n ¼ 6 for TNF-a or iIC)

are shown. (cee) NET formation was

assessed by SYTOXgreen staining on

stimulation with PMA and iIC. Time

kinetics of NET release in one

representative experiment as

measured by (c) the SYTOXgreen

fluorescence intensities and (d) mean

AUC values are shown. Mean AUC

values (n ¼ 3 for PMA; n ¼ 6 for iIC)

were normalized to PMA- or iIC-

induced NET formation in the absence

of DMF or EtOH. (e) For representative

fluorescence microscopy, images of

NET release cells were fixed after 4

hours and the DNA was stained with

SYTOXgreen. Scale bar corresponds to

20 mM. *P < 0.05; differences were

calculated with analysis of variance

followed by the Bonferroni t-test for

multiple comparisons versus control

(EtOH). AUC, area under the curve;

DMF, dimethylfumarate; fMLP, formyl-

methionyl-leucyl-phenylalanine; LPS,

lipopolysaccharide; NET, neutrophil

extracellular trap; PMA, phorbol 12-

myristate 13-acetate; ROS, reactive

oxygen species TNF-a, tumor necrosis

factor-a.
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et al., 1982; Sitaru et al., 2002a, 2002b). Confirming previous
work, we demonstrate that in contrast to normal human
serum, serum obtained from patients with BP induced split
formation in cryosections of human skin (Figure 3). DMF
(5, 10, and 15 mg/ml) reduced split formation in this assay
(Figure 3). Similar results were obtained when serum from
patients with EBA was used (not shown).

DMF affects Akt, p38 MAPK, and ERK phosphorylation in
neutrophils in a stimulus-dependent manner

To assess which activating pathways are targets of DMF, we
evaluated the effect of DMF on p38 mitogen-activated
protein kinase (MAPK), extracellular signaleregulated kinase
(ERK) 1/2, and Akt phosphorylation in human neutrophils on
stimulation with TNF-a, IL-8, and iIC. Moreover, we used
fMLP or LPS as stimuli. fMLP is known to activate p38 MAPK
and preferentially the ERK 1/2 pathway (Zu et al., 1998) and
stimulates Akt phosphorylation in neutrophils (Tilton et al.,
1997), whereas LPS is mainly involved in p38 MAPK
signaling (Detmers et al., 1998). A marked inhibition of Akt
phosphorylation was observed in IL-8-, TNF-a-, and fMLP-
activated neutrophils when treated with DMF, but not in
iIC- and LPS-stimulated neutrophils (Figure 4a). The effects of
DMF on p38 MAPK phosphorylation were diverse. Although
www.jidonline.org 119
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Figure 2. DMF specifically inhibits

TNF-a, but not IL-8-induced

neutrophil chemotaxis and

transendothelial migration.

Neutrophils were pretreated with

various concentrations of DMF or with

EtOH as a solvent control. (a, b)

Chemotaxis and (c, d) transendothelial

migration in response to IL-8 (a, c) or

TNF-a (b, d) values (n ¼ 3) were

normalized to migrated cells without

exposure to DMF or EtOH (medium).

Data show mean þ standard error.

*P < 0.05; differences were calculated

with analysis of variance followed by

the Bonferroni t-test for multiple

comparisons versus control (EtOH).

DMF, dimethylfumarate; TNF-a,
tumor necrosis factor-a.

Figure 3. DMF reduces autoantibody-

induced and neutrophil-dependent

dermal-epidermal separation ex vivo.

Neutrophil-dependent ex vivo dermal-

epidermal separation was induced by

autoantibodies against type XVII

collagen; NHS served as negative

control. (a) Mean � SEM values are

shown (n ¼ 10). *P < 0.05; differences

were calculated with repeated

measures analysis of variance

followed by Dunnett’s method for

multiple comparisons versus control

(EtOH). (b) Representative sections

from the indicated treatment groups

from the above experiments. The

arrows indicate dermal-epidermal

separation. DMF, dimethylfumarate;

EtOH, positive controls incubated

with solvent (ethanol); NHS, normal

human serum; PC, positive control (BP

sera).
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DMF reduced p38 phosphorylation in LPS-stimulated neu-
trophils, it induced and/or enhanced p38 phosphorylation in
unstimulated and IL-8-stimulated neutrophils (Figure 4b).
DMF had no effect on p38 phosphorylation of TNF-a-, iIC-,
or fMLP-activated neutrophils. ERK 1/2 phosphorylation was
Journal of Investigative Dermatology (2016), Volume 136
inhibited by DMF in IL-8-, TNF-a-, and LPS-activated cells,
whereas no effect of DMF was observed on ERK 1/2 phos-
phorylation in iIC- and fMLP-treated cells (Figure 4c). The
inhibitory effects of DMF on phosphorylation of Akt and ERK
were also obvious when different concentrations of the
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Figure 4. DMF affects Akt, p38

MAPK, and ERK phosphorylation in

neutrophils. Neutrophils were

pretreated with DMF, solvent control

or left untreated before activation by

IL-8, TNF-a, iIC, fMLP, or LPS.

Phosphorylation of Akt (a), p38 MAPK

(b), and ERK (c) was detected and

quantified by the Western blot

analysis of whole cell lysates.

Representative blots of one from a

total of three experiments and/or

conditions and quantitative analyses

(adjusted densities) are shown. For the

quantitative analysis, the pAkt, pp38

MAPK, and pERK signals from three

independent Western blots were

adjusted to the b-actin signal detected

on the same blot or from the same

sample and normalized to the

respective medium control.

Quantitative data are shown as mean

� standard error. *P < 0.05

correspond to a statistical significant

difference of DMF-treated samples

compared with the ethanol control as

analyzed by analysis of variance with

the Bonferroni post-test. DMF,

dimethylfumarate; ERK, extracellular

signal-regulated kinase; fMLP,

formyl-methionyl-leucyl-

phenylalanine; iIC, immobilized

immune complex; LPS,

lipopolysaccharide; MAPK, mitogen-

activated protein kinase; TNF-a,
tumor necrosis factor-a.
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activation agents (1e10 mg/ml IL-8 or TNF-a) were used (data
not shown). These results suggest that DMF modulates
neutrophil functions stimulus dependent by specifically
affecting the phosphoinositide 3-kinase/Akt, p38 MAPK, and
ERK 1/2 pathways.

DMF has prophylactic and therapeutic effects in mouse
models of organ-specific neutrophil-dependent autoimmune
disease

We next evaluated the impact of prophylactic DMF appli-
cation in the antibody transfer model of EBA. This model was
chosen because disease manifestation strongly depends on
activated neutrophils (Ludwig, 2012). The affected body
surface area in mice treated with DMF was lower compared
with mice receiving methylcellulose, during the observation
period (Figure 5a). The overall disease severity showed a
great variation, which was mainly attributed to the gender of
the mice, that is, female mice presented with a significantly
higher disease activity than male mice (P < 0.001, two-way
analysis of variance [ANOVA]). Despite this variability, dis-
ease severity of DMF-treated mice was significantly lower
compared with those treated with methylcellulose (Figure 5b
and d). These differences were independent of changes of the
IgG and C3 deposition at the dermal-epidermal junction (not
shown). Moreover, we could observe that DMF treatment
results in a lower number of activated bone marrow neutro-
phils (CD62L negative/GR-1 positive) in EBA diseased mice
(Figure 5c), but not in healthy mice (data not shown).

To test for a possible therapeutic activity of DMF in
experimental EBA, mice with already-clinically established
EBA were allocated to DMF treatment or methylcellulose.
At the time of randomization to treatment, clinical EBA
manifestation was identical in all groups (Supplementary
Table S1 online). Furthermore, mice were allocated to treat-
ment at a similar time point after immunization (data not
shown). Treatment with DMF at 2 � 50 mg/kg, but not at
lower doses, significantly improved blistering (Figure 6). A
more detailed analysis of changes in disease severity showed
an increase of skin blistering in methylcellulose treated mice
for 3 weeks, which then remained at a plateau until the end
of the observation period (Figure 6). In contrast, DMF led to a
decrease in skin blistering, which was evident as early as 1
www.jidonline.org 121
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Figure 5. DMF hinders neutrophil

activation and the induction of

autoantibody-induced, neutrophil-

dependent tissue injury in vivo.

(a) Mean (standard error) percentage

of the body surface area affected by

experimental EBA skin lesions in

C57BL/6 mice treated with solvent

(methylcellulose, gray circles) or DMF

(green circles) during the 12-day

observation period. Data are based on

16 solvent and 17 DMF-treated

C57BL/6 mice. (b) Mean � SEM

values are shown for overall disease

activity in the same mice. *P < 0.05;

differences were calculated with two-

way analysis of variance followed by

the Student-Newman-Keuls method

for multiple comparisons taking

treatment and gender of the mice as

independent variables. (c) Mean �
SEM values are shown for percentage

of activated (CD62L-negative/Gr-1-

positive) bone marrow neutrophils

from EBA diseased C57BL/6 mice

treated with solvent (n ¼ 6) or 50 mg/

kg DMF (n¼ 6). *P< 0.05; differences

were calculated with the t-test.

(d) Representative clinical presentations

of four individual mice per treatment at

the end of the experiment (day 12).

DMF, dimethylfumarate; EBA,

epidermolysis bullosa acquisita.

Figure 6. DMF treatment improves

skin blistering in mice with already-

established immunization-induced

EBA. (a) Mean (standard error)

percentage of the body surface area

affected by experimental EBA skin

lesion in SJL/J mice treated with

solvent (methylcellulose, gray circles)

or DMF (2 � 50 mg, green circles)

during the 4-week treatment period.

Scoring (and treatments) was initiated

after individual mice had 2% or more

of their body surface area affected by

EBA skin lesions. (b) Mean (boxes)

SEM values (error bars) are shown for

the overall disease activity in SJL/J

mice with already-established skin

blistering in experimental EBA treated

with solvent (methylcellulose, gray

circles) or DMF (green circles) during

the 4-week treatment period. Data are

based on 12 solvent, six 2 � 25 mg,

and ten 2 � 50 mg DMF-treated mice.

*P < 0.05; differences were calculated

with two-way analysis of variance

followed by the Student-Newman-

Keuls method for multiple

comparisons taking treatment and

gender of the mice as independent

variables. (c) Representative clinical

presentations of three individual mice

per treatment at the end of the

experiment (week 4). DMF,

dimethylfumarate; EBA, epidermolysis

bullosa acquisita.
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week after the initiation of treatment. This therapeutic effect
was maintained throughout the observation period. Again,
these differences in clinical disease severity were indepen-
dent of changes of the IgG and C3 deposition at the dermal-
epidermal junction, as well as the concentration of
circulating anti-COL7 antibodies (not shown).

DISCUSSION
Recruitment and activation of neutrophils are crucial in the
pathogenesis of many chronic inflammatory diseases. We
here demonstrate a stimulus-dependent inhibitory activity of
DMF on activation-induced functions of neutrophils. These
effects of DMF are likely associated with the inhibitory effect
of DMF on the phosphoinositide 3-kinase/Akt and p38 MAPK
signaling pathways. We further demonstrate that both pro-
phylactic and therapeutic application of DMF significantly
impairs and/or improves neutrophil-dependent tissue injury
and improves clinical disease manifestation in mice with
experimental EBA.

Because of the rising incidence of pemphigoid diseases,
predominantly BP, and the increased, partially treatment-
associated mortality (Joly et al., 2002, 2012; Langan et al.,
2008), there is a so far unmet high medical need for safe
and effective treatment strategies for patients with BP and
other pemphigoid diseases. Having demonstrated a thera-
peutic effect of DMF application in mice with already-
established EBA, clinical trials using either Fumaderm or
BG-12 (Kappos et al., 2008; Mrowietz et al., 2011) in patients
with EBA or BP are warranted. Despite the recognition of
different target antigens, namely COL7 in EBA (Woodley
et al., 1988) or COL17 (Diaz et al., 1990) and BP230
(Stanley et al., 1988) in BP, both diseases share a similar
pathogenesis. In detail, after binding of autoantibodies to
their respective target antigen in the skin, a proinflammatory
milieu is generated. In experimental models of BP and EBA,
this process is predominantly mediated by complement
activation (Karsten et al., 2012; Liu et al., 1995; Mihai et al.,
2007; Nelson et al., 2006). Furthermore, the binding of anti-
COL17 antibodies to keratinocytes has been demonstrated to
induce IL-6 and IL-8 secretion in vitro (Schmidt et al., 2000).
The synthesis of these cytokines is controlled by NF-kB, and
DMF has potent inhibitory functions on NF-kB through in-
hibition nuclear translocation of p65 (Loewe et al., 2001) and
indirectly inhibiting the phosphorylation and ubiquitination
of IkB through increasing glutathione levels (Mrowietz and
Asadullah, 2005). The short time frame of the in vitro ex-
periments suggests that the observed inhibitory effects of
DMF were not due to a modulation of NF-kB function. In our
in vivo experiments, however, NF-kB modulation by DMF
cannot be completely excluded. Overall, this proin-
flammatory milieu leads to a CD18-dependent neutrophil
extravasation into the skin of mice with experimental BP or
EBA (Chiriac et al., 2007; Liu et al., 2006). Expression
(decrease) of the endothelial ligands for leukocyte integrins is
mediated by DMF (Vandermeeren et al., 1997; Wallbrecht
et al., 2011). Furthermore, DMF affects the expression of
different additional leukocyte and endothelial adhesion
molecules (Rubant et al., 2008; Vandermeeren et al., 1997;
Wallbrecht et al., 2011). Although a contribution of adhe-
sion molecules other than CD18 has not been demonstrated
experimentally in EBA and BP, the multistep nature of
leukocyte extravasation into inflamed skin (Schön and
Ludwig, 2005) suggests that the downregulation of different
adhesion molecules, including leukocyte integrins, is another
possible mode of action of DMF in BP and EBA.

In experimental BP and EBA, neutrophils are activated by
iIC located in the skin. Interestingly, this process is
completely dependent on Fcg receptor III in experimental BP
(Zhao et al., 2006), whereas the same process is solely
dependent on Fcg receptor IV in experimental EBA
(Kasperkiewicz et al., 2012). In human models of BP, Fcg
receptors IIA and IIIB were responsible for binding of neu-
trophils to immune complexes (Yu et al., 2010). Intracellular
signaling pathways, including phosphoinositide 3-kinase
beta, Akt, p38 MAPK, and ERK phosphorylation, lead to
neutrophil activation in experimental EBA (Hellberg et al.,
2013; Kulkarni et al., 2011). In human keratinocytes, DMF
was shown to specifically inhibit mitogen and stress-activated
kinases 1 and 2 within the p38 MAPK pathway and tran-
scription factors such as NF-kB and ATF1 that are down-
stream targets of mitogen and stress-activated kinase
signaling (Gesser et al., 2007). Recent work also identified
that DMF inhibits ERK phosphorylation in microglia (Wilms
et al., 2010). Although the effects of fumaric acids on
certain innate immune functions have been investigated in
previous studies (Nibbering et al., 1993; Zhu and Mrowietz,
2005), no information regarding the mode of action of DMF
on neutrophils has been available. Results from our present
study show that DMF regulates neutrophil functions by the
inhibition of phosphoinositide 3-kinase/Akt, p38 MAPK, and
ERK signaling pathways. Of note, DMF did predominantly
affect cytokine-induced phosphorylation of these molecules.
Lately, the contribution of cytokines to blister formation in
experimental EBA has been demonstrated (Ludwig et al.,
2013). Moreover, because DMF increases glutathione levels
(Spencer et al., 1990), DMF may counteract the proin-
flammatory effects induced by ROS.

In addition to the effects on pathways involved in
autoantibody-induced and neutrophil-mediated tissue injury,
DMF may also influence the production of pathogenic au-
toantibodies. In immunization-induced EBA, the induction of
complement-fixing IgG2 anti-COL7 autoantibodies leads to
skin blistering (Sitaru et al., 2006). This production of IgG2
autoantibodies occurs in the context of a Th1 polarization in
peripheral lymph nodes of immunized mice (Hammers et al.,
2011). As DMF can shift Th1-polarized immune responses
toward a Th2 polarization (Ghoreschi et al., 2011; Ockenfels
et al., 1998), this may be yet another possible therapeutic
target for DMF in BP and EBA. However, we here did not
observe any difference in autoantibody levels or changes of
autoantibody isoforms, which may be due to the relatively
long half-life of circulating and tissue-bound autoantibodies
in experimental EBA (Kasperkiewicz et al., 2010).

In summary, we here identified neutrophils as a cellular
target of DMF. Given the profound therapeutic effect of DMF
in patients with psoriasis and multiple sclerosis, as well as our
observation of the beneficial effect of DMF in already-
established experimental EBA, clinical trials in patients with
EBA, related autoimmune skin blistering diseases, and other
neutrophil-dependent diseases are warranted.
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MATERIALS AND METHODS
A more detailed description of the experiments can be found in the

Supplementary Materials and Methods online.

Experiments with human cells and sera

Sera from patients with BP, patients with EBA, and from healthy

volunteers used for the ex vivo studies were obtained after written

informed consent, approved by the ethical committee of the Medical

Faculty of the University of Lübeck, and performed in accordance

with the Declaration of Helsinki.

Mice

C57BL/6J and SJL/J mice were obtained from Charles River Labora-

tories (Sulzfeld, Germany). Animal experiments were approved by

local authorities of the Animal Care and Use Committee (Kiel,

Germany) and performed by certified personnel.

Isolation of primary human and mouse neutrophils

For isolation of human neutrophils, peripheral blood was collected

by venipuncture from healthy adult volunteers using lithium heparin.

Neutrophils were isolated as described previously (Aga et al., 2002).

Cell purity and viability was greater than 99.9%. Mouse neutrophils

were isolated from femur and tibia.

DMF treatment and culture of human neutrophils

For in vitro studies, DMF was solubilized at 15 mg/ml in ethanol and

diluted with an appropriate medium as used in the assays to final

concentrations of 5, 10, and 15 mg/ml (0.1% v/v EtOH). Neutrophils

were preincubated with DMF for 1e4 hours at 37 �C. An LPS-free

medium and EtOH (0.1% v/v EtOH) were used as controls. None

of the applied DMF concentrations exerted a toxic or apoptosis-

inducing effect within 4 hours, as determined by Annexin V and

propidiumiodide counterstaining (Supplementary Figure S3 online).

As stimuli for neutrophil activation, IL-8 (R&D Systems, Minneap-

olis, MN), TNF-a (PeproTech, Hamburg, Germany), PMA (Sigma

Aldrich), LPS (Sigma Aldrich, Hamburg, Germany), fMLP, (Sigma

Aldrich, Hamburg, Germany), IFN-g (R&D Systems), or iIC were

used. iIC were formed by using human serum albumin (Baxter) an-

tigen and rabbit polyclonal antiehuman serum albumin IgG (Sigma

Aldrich) as described previously (Behnen et al., 2014).

Flow cytometry analysis of cell surface molecules

Following a preincubation with the medium EtOH or DMF, human

neutrophils were left unstimulated or activated by 100 ng/ml IL-8,

100 ng/ml TNF-a, Iic, or 100 ng/ml LPS þ 200 U/ml IFN-g. Cells
were then stained with FITC-conjugated mouse anti-human CD62L

or FITC-conjugated mouse anti-human CD66b or PE-conjugated

mouse anti-human CD11b mAb or appropriate isotype controls.

For staining of mouse neutrophils from bone marrow, a PE-

conjugated rat anti-mouse GR-1 and an FITC-conjugated rat anti-

mouse CD62L antibodies were used. Fixed cells were analyzed

with a FACSCalibur flow cytometer using CellQuest pro software

(BD Biosciences, San Diego, CA).

Analysis of ROS production

The luminol (5-amino-2,3-dihydro-1,4-phthalazindione)-amplified

chemiluminescence assay was used to measure the total of intra- and

extracellular ROS as described previously (Behnen et al., 2014).

Assessment of NET formation

NET release was induced for 4 hours by 20 nM PMA or iIC and

measured using a previously described kinetic assay (Brinkmann

et al., 2004; Kirchner et al., 2012)
Journal of Investigative Dermatology (2016), Volume 136
Phagocytosis assay

Neutrophils were preincubated for 3 hours in the presence or

absence of DMF and ethanol. On stimulation of cells with LPS and

IFN-g, FluoSpheres carboxylate-modified microspheres (Invitrogen)

were added. Subsequently, phagocytosis of the yellow-green fluo-

rescent FluoSpheres by neutrophils was assessed by flow cytometry

(FACS Calibur, BD) and by fluorescence microscopy (Axioskop 40,

Zeiss).

Chemotaxis assay

To analyze the effect of DMF on neutrophil chemotaxis toward 100

ng/ml IL-8 or 100 ng/ml TNF-a, a modified chemotaxis assay was

performed using a 24-well transwell system with 3 mm pore filters

(Costar, Bodenheim, Germany) as previously described (Wilde et al.,

2007).

Transendothelial migration assay

Similar to the chemotaxis assay, a 24-well transwell system (Costar)

was used to analyze the effect of DMF on neutrophil transendothelial

migration. The number of cells that migrated through a human

umbilical vein endothelial cell-endothelial layer toward IL-8 or

TNF-a into the lower chamber was calculated by using the glucu-

ronidase assay, as described in the chemotaxis assay part.

Western blot analysis

Neutrophils were preincubated for 3 hours with 15 mg/ml DMF or

solvent control after 15 minutes of stimulation with 100 ng/ml IL-8,

100 ng/ml TNF-a, iIC, 200 ng/ml LPS, or 5 minutes of stimulation

with 20 nM fMLP. To analyze the effect of DMF on ERK 1/2, Akt, and

p38 MAPK phosphorylation, Western blot analysis with whole cell

lysates was carried out as described previously (Behnen et al., 2014).

Assessment of ex vivo dermal-epidermal separation induced
by autoantibodies

Dermal-epidermal separation of cryosections of human skin was

evaluated using an ex vivo model as previously described (Sitaru

et al., 2002b).

Induction of experimental EBA in mice and treatment
protocols

Passive transfer studies for EBA followed published protocols with

minor modifications (Sitaru et al., 2005). The loss of tolerance to-

ward COL7 and subsequent clinical EBA manifestation was induced

by immunization with an immunodominant fragment located within

murine COL7 as described elsewhere (Kasperkiewicz et al., 2011;

Ludwig et al., 2011). Please see the Supplementary Materials and

Methods for a detailed description.

Statistical analysis

Data were analyzed using SigmaPlot (Systat Software, Chicago, IL).

Applied tests and confidence intervals are indicated at the respective

text and figure legends. A P-value < 0.05 was considered statistically

significant.
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