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Abstract

In this paper, we prove the existence of nested sequences of index filtrations for convergent
sequences of (admissible) semiflows on a metric space. This result is new even in the context of
flows on a locally compact space. The nested index filtration theorem implies the continuation
of homology index braids which, in turn, implies the continuation of connection matrices in
the infinite-dimensional Conley index theory.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Morse decompositions (see e.g.[5,24,22,6]) are a useful tool in the analysis of flows
or semiflows defined by ordinary, functional and evolutionary partial differential equa-
tions. Combined with an appropriate version of the Conley index and a corresponding
Morse equation, they often allow us to obtain multiplicity results for solutions of vari-
ational problems (see e.g.[1,12]). Through the use of some more refined topological
tools like the Conley connection matrix, Morse decompositions can also be used to
detect connections, i.e. heteroclinic orbits in dynamical systems.
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The connection matrix theory for flows defined on locally compact spaces was de-
veloped by Franzosa in his thesis[6] and in subsequent papers[7–9]. Important con-
tributions to the theory and applications were made in[15,18,19]. (Cf. also the recent
volume[16] for various articles on connection and transition matrices and the references
contained therein.)
One of the crucial results of Franzosa’s theory is the continuation (i.e. homotopy

invariance) property for homology index braids and the connection matrices along paths
in the parameter space. The importance of this is clear: in order to compute a connection
matrix for a complicated flow, one may first try to homotope this flow to a simpler
one for which the connection matrix is easier to compute and use the same connection
matrix for the original flow. Franzosa’s proof of the continuation property heavily relies
on continuation results along paths both for the categorial Morse index (established by
Conley [5]) and for index triples (established by Kurland[13,14]).
In [10] Franzosa and Mischaikow extended part of the theory of partially ordered

Morse decompositions and connection matrices to the setting of Conley index theory
(developed in[20,21]) for admissible local semiflows on (not necessarily locally com-
pact) metric spaces. While those authors establish the existence of index filtrations
and connection matrices in this general setting, they do not prove any continuation
property.
In previous papers[1,3] we proved some continuation results for Morse decom-

positions under very general assumptions, applicable to local semiflows and even to
equations without the uniqueness property of solutions.
It is the purpose of the present paper to prove a homotopy invariance property for

homology index braids (and thus for connection matrices) for parameter-dependent ad-
missible local semiflows on general metric spaces. However, instead of simply extending
Franzosa’s proof method to the noncompact case (which would require imposing an un-
necessarily strong admissibility assumption on the parametrized semiflows) we choose
a completely different approach, yielding a stronger result under weaker hypotheses.
Our approach is similar in spirit to the proof of the continuation property of the ho-
motopy Conley index given in[20,22]. In those works, for sequences of pairs(�n, Sn)

(where�n is a local semiflow andSn is an isolated�n-invariant set) converging to a
corresponding limit pair(�0, S0) one proves, under the usual admissibility assumptions,
the existence of nested sequences of index pairs (for largen ∈ N)

(N1,n, N2,n) ⊂ (N1,0, N2,0) ⊂ (Ñ1,n, Ñ2,n) ⊂ (Ñ1,0, Ñ2,0).

This result immediately implies that the inclusionN1,n/N2,n → N1,0/N2,0 is a homo-
topy equivalence of pointed spaces and this, in turn, establishes a homotopy invariance
property of Conley index not only along paths but also along connected metric param-
eter spaces. In this paper, we will similarly establish the existence of nested sequences
of index filtrations (cf. Theorem3.4) which immediately imply the homotopy invari-
ance property of homology index braids (cf. Theorem3.5 and Theorem3.7) along
connected parameter spaces. This gives us continuation results for connection matrices.
An advantage of our method is that it can also be adapted to singular perturbation
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problems in the setting considered in[2]. This is treated in the subsequent publica-
tion [4].
The existence of nested sequences of index filtrations, new even in the locally com-

pact case, is a strong statement which is of interest in its own right. The proof of this
very technical result combines the ingenious construction of index filtration from[10]
together with various ideas employed in the existence proofs, given in[20,21,24], for
isolating blocks, index pairs and block pairs.
This paper is organized as follows. In the next section we recall some basic concepts

from Conley index and homology index braid theory and establish some preliminary
results. In particular, we state (in Theorem2.10 below) an extension of an important
existence result for index filtrations due to Franzosa–Mischaikow. In Section3 we state
the main results of this paper (Theorems3.4, 3.5 and 3.7 below) and discuss their
applicability. In particular, we show that homology index braids for certain types of
parabolic equations are isomorphic to the corresponding homology index braids of their
(sufficiently high dimensional) Galerkin approximations.
The last three sections of the paper are devoted to the proof of Theorem3.4. In

Section4, we use Theorem2.10to prove an abstract existence result (Theorem4.1) for a
sequence of index filtrations(Nn)n∈N0 such thatNn is, in some sense, ‘asymptotically’
included inN0. In Section5, we construct sequences of index triples having special
properties required for the application of Theorem4.1 (see Theorems5.5 and 5.9
below). In Section6, we make two very specific applications of Theorems5.5, 5.9 and
4.1 to obtain two sequences of index filtrations which are ‘almost’ nested. By appro-
priately modifying these index filtrations (using Proposition2.9 from Section2) we
finally achieve the full nesting property and thus complete the proof of Theorem3.4.
Notation: In this paper,N, resp.N0, denotes the set of all positive, resp. nonnegative,

integers.

2. Preliminaries

The purpose of this section is to recall a few concepts from Conley index theory
and to establish some preliminary results needed later in this paper. We assume the
reader’s familiarity with the (infinite dimensional) Conley index theory, as expounded
in [22], and with the papers[7,10].
In this section, unless otherwise specified,X is a metric space,� is a local semiflow

on X and all concepts are definedrelative to �.
Suppose thatY is a subset ofX. By Inv+

� (Y ), resp. Inv−� (Y ), resp. Inv�(Y ) we denote
the largest positively invariant, resp. negatively invariant, resp. invariant subset ofY.
Moreover, let the function�Y = �Y,�:Y → R ∪ { ∞ } be given by

�Y (x) := sup{ t�0 | x�t is defined andx�[0, t] ⊂ Y }.

Y is called�-admissibleif Y is closed and whenever(xn)n and (tn)n are such thattn →
∞ and xn� [0, tn] ⊂ Y for all n ∈ N, then the sequence(xn�tn)n has a convergent
subsequence. We say that� does not explode in Yif wheneverx ∈ X and x�t ∈ Y
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as long asx�t is defined, thenx�t is defined for allt ∈ [0,∞[. Y is calledstrongly
�-admissibleif Y is �-admissible and� does not explode inY.
Let N andY be subsets ofX. The setY is calledN-positively invariantif whenever

x ∈ Y , t�0 are such thatx� [0, t] ⊂ N , thenx� [0, t] ⊂ Y .
Let N, Y1 andY2 be subsets ofX. The setY2 is called anexit ramp for N withinY1

if wheneverx ∈ Y1 and x�t ′ �∈ N for somet ′ ∈ [0,∞[, then there exists at0 ∈ [0, t ′]
such thatx� [0, t0] ⊂ N and x�t0 ∈ Y2.
If Y1 and Y2 are subsets ofX then Y2 is called anexit ramp forY1 if Y2 is an exit

ramp forN within Y1, whereN = Y1.

Definition 2.1. Let B ⊂ X be a closed set andx ∈ �B. The point x is called a
strict egress(respectivelystrict ingress, respectivelybounce-off) point of B, if for every
solution�: [−�1, �2] → X throughx, with �1�0 and�2 > 0, the following properties
hold:

(1) There exists anε2 ∈ ]0, �2[ such that�(t) �∈ B (respectively�(t) ∈ IntB, respec-
tively, �(t) �∈ B), for t ∈ ]0, ε2].

(2) If �1 > 0, then there exists anε1 ∈ ]0, �1[ such that�(t) ∈ IntB (respectively
�(t) �∈ B, respectively,�(t) �∈ B), for t ∈ [−ε1,0[.

The set of all strict egress (respectively strict ingress, respectively bounce-off) points
of B is denoted byBe (respectivelyBi , respectivelyBb). Moreover, we callB− :=
Be ∪ Bb the exit set of Band B+ := Bi ∪ Bb the entrance set of B. B is called an
isolating block, if �B = Be ∪ Bi ∪ Bb and B− is closed. IfB is also an isolating
neighborhood of an invariant setS, then we say thatB is an isolating block for S.

If B is an isolating block then(B, B−) is an example of an index pair inB. More
generally, we have the following definition.

Definition 2.2. Let N be closed inX. A pair (N1, N2) is called anindex pair in N if:

(1) N1 andN2 are closed andN-positively invariant subsets ofN;
(2) N2 is an exit ramp forN within N1;
(3) Inv�(N) is closed and Inv�(N) ⊂ Int(N1 \ N2).

The next definition introduces a more general concept.

Definition 2.3. A pair (N1, N2) is called aFranzosa–Mischaikow-index pair(or FM-
index pair) for S if:

(1) N1 andN2 are closed subsets ofX with N2 ⊂ N1 andN2 is N1-positively invariant;
(2) N2 is an exit ramp forN1;
(3) S is closed,S ⊂ Int(N1 \ N2) andS is the largest invariant set in Cl(N1 \ N2);

Proposition 2.4 (cf. Franzosa and Mischaikow[10] ). Let (N1, N2) be a pair of closed
subsets of X withN2 ⊂ N1.

(1) If S is an isolated invariant set, N1 is an isolating neighborhood of S and(N1, N2)

is an index pair inN1, then (N1, N2) is an FM-index pair for S.
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(2) If (N1, N2) is an FM-index pair for S and N is an isolating neighborhood of S with
N1\N2 ⊂ N , thenN1∩N is an isolating neighborhood of S and(N1∩N,N2∩N)

is an index pair inN1 ∩ N .

Proposition 2.5. Let (N1, N2) be an FM-index pair for S. Let Y be a closed set such
that S ⊂ Int(Y ) and such thatN2 is an exit ramp for Y. Then(Y ∩ N1, Y ∩ N2) is an
FM-index pair for S.

Proof. It is clear thatY ∩N1 andY ∩N2 are closed. Ifx ∈ Y ∩N2 andx�[0, t] ⊂ Y ∩N1
for somet�0, then, sinceN2 is N1-positively invariant, we obtainx�[0, t] ⊂ N2 and
so x�[0, t] ⊂ Y ∩ N2. This proves thatY ∩ N2 is (Y ∩ N1)-positively invariant.
There exist open setsV andW such thatS ⊂ W ⊂ N1 \ N2 and S ⊂ V ⊂ Y . Thus

S ⊂ V ∩ W ⊂ Y ∩ (N1 \ N2) ⊂ (Y ∩ N1) \ (Y ∩ N2) and soS ⊂ Int((Y ∩ N1) \
(Y ∩ N2)). Thus S ⊂ Inv� Cl((Y ∩ N1) \ (Y ∩ N2)) = Inv� Cl(Y ∩ (N1 \ N2)) ⊂ Inv�
Cl(N1 \ N2) = S.
To complete the proof, letx ∈ Y ∩ N1 and assume that there exists at ′ �0

such thatx�t ′ /∈ Y ∩ N1. Suppose first that�Y (x) > �N1
(x). Then �N1

(x) < ∞
and so x�[0,�N1

(x)] ⊂ Y ∩ N1 and x��N1
(x) ∈ N2 since (N1, N2) is an FM-

index pair forS. Thus, x��N1
(x) ∈ Y ∩ N2. Now assume that�Y (x)��N1

(x). Then
�Y (x) < ∞ and sox�[0,�Y (x)] ⊂ Y ∩ N1. Moreover, sinceN2 is an exit ramp forY,
we have x��Y (x) ∈ N2 and so x��Y (x) ∈ Y ∩ N2. The proof is
complete. �

Definition 2.6. Let S be an isolated invariant set and(A,A∗) be an attractor–repeller
pair in S. A pair (B1, B2) is called ablock pair (for (�, S,A,A∗)) if B1 is an isolating
block for A∗, B2 is an isolating block forA, B := B1 ∪ B2 is an isolating block forS
andB1 ∩ B2 ⊂ B−

1 ∩ B+
2 .

If (B1, B2) is a block pair then(B, B2 ∪ B−, B−) is an example of an FM-index
triple:

Definition 2.7. Let S be an isolated invariant set and(A,A∗) be an attractor–repeller
pair in S. A triple (N1, N2, N3) with N3 ⊂ N2 ⊂ N1 is called anFM-index triple (for
(�, S,A,A∗)) if (N1, N3) is an FM-index pair forS and (N2, N3) is an FM-index pair
for A.

Proposition 2.8 (cf. Franzosa and Mischaikow[10] ). If (N1, N2, N3) is an FM-index
triple for (�, S,A,A∗) then (N1, N2) is an FM-index pair forA∗.

Given an isolated invariant setK having a strongly�-admissible isolating neighbor-
hood we denote byh(K) = h(�,K) the Conley-index ofK and byH(K) = H(�,K) =
H(h(K)) the homology Conley index, whereH is the singular homology functor (with
coefficients in some fixed moduleG over a PID).
If (A,A∗) is an attractor–repeller pair inS and (N1, N2, N3) is an FM-index

triple for (�, S,A,A∗) with N1 strongly �-admissible, then the inclusion induced
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sequence N2/N3

i
�� N1/N3

p

�� N1/N2 induces a long exact homology

sequence

��Hq(N2/N3)
i

��Hq(N1/N3)
p

��Hq(N1/N2)
�

��Hq−1(N2/N3) �� .

This sequence is independent of the choice of(N1, N2, N3) and so there is a well-
defined long exact sequence

��Hq(A)
i

��Hq(S)
p

��Hq(A
∗)

�
��Hq−1(A) ��

called thehomology index sequence of(�, S,A,A∗).
Recall that astrict partial order on a setP is a relation≺ ⊂ P × P which is

irreflexive and transitive. As usual, we writex ≺ y instead of(x, y) ∈ ≺. The symbol
< will be reserved for the less-than-relation onR.
For the rest of this paper, unless specified otherwise, letP be a fixed finite set and

≺ be a fixed strict partial order onP.
A set I ⊂ P is called a ≺-interval if whenever i, j, k ∈ P , i, k ∈ I and i ≺

j ≺ k, then j ∈ I . By I(≺) we denote the set of all≺-intervals in P. A set I is
called a ≺-attracting interval if whenever i, j ∈ P , j ∈ I and i ≺ j , then i ∈
I . By A(≺) we denote the set of all≺-attracting intervals inP. Of course,A(≺)

⊂ I(≺).
An adjacent n-tuple of≺-intervals is a sequence(Ij )nj=1 of pairwise disjoint≺-

intervals whose union is a≺-interval and such that, wheneverj < k, p ∈ Ij and
p′ ∈ Ik, thenp′ �≺ p (i.e. p ≺ p′ or elsep and p′ are not related by≺). By In(≺)

we denote the set of all adjacentn-tuples of≺-intervals.
Let S be a compact invariant set. A family(Mi)i∈P of subsets ofS is called a

≺-ordered Morse decomposition of Sif the following properties hold:

(1) The setsMi , i ∈ P , are closed,�-invariant and pairwise disjoint.
(2) For every full solution� of � lying in S either �(R) ⊂ Mk for some k ∈

P or else there arek, l ∈ P with k ≺ l, �(�) ⊂ Ml and �(�)
⊂ Mk.

Let S be a compact invariant set and(Mi)i∈P be a≺-ordered Morse decomposition
of S. If A, B ⊂ X then the(�, S)-connection setCS�,S(A,B) from A to B is the set of
all pointsx ∈ X for which there is a solution�:R → S of � with �(0) = x, �(�) ⊂ A

and�(�) ⊂ B.
For an arbitrary≺-interval I set

M(I) = M�,S(I ) =
⋃

(i,j)∈I×I

CS�,S(Mi,Mj ).
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An index filtration for (�, S, (Mp)p∈P ) is a family N = (N(I))I∈A(≺) of closed
subsets ofX such that

(1) for eachI ∈ A(≺), the pair(N(I),N(∅)) is an FM-index pair forM(I),
(2) for eachI1, I2 ∈ A(≺), N(I1∩I2) = N(I1)∩N(I2) andN(I1∪I2) = N(I1)∪N(I2).

N is calledstrongly �-admissibleif N(P ) is strongly�-admissible.
The following result is an immediate consequence of Proposition2.5.

Proposition 2.9. Let Y be a closed set such thatS ⊂ Int(Y ) and such thatN(∅) is
an exit ramp for Y. LetN = (N(I))I∈A(≺) be an index filtration for(�, S, (Mp)p∈P ).
Then (Y ∩ N(I))I∈A(≺) is an index filtration for(�, S, (Mp)p∈P ).

A special version of the following basic result was established in[10].

Theorem 2.10(cf. Franzosa and Mischaikow [10, Theorem 3.5]). Let Ni
1, Ni

2, Ni
I ,

i = 2, 4, I ∈ A(≺), be sets such that, for each I ∈ A(≺), (Ni
1, N

i
I , N

i
2), i = 2,

4, is an FM-index triple for(�, S,M(I),M(P \ I )). SupposeN2
1 ⊂ N4

1 , N
2
2 ⊂ N4

2 and
N2

I ⊂ N4
I , I ∈ A(≺). For eachp ∈ P define the following sets:

Dp := (
⋂
I

p∈I

Int(N2
I \ N4

2)) ∩ (
⋂
I

p/∈I

Int(N2
1 \ N4

I ))

and

Ep := { x ∈ N2
1 | there existsa t�0 such thatx�[0, t] ⊂ N2

1 and x�t ∈ Dp }.

For each I ∈ A(≺), defineN(I) := N2
1 \ ⋃

p∈P \I Ep. Then (N(I))I∈A(≺) is an index

filtration for (�, S, (Mp)p∈P ). Moreover, N2
2 ⊂ N(∅) andN2

I ⊂ N(I) for all I ∈ A(≺).

Proof. For N2
1 = N4

1 , N2
2 = N4

2 and N2
I = N4

I , I ∈ A(≺), this is just Theorem 3.5
in [10], whose proof carries over almost verbatim to the present, more general case.
Details are left to the reader.�
Let N be a strongly�-admissible index filtration for(�, S, (Mp)p∈P ). For J ∈ I(≺)

the setM(J) is an isolated invariant set and we writeH(J ) = H(�, J ) := H(�,M(J )).
If (I, J ) ∈ I2(≺), then(M(I),M(J )) is an attractor–repeller filtration inM(IJ ), where
IJ := I ∪ J . Hence there is the corresponding homology index sequence

��Hq(I)
iI,J

��Hq(IJ )
pI,J

��Hq(J )
�I,J

��Hq−1(I ) ��

of (�,M(IJ ),M(I),M(J )). Using the filtrationN one proves that for every triple
(I, J,K) ∈ I3(≺) the following diagram, made up of the four homology index



M.C. Carbinatto, K.P. Rybakowski / J. Differential Equations 207 (2004) 458–488 465

sequences defined by(I, J,K), commutes:

The collection of all the homology indicesH(�,M(J )), J ∈ I(≺), and all the
maps iI,J , pI,J and �I,J , (I, J ) ∈ I2(≺), is called the homology index braid of
(�, S, (Mp)p∈P ) and is denoted byH(�, S, (Mp)p∈P ).
For the rest of this section assume that, fori = 1, 2, �i is a local semiflow on the

metric spaceXi , Si is an isolated invariant set and(Mp,i)p∈P is a ≺-ordered Morse
decomposition ofSi , relative to�i . Write Mi(I) = M�i ,Si

(I ), Hi(I) = H(�i ,Mi(I ))

andHi := H(�i , Si, (Mp,i)p∈P ), for i = 1, 2 andI ∈ I(≺).
Suppose� := (�(J ))J∈I(≺) is a family �(J ):H1(J ) → H2(J ), J ∈ I(≺), of maps

such that, for all(I, J ) ∈ I2(≺), the diagram

(2.1)

commutes. Then we say that� is amorphism fromH1 to H2 and we write�:H1 → H2.
If each �(J ) is an isomorphism, then we say that� is an isomorphismand thatH1
andH2 are isomorphichomology index braids.

Remark 2.11. If H1 andH2 are isomorphic homology index braids, then, by Propo-
sition 1.5 in[9], H1 andH2 determine the same collection of connection matrices and
the same collection ofC-connection matrices.

We will now introduce an important class of morphisms between homology in-
dex braids. LetNi = (Ni(I ))I∈A(≺) be a strongly�i-admissible index filtration for
(�i , Si, (Mp,i)p∈P ), i = 1, 2. Assume thenestingproperty

N1(I ) ⊂ N2(I ), I ∈ A(≺).
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For J ∈ I(≺) chooseI, K ∈ A(≺) with (I, J ) ∈ I2(≺) andK = IJ . Then, for i = 1,
2, (Ni(K),Ni(I )) is an FM-index pair forMi(J ), relative to�i . The inclusion induced
map fromN1(K)/N1(I ) to N2(K)/N2(I ) induces a homomorphism

�(J ) = �N1,N2(J ):H(�1,M1(J )) → H(�2,M2(J )).

Of course, this homomorphism depends on the choice ofNi , i = 1, 2, but we claim
that it is independent of the choice ofI and K. In fact, if I ′ and K ′ ∈ A(≺) are
such that(I ′, J ) ∈ I2(≺) andK ′ = I ′J then property (2) of index filtrations implies
that Ni(K) \ Ni(I ) = Ni(K

′) \ Ni(I
′), i = 1, 2, so there is an inclusion induced,

commutative diagram of pointed spaces

This proves the claim in view of the identifications made in the definition of the
homology Conley index. We write

�N1,N2 = (�N1,N2(J ))J∈I(≺).

We also claim that�N1,N2:H1 → H2. In fact, let(I, J ) ∈ I2(≺) and letB be the set of
all p ∈ P \(IJ ) for which there is ap′ ∈ IJ with p ≺ p′. It follows thatB, BI, BIJ ∈
A(≺). Setting, for i = 1, 2, N1,i = Ni(BIJ ), N2,i = Ni(BI) andN3,i = Ni(B) we
see that(N1,i , N2,i , N3,i ) is an FM-index triple for(�i ,Mi(IJ ),Mi(I ),Mi(J )). Thus
the inclusion induced commutative diagram

implies the commutativity of diagram (2.1). This proves our second claim.
We call � := (�(J ))J∈I(≺) the inclusion induced morphism fromH1 to H2.
We now obtain the following result:

Proposition 2.12. For i = 1, 2 let Ni = (Ni(I ))I∈A(≺) and Ñi = (Ñi(I ))I∈A(≺)

be strongly�i-admissible index filtrations for(�i , Si, (Mp,i)p∈P ). Assume the nesting
property

N1(I ) ⊂ N2(I ) ⊂ Ñ1(I ) ⊂ Ñ2(I ), I ∈ A(≺). (2.2)

Then the inclusion induced morphism�N1,N2 is an isomorphism.
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Proof. Let J ∈ I(≺) be arbitrary, a := �N1,N2(J ), b := �N2,Ñ1
(J ) and c :=

�Ñ1,Ñ2
(J ). Then b ◦ a and c ◦ b are isomorphisms, being induced by maps lying

in the same connected simple system (the categorial Morse index of(�1,M1(J )) and
(�2,M2(J )), respectively). It follows thata, b andc are isomorphisms. This proves the
proposition. �

3. Continuation of homology index braids

Let �n, n ∈ N0, be local semiflows on the metric spaceX. We say that the sequence
(�n)n∈N converges�0 and we write�n → �0 if wheneverxn → x0 in X, tn → t0
in [0,∞[ and x0�0t0 is defined, thenxn�ntn is defined for alln large enough and
xn�ntn → x0�0t0 in X.
Given Y ⊂ X we say thatY is (�n)n-admissibleif Y is closed and whenever(xn)n

and (tn)n are such thattn → ∞, xn�ntn is defined andxn�n [0, tn] ⊂ Y for all n ∈ N,
then the sequence(xn�ntn)n has a convergent subsequence.
The following continuation result for Morse decompositions was established

in [3].

Theorem 3.1 (cf. Carbinatto and Rybakowski [3, Corollaries 3.5 and 3.6]). Let�n,
wheren ∈ N0, be local semiflows on X and̃N be a closed subset of X which is strongly
�n-admissible for everyn ∈ N0. Moreover, assume that

(A) �n → �0 and Ñ is (�nm)m-admissible for every subsequence(�nm)m of (�n)n.

Suppose thatS0 := Inv�0(Ñ) ⊂ Int(Ñ) and (Mp,0)p∈P is a ≺-ordered Morse decom-
position ofS0 relative to �0. For eachp ∈ P , let �p ⊂ Ñ be closed in X and such
that Mp,0 = Inv�0(�p) ⊂ Int(�p). (Such sets�p, p ∈ P , always exist.) For n ∈ N

and p ∈ P set Sn := Inv�n(Ñ) andMp,n := Inv�n(�p). Then there is ann ∈ N such
that whenevern�n and p ∈ P then Sn ⊂ Int(Ñ), Mp,n ⊂ Int(�p) and the family
(Mp,n)p∈P is a ≺-ordered Morse decomposition ofSn relative to �n.

Remark 3.2. It follows from [3, Theorem 3.3 and the proof of Corollary 3.5]that
Theorem3.1 remains valid if we replace assumption(A) by the following weaker
assumption:

(B) Whenever(nm)m is a sequence inN with nm → ∞ and, for everym ∈ N, um is
a full solution of �nm lying in Ñ , then there is a subsequence(umk

)k of (um)m
and a full solutionu0 of �0 such thatumk

(t) → u0(t) as k → ∞, uniformly for t
lying in compact subset ofR.

However, we require the stronger assumption(A) in Theorem3.4 below.

The setsSn andMp,n are asymptotically independent of the choice ofÑ and�p, p ∈
P , in the sense that, given other setsÑ ′ and�′

p, p ∈ P satisfying the same properties as

Ñ and�p, then, forn large enough, Inv�n(Ñ) = Inv�n(Ñ
′) and Inv�n(�p) = Inv�n(�

′
p),

p ∈ P . This follows from the following result (cf.[2, Proposition 2.17]).
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Proposition 3.3. Suppose�n → �0 andY1, Y2 are two (not necessarily distinct) closed
sets which are strongly�n-admissible for everyn ∈ N0 and (�nm)m-admissible for every
subsequence(�nm)m of (�n)n. Suppose thatInv�0(Y1) = Inv�0(Y2) ⊂ Int(Y1) ∩ Int(Y2)
(resp. suppose thatInv�0(Y1) = ∅). Then there is ann0 ∈ N such that, for all n�n0,
Inv�n(Y1) = Inv�n(Y2) ⊂ Int(Y1) ∩ Int(Y2) (resp. Inv�n(Y1) = ∅).
We will tacitly use this result in the sequel.
We can now state the main result of this paper, thenested index filtration theorem.

Theorem 3.4. Assume the hypotheses(and thus also the conclusions) of Theorem3.1
and letn be as in that theorem. Then there is ann1�n such that for everyn ∈ N0 with
n = 0 or n�n1 there exist strongly�n-admissible index filtrationsNn = (Nn(I ))I∈A(≺)

and Ñn = (Ñn(I ))I∈A(≺) for (�n, Sn, (Mp,n)p∈P ) such that the followingnesting prop-
erty holds:

Nn(I) ⊂ N0(I ) ⊂ Ñn(I ) ⊂ Ñ0(I ) for all n�n1 and I ∈ A(≺). (3.1)

Theorem3.4, Proposition2.12 and Remark2.11 immediately imply the following
continuation result for homology index braids and connection matrices.

Theorem 3.5. Under the hypotheses of Theorem3.4 the homology index braidsH(�0,
S0, (Mp,0)p∈P ) and H(�n, Sn, (Mp,n)p∈P ), n�n1, are isomorphic and determine the
same collection of connection matrices and the same collection of C-connection matri-
ces.

Let us make the following definition.

Definition 3.6. Let 	 be a metric space. A family(�
, S
, (Mp,
)p∈P )
∈	 is called
S-continuousif for every 
0 ∈ 	 there is a neighborhoodW
0 of 
0 in 	 and there are
closed subsetsN
0, �p,
0 ⊂ N
0, p ∈ P , of X such that for every
 ∈ W
0, �
 is a local
semiflow onX, S
 is a (compact)�
-invariant set,(Mp,
)p∈P is a Morse decomposition
of S
, relative to�
, N
0 is a strongly�
-admissible isolating neighborhood ofS
 and,
for p ∈ P , �p,
0 is an isolating neighborhood ofMp,
, relative to �
. Moreover,
whenever
n → 
0 in W
0 then �
n

→ �
0 andN
0 is (�
n
)n-admissible.

We can now state our secondcontinuation result for homology index braids and
connection matrices.

Theorem 3.7. Let	 be a metric space and(�
, S
, (Mp,
)p∈P )
∈	 be anS-continuous
family. Then for every
 ∈ 	 the homology index braid

H
 := H(�
, S
, (Mp,
)p∈P )

is defined and for every
0 ∈ 	 there is a neighborhood W of
0 in 	 such thatH

is isomorphic toH
0 for every
 ∈ W . In particular, if 	 is connected, thenH
1 and
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H
2 are isomorphic for all
1, 
2 ∈ 	 and determine the same collection of connection
matrices and the same collection of C-connection matrices.

Proof. A simple application of Theorem3.4 shows thatH
0 is defined for every

0 ∈ 	. Thus, if the second assertion is not true then there is a
0 ∈ 	 and a
sequence(
n)n with 
n → 
0 and for all n ∈ N, H
n

is not isomorphic toH
0.
It is clear that all assumptions of Theorem3.5 are satisfied with(�n, Sn, (Mp,n)p) :=
(�
n

, S
n
, (Mp,
n

)p∈P ), n ∈ N0, Ñ := N
0 and�p := �p,
0, p ∈ P . Thus, by Theorem
3.5, there is ann1 such thatH
0 is isomorphic toH
n

, for all n�n1, a contradiction
which proves the second assertion of the theorem. The last assertion now follows
immediately. �

Remark. Both Definition3.6 and Theorem3.7 can be generalized to topological spaces
	 satisfying the first countability axiom, because that is all we use in the proof of
Theorem3.7.
Theorems3.5 and 3.7 refine the corresponding homotopy invariance results for the

(infinite dimensional) Conley index established in[20] (or [22]). The convergence and
admissibility assumptions make these results applicable to various classes of parame-
ter dependent evolution equations (e.g. parabolic or damped hyperbolic equations on
bounded domains and even some parabolic equations on unbounded domains, see the
recent paper[17]).
We will not discuss applications in this paper, reserving them for a subsequent

publication. However, we will show that in certain cases homology index braids (and
connection matrices) of infinite-dimensional semiflows can be computed by restricting
to their finite-dimensional Galerkin approximations.
For the rest of this section letX be a real Hilbert space andA:D(A) ⊂ X → X

be a positive selfadjoint operator with compact resolvent. Let(��)�∈N be a com-
plete X-orthonormal basis ofX consisting of eigenfunctions ofA. Let Pn:X → X be
the orthogonal projection ofX onto the subspace spanned by the firstn eigenfunc-
tions. Moreover, setQn := I − Pn where I is the identity map onX. Note that
A is sectorial onX and so it generates a family(X�)�∈[0,∞[ of fractional power
spaces. Given� ∈ [0,1[ and a locally Lipschitzian mapg:X� → X we denote
by �g the local semiflow onX� generated by the abstract parabolic equation
(see[11])

u̇ = −Au + g(u), u ∈ X�.

The following result has been proved in[23] (see[23, Theorem 4.3, Proposition 4.4]).

Proposition 3.8. Let f :X� → X be Lipschitzian on bounded subsets ofX�. For n ∈ N

and  ∈ [0,1] let fn,:X� → X be defined by

fn,(u) = (1− )f (u) + Pnf (Pnu), u ∈ X�.
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Let N ⊂ X� be bounded and closed. Furthermore, let (nm)m be a sequence inN with
nm → ∞ and (m)m be an arbitrary sequence in[0,1]. For everym ∈ N let um be a
full solution of�fnm,m

lying in N. Then there is a sequence(mk)k with mk → ∞ and
there is a full solution u of�f lying in N such thatumk

(t) → u(t) in X�, uniformly
for t lying in compact subsets ofR.

Corollary 3.9. Let f :X� → X and fn,, n ∈ N,  ∈ [0,1], be as in Proposition3.8.
Let N be bounded and closed inX� with S := Inv�f

(N) ⊂ IntX�(N). Moreover, let
(Mp)p∈P be a≺-ordered Morse decomposition of S, relative to �f . For eachp ∈ P

let �p ⊂ N be closed inX� such thatMp = Inv�f
(�p) ⊂ IntX�(�p). For n ∈ N,

 ∈ [0,1] and p ∈ P define Sn, = Inv�fn,
(N) and Mp,n, = Inv�fn,

(�p). Then
there is ann0 ∈ N so that whenevern�n0 and  ∈ [0,1], then Sn, ⊂ IntX�(N),
Mp,n, ⊂ IntX�(�p), p ∈ P , and the family(Mp,n,)p∈P is a Morse decomposition of
Sn,, relative to �fn, .

Proof. It is well known (cf. [22]) thatN is strongly�fn, -admissible for alln ∈ N and
 ∈ [0,1]. Now the proof is completed by a contradiction argument, using Proposition
3.8, Remark3.2 and Theorem3.1 with assumption(A) replaced by assumption(B).
Note that, for sequencesnm → ∞ and m in [0,1] we do not, in general, have that
fnm,m(u) → f (u) in X locally uniformly in u ∈ X�, so that we cannot assert that
�fnm,m

→ �f . This is the reason for having to use the weaker assumption(B). �

Corollary 3.10. Let n0 be as in Corollary3.9. Then for n�n0 and  ∈ [0,1] the
homology index braid of(�fn, , Sn,, (Mp,n,)p∈P ) is isomorphic to the homology index
braid of (�f , S, (Mp)p∈P ).

Proof. Let n�n0 be arbitrary. Ifk →  in [0,1] thenfn,k (u) → fn,(u) in X, locally
uniformly in u ∈ X�. This implies, by results in[22], that �fn,k

→ �fn, . Results in
[22] also imply thatN is (�fn,k

)k-admissible. Now Corollary3.9 and Theorem3.7
complete the proof. �

Given n ∈ N and f as in Proposition3.8 we may consider the local semiflow
�′
n = �′

f,n generated on the finite-dimensional spaceYn := Pn(X
�) = Pn(X) by the

ordinary differential equation

u̇ = −Au + Pnf (Pnu), u ∈ Yn. (3.2)

The local semiflow�′
n is the n-Galerkin approximation of�f .

Moreover, let�′′
n = �′′

f,n be the semiflow generated onZn := Qn(X
�) by the evolution

equation

u̇ = −Au, u ∈ Zn. (3.3)

If fn := fn,1 = Pn ◦ f ◦ Pn then, by Proposition 4.2 in[23] and its proof, the space
Yn is positively invariant relative to the local semiflow�fn and every bounded�fn -
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invariant set is included inYn and is�′
n-invariant. Moreover, every�

′
n-invariant set is

�fn -invariant. Setting

Sn := Sn,1 and Mp,n := Mp,n,1, p ∈ P,

we thus see that, whenevern�n0, thenSn is a compact�′
n-invariant set and(Mp,n)p∈P

is a Morse decomposition ofSn, relative to�′
n. Moreover,

M�fn ,Sn(I ) = M�′
n,Sn

(I ) =: Mn(I), I ∈ I(≺).

Choose an arbitrary strongly�′
n-admissible index filtrationN′

n = (N ′
n(I ))I∈A(≺) for

(�′
n, Sn, (Mp,n)p∈P ). (Strong �′

n-admissibility means, in this finite-dimensional case,
simply thatN ′(P ) is bounded inYn.) Let B = Bn be the closed unit ball inZn. Since
|u�′′

nt |Zn �e−�nt |u|Zn for some�n ∈ ]0,∞[ and all u ∈ Zn and t ∈ [0,∞[ it follows
that, relative to�′′

n, B is an isolating block for{0} with empty exit set, so in particular,
B is positively invariant.
We defineNn(I) := N ′

n(I ) + B ∼= N ′
n(I ) × B, I ∈ A(≺). It is now a simple

exercise to show thatNn = (Nn(I ))I∈A(≺) is a strongly�fn -admissible index filtration
for (�fn, Sn, (Mp,n)p∈P ). SinceN ′

n(I ) ⊂ Nn(I) for I ∈ A(≺) there is an inclusion
induced morphism�N′

n,Nn
= (�N′

n,Nn
(J ))J∈I(≺) from the homology index braidH′

n

of (�′
n, Sn, (Mp,n)p∈P ) to the homology index braidHn of (�fn, Sn, (Mp,n)p∈P ). We

claim that�N′
n,Nn

is an isomorphism. In fact, letJ ∈ I(≺) be arbitrary. ChooseI, K ∈
A(≺) with (I, J ) ∈ I2(≺) and K = IJ . Let �:N ′

n(K)/N ′
n(I ) → Nn(K)/Nn(I) be

inclusion induced and�:Nn(K)/Nn(I) → N ′
n(K)/N ′

n(I ) be induced by the canonical
projectiony + z �→ y of X� = Yn ⊕ Zn onto Yn. It follows that � ◦ � is the identity
on N ′

n(K)/N ′
n(I ) while � ◦ � is homotopic to the identity onNn(K)/Nn(I) via the

homotopyNn(K)/Nn(I) × [0,1] → Nn(K)/Nn(I) induced by the homotopyX� ×
[0,1] → X�, (y + z, ) �→ y + (1− )z. The homotopy axiom for singular homology
now implies that the map

�N′
n,Nn

(J ):H(�′
n,Mn(J )) → H(�fn,Mn(J ))

(which is induced by�) is an isomorphism. Using Corollary3.10we have now estab-
lished the following result:

Theorem 3.11. If n0 is as in Corollary 3.10, then, for n�n0, the homology index
braids of (�f , S, (Mp)p∈P ) and (�′

n, Sn, (Mp,n)p∈P ) are isomorphic so they share the
same connection matrices and the same C-connection matrices.

4. Sequences of index filtrations

The rest of this paper is devoted to the proof of Theorem3.4. Therefore, for the rest
of the paper, assume the hypotheses of Theorem3.1 and letn be as in that theorem.
For I ∈ I(≺) and n ∈ N0 let Mn(I) := M�n,Sn(I ).
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If S0 = ∅, then, by Proposition3.3, Sn = ∅ for all n large enough, so we may
chooseNn(I) := Ñn(I ) := ∅, I ∈ A(≺), n ∈ N0. Hence Theorem3.4 holds in this
case.
Therefore we may assume thatS0 �= ∅. Consequently, using Proposition3.3 and

taking the sets̃N and �p, p ∈ P , smaller and the numbern larger, if necessary, we
may assume from now on that̃N is an isolating block relative to�0. (cf. [20] or [22].)
Let Ũ = Int(Ñ).
In this section, starting with sequences of FM-index triples satisfying certain inclusion

conditions, we will construct index filtrations with an asymptotic nesting property. This
will be the crucial abstract step in the proof of Theorem3.4.

Theorem 4.1. Let Ni
1, Ni

2, Ni
I , i = 2, 4, I ∈ A(≺) be sets such that, for each I ∈

A(≺), (Ni
1, N

i
I , N

i
2) is an FM-index triple for (�0, S0,M0(I ),M0(P \ I )), i = 2,

4. Moreover let n0�n and for eachn�n0, let N1,n, N2,n, NI,n, I ∈ A(≺), be
sets such that, for each I ∈ A(≺), (N1,n, NI,n, N2,n) is an FM-index triple for
(�n, Sn,Mn(I),Mn(P \ I )). For eachp ∈ P and n�n0 define the following sets:

Dp,n := (
⋂
I

p∈I

Int(NI,n \ N2,n)) ∩ (
⋂
I

p/∈I

Int(N1,n \ NI,n)),

Dp,0 := (
⋂
I

p∈I

Int(N2
I \ N4

2)) ∩ (
⋂
I

p/∈I

Int(N2
1 \ N4

I )),

Ep,n := { x ∈ N1,n | there isa t�0 such thatx�n[0, t]
⊂ N1,n and x�nt ∈ Dp,n }

and
Ep,0 := { x ∈ N2

1 | there existsa t�0 such thatx�0[0, t]
⊂ N2

1 and x�0t ∈ Dp,0 }.

Suppose that there are open setsV1 and VI,i , i = 3, 4, I ∈ A(≺), such that for all
n�n0 and I ∈ A(≺) the following inclusions hold:

N2
1 ⊂ Ũ , N2

1 ⊂ V1 ⊂ N1,n ⊂ N4
1 , N2

2 ⊂ N4
2 , N2

I ⊂ N4
I

Cl(N2
I \ N4

2) ⊂ VI,3 ⊂ Int(NI,n \ N2,n)

Cl(N2
1 \ N4

I ) ⊂ VI,4 ⊂ Int(N1,n \ NI,n).

For eachI ∈ A(≺) define

N0(I ) := N2
1 \

⋃
p∈P \I

Ep,0,
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Nn(I) := N1,n \
⋃

p∈P \I
Ep,n, n�n0.

Then(Nn(I ))I∈A(≺) is an index filtration for(�n, Sn, (Mp,n)p∈P ), for all n ∈ N0 with
n = 0 or n�n0. Moreover,

N2
2 ⊂ N0(I ), N2

I ⊂ N0(∅), I ∈ A(≺) (4.1)

and
N2,n ⊂ Nn(∅) and NI,n ⊂ Nn(I), n�n0, I ∈ A(≺). (4.2)

Furthermore, wheneverI ∈ A(≺), (nm)m is a sequence such thatnm → ∞ asm → ∞
and (xm)m is a sequence inN2

1 such thatxm ∈ Nnm(I) for all m ∈ N and (xm)m is
convergent(in X), then there exists anm0 ∈ N such thatxm ∈ N0(I ) for all m�m0.

Proof. Theorem2.10 immediately implies that(N0(I ))I∈A(≺) is an index filtration for
(�0, S0, (Mp,0)p∈P ) satisfying (4.1). Moreover, the same theorem withNi

j = Nj,n and

Ni
I = NI,n for i = 2, 4 andj = 1, 2 implies that for alln�n0, (Nn(I ))I∈A(≺) is an

index filtration for (�n, Sn, (Mp,n)p∈P ) satisfying (4.2).
Suppose the second part of the theorem does not hold. Then there exist aJ ∈ A(≺),

a sequence(nm)m with nm → ∞ asm → ∞ and a sequence(xm)m in N2
1 such that

xm → x asm → ∞, for somex ∈ X, and xm ∈ Nnm(J ) \ N0(J ) for all m ∈ N. The
definition of the setsNn(J ) andN0(J ) imply that for allm ∈ N,

xm ∈ N1,nm \
⋃

p∈P \J
Ep,nm and xm /∈ N2

1 \ ⋃
p∈P \J

Ep,0.

Sincexm ∈ N2
1 for all m ∈ N, it follows that for allm ∈ N, xm ∈ ⋃

p∈P \J Ep,0. Thus,
taking further subsequences if necessary, we may assume that there exists aq ∈ P \ J

such that for allm ∈ N, xm ∈ Eq,0. So, for eachm ∈ N, there exists atm�0 such
that xm�0[0, tm] ⊂ N2

1 and xm�0tm ∈ Dq,0.
We claim that for allp ∈ P , there exists an open set̃Vp such that for alln�n0,

Cl(Dp,0) ⊂ Ṽp ⊂ Dp,n. In fact, fix p ∈ P and n�n0. It follows that

Cl(Dp,0) ⊂
( ⋂

I
p∈I

Cl(N2
I \ N4

2)
)

∩
( ⋂

I
p/∈I

Cl(N2
1 \ N4

I )
)

⊂ Ṽp :=
( ⋂

I
p∈I

VI,3

)
∩

( ⋂
I

p/∈I

VI,4

)

⊂
( ⋂

I
p∈I

Int(NI,n \ N2,n)
)

∩
( ⋂

I
p/∈I

Int(N1,n \ NI,n)
)

= Dp,n.

To complete the proof we will consider two cases.
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Case1: Suppose that(tm)m is a bounded sequence. We can assume, taking subse-
quences if necessary, that there exists at ∈ [0,∞[ such thattm → t asm → ∞. Since
N2
1 ⊂ Ũ ⊂ Ñ , it follows that �0 does not explode inN2

1 and sox�0[0, t] ⊂ N2
1 ⊂ V1.

Recall that�n → �0 as n → ∞ and nm → ∞ as m → ∞. Hence, there exists an
m0 ∈ N such thatxm�nm [0, tm] ⊂ V1 ⊂ N1,nm for all m�m0.
Moreover, we havex�0t ∈ Cl(Dq,0) ⊂ Ṽq and so there exists anm1�m0 such that

xm�nmtm ∈ Ṽq ⊂ Dq,nm for all m�m1. Therefore,xm ∈ Eq,nm for all m�m1. Since
q ∈ P \ J , we have a contradiction to our choice of the sequence(xm)m.
Case 2: Suppose that(tm)m is an unbounded sequence. We can assume, taking

subsequences if necessary, thattm → ∞ asm → ∞. Hencex�0 [0,∞[ ⊂ N2
1 .

Note that ifm ∈ N and 0� t� tm, sincexm�0[0, tm] ⊂ N2
1 and xm�0tm ∈ Dq,0, it

follows that (xm�0t)�0[0, tm − t] ⊂ N2
1 and (xm�0t)�0(tm − t) ∈ Dq,0. In other words,

xm�0t ∈ Eq,0. Thus, for everyt ∈ [0,∞[ and for allm�mt , for somemt ∈ N, we
havexm�0t ∈ Eq,0. SinceEq,0 ⊂ X \ N0(J ), we conclude that

x�0t ∈ Cl(Eq,0) ⊂ X \ Int(N0(J )) for all t�0. (4.3)

Let (sk)k be a sequence of positive numbers such thatsk → ∞ as k → ∞. By
admissibility, there exist a subsequence of(x�0sk)k which will be denoted again by
(x�0sk)k and a y ∈ S0 such thatx�0sk → y as k → ∞. Formula (4.3) implies
that y�0 [0,∞[ ⊂ X \ Int(N0(J )). The properties of Morse decompositions imply that
the �-limit set �(y) of y relative to �0 is included inMr,0, for somer ∈ P . Since
Mr,0 ⊂ M0(J ) ⊂ Int(N0(J )) for all r ∈ J , it follows that r ∈ P \J . SinceMr,0 ⊂ Dr,0
andDr,0 is an open set, we have that there exists at�0 such thaty�0t ∈ Dr,0 and
so, for somek ∈ N, x�0(sk + t) ∈ Dr,0. Hence

xm�nms ∈ Dr,0 ⊂ Dr,nm for all m large enough, (4.4)

where s := sk + t . Moreover,x�0[0, s] ⊂ N2
1 ⊂ V1 and soxm�nm [0, s] ⊂ V1 ⊂ N1,nm

for all m large enough. This, together with (4.4), shows thatxm ∈ Er,nm for all m large
enough, a contradiction asr ∈ P \ J . The theorem is proved.�

5. Index triple constructions

In this section we will prove the existence of FM-index triples (relative to the
approximating semiflows�n) with special properties. We use some arguments from
the proof of existence of isolating blocks from[20] (or [22]). Define the function
F :X → [0,1] by F(x) := min{1,d(x, Inv−

�0(Ñ)) }. Furthermore, let
s+
n := �Ñ,�n

, t+n := �Ũ ,�n
, n ∈ N0

and define the functiong−: Ñ → R by

g−(x) := sup{ �(t)F (x�0t) | t ∈ [0, s+
0 (x)], if s+

0 (x) < ∞ and

t ∈ [0,∞[, if s+
0 (x) = ∞ },
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where�: [0,∞[ → [1,2[ is a monotone increasingC∞-diffeomorphism. Given� > 0
and b > 0, define

B�,b := Cl{ x ∈ Ũ | g−(x) < � and t+0 (x) > b }.

The setsB�,b enjoy the following property.

Lemma 5.1. There exist�0, b ∈ ]0,∞[ such that, for all � ∈ ]0, �0] and b ∈ [
b,∞[

,
B�,b ⊂ Ũ and B�,b is an isolating block forS0 relative to �0 with exit setB−

�,b =
{ x ∈ �B�,b | g−(x)�� and t+0 (x) = b }.

Proof. Suppose there exist sequences(�n)n and (bn)n of positive numbers and(xn)n
such that�n → 0, bn → ∞ andxn ∈ B�n,bn∩(X\Ũ ) for all n ∈ N. Hence, for eachn ∈
N, there exists ayn ∈ Ũ with g−(yn) < �n and t+0 (yn) > bn such that d(xn, yn) < 2−n.
By admissibility, we may assume, taking subsequences if necessary, that there exists
an x0 ∈ S0 such thatyn → x0 and soxn → x0. Therefore,x0 ∈ S0 ∩ (X \ Ũ ) which
is a contradiction to the definition of the open setŨ . Thus, there exist a�0 ∈ ]0,∞[
and ab ∈ ]0,∞[ such thatB�,b ⊂ Ũ for all � ∈ ]0, �0] and b ∈ [

b,∞[
. Moreover,

Inv�0(B�,b) ⊂ Inv�0(Cl(Ũ)) ⊂ Inv�0(Ñ) = S0. On the other hand, ifx ∈ S0, then
x ∈ Ũ , g−(x) = 0 and t+0 (x) = ∞ so x ∈ B�,b. Thus S0 ⊂ Inv�0(B�,b). Therefore,
S0 = Inv�0(B�,b) ⊂ { x ∈ Ũ | g−(x) < � and t+0 (x) > b } ⊂ Int(B�,b). The remaining
assertions follow immediately since the functionsg− and t+0 decrease along solutions
of �0 and g− is upper-semicontinuous whilet+0 is lower-semicontinuous.�

Given �, b ∈ ]0,∞] andG ⊂ X define the sets

B1,�,b,G := B�,b ∩ G, B2,�,b,G := Cl(B�,b \ G). (5.1)

Given any I ∈ A(≺) with M0(P \ I ) �= ∅ let UP \I ⊂ Ñ be an arbitrary open
neighborhood ofM0(P \ I ) with Cl(UP \I ) ∩ M0(I ) = ∅. Let g+

P \I :UP \I → [0,∞[ be
the map given by

g+
P \I (x) := inf { (1+ t)−1G(x�0t) | 0� t < �UP \I ,�0(x) },

whereG(x) := d(x,M0(P \ I ))/(d(x,M0(P \ I )) + d(x,X \ Cl(UP \I ))), x ∈ UP \I .
Choose open setsVP \I andWP \I such thatM0(P \I ) ⊂ VP \I ⊂ Cl(VP \I ) ⊂ WP \I ⊂

Cl(WP \I ) ⊂ UP \I andg+
P \I |Cl(WP \I ) is continuous. This is possible by Proposition I.5.2

in [22].
Now, for arbitraryI ∈ A(≺) and ε ∈ ]0,∞[ define

GP \I,ε :=
{
Cl{ y ∈ VP \I | g+

P \I (y) < ε } if M0(P \ I ) �= ∅,
∅ otherwise
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and set

BP \I,�,b,ε := B1,�,b,GP \I,ε , BI,�,b,ε := B2,�,b,GP \I,ε , I ∈ A(≺), ε ∈ ]0,∞[ .

The next lemma is fundamental for what follows.

Lemma 5.2. Let �0 ∈ ]0,∞[ and b ∈ ]0,∞[ as in Lemma5.1. Then there exist a
� ∈ ]0, �0] and an ε ∈ ]0,∞[ such that for all� ∈ ]0, �], ε ∈ ]0, ε], b ∈ [

b,∞[
and

for all I ∈ A(≺) with M0(P \ I ) �= ∅,

BP \I,�,b,ε = B�,b ∩ GP \I,ε ⊂ VP \I .

Proof. Otherwise, there exist anI ∈ A(≺) with M0(P \ I ) �= ∅, sequences(�n)n and
(εn)n converging to zero, a sequence(bn)n in

[
b,∞[

and (xn)n such that

xn ∈ B�n,bn ∩ GP \I,εn ∩ (X \ VP \I ) for all n ∈ N.

Sincexn ∈ B�n,bn , it follows that g−(xn)��n → 0 asn → ∞. By admissibility, there
exist a subsequence of(xn)n, denoted again by(xn)n, and anx0 ∈ Inv−

�0(Ñ) such that
xn → x0 as n → ∞. The definition of the setGP \I,εn implies thatx0 ∈ Cl(VP \I ) ⊂
Cl(WP \I ). The continuity ofg+

P \I |Cl(WP \I ) implies thatg
+
P \I |Cl(WP \I )(x0) = 0. It follows

from Proposition I.5.2 in[22] that x0 ∈ Inv+
�0(Cl(UP \I )) ⊂ Inv+

�0(Ñ) and sox0 ∈ S0.
Since Cl(UP \I ) ∩ M0(I ) = ∅ and (M0(I ),M0(P \ I )) is an attractor–repeller pair
in S0, relative to �0, we see that the�-limit set �(x0) of x0 relative to �0 is a
subset ofM0(P \ I ). Theorem III.1.4 in[22] implies that x0 ∈ M0(P \ I ) and so
x0 ∈ M0(P \ I ) ∩ (X \ VP \I ) which contradicts our choice of the open setVP \I . The
lemma is proved. �

Let b > 0 be as in Lemma5.1 and � > 0 andε > 0 be as in Lemma5.2.

Corollary 5.3. For all � ∈ ]0, �], ε ∈ ]0, ε], b ∈ [
b,∞[

and for all I ∈ A(≺), the
pair (BP \I,�,b,ε, BI,�,b,ε) is a block pair for (�0, S0,M0(I ),M0(P \ I )).

Proof. This follows from Lemma5.2 and the proof of Theorem III.2.4 in[22]. �

We also have the following result.

Lemma 5.4. Let I ∈ A(≺) and b2, b3, ε2, ε3, � and �2 be positive numbers such that
b�b2 < b3, ε2 < ε3�ε and � < �2��. ThenBI,�,b3,ε3 ⊂ Int(BI,�2,b2,ε2).

Proof. Let I ∈ A(≺) be arbitrary. IfM0(P \ I ) = ∅ then the result is clear. Therefore,
let M0(P \ I ) �= ∅. We claim thatBI,�,b3,ε3 ⊂ Int(B�2,b2) \ GP \I,ε2. Let y ∈ BI,�,b3,ε3
be arbitrary. Then there exists a sequence(xn)n such thatxn ∈ B�,b3 \ GP \I,ε3 for
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all n and xn → y. In particular, y ∈ Ũ and g−(y)�� < �2 and t+0 (y)�b3 > b2.
Thus y ∈ { x ∈ Ũ | g−(y) < �2 and t+0 (y) > b2 } ⊂ Int(B�2,b2). Supposey ∈ GP \I,ε2.
It follows from Lemma 5.2 that y ∈ B�2,b2 ∩ GP \I,ε2 ⊂ VP \I . So y ∈ VP \I and
g+
P \I (y)�ε2 < ε3. Then for all n large enough,xn ∈ VP \I and g+

P \I (xn) < ε3. Thus
xn ∈ GP \I,ε3 for all n large enough which is a contradiction. This proves the claim
and completes the proof.�

We can now state the main result of this section.

Theorem 5.5. Let b be as in Lemma5.1 and � and ε be as in Lemma5.2. Fix positive
numbersb, b2, b3, ε2, ε3 and �2 with b < b2 < b3 < b, ε2 < ε3 < ε and �2 < �. For
all I ∈ A(≺) and all � ∈ ]0, �2], let 	I,� be a closed subset ofX with

M0(I ) ⊂ Int(	I,�) ⊂ 	I,� ⊂ BI,�,b3,ε3

and such that whenever� < �′ then	I,� ⊂ 	I,�′ .
Assume also that wheneverI ∈ A(≺) and (�n)n is a decreasing sequence converging

to zero andxn ∈ 	I,�n
for all n ∈ N, then the sequence(xn)n has a convergent

subsequence.
For � ∈ ]0, �2], n ∈ N and I ∈ A(≺) define the sets

N1,n(�) := B�2,b2 ∩ Cl{ y | there existan x ∈ B�,b3 and a t�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt },

N2,n(�) := N1,n(�) ∩ { y ∈ Ũ | t+n (y)�b }

and

NI,n(�) := [
BI,�2,b2,ε2 ∩ Cl{ y | there existan x ∈ 	I,� and a t�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt }] ∪ N2,n(�).

Under these assumptions there exists a�3 ∈ ]0, �2[ such that for all� ∈ ]0, �3], there
exists an n0(�) ∈ N such that for all n�n0(�) and for all I ∈ A(≺)

the triple (N1,n(�), NI,n(�), N2,n(�)) is an FM-index triple for (�n, Sn,Mn(I),

Mn(P \ I )).

Proof. It is clear that the setsN1,n(�), N2,n(�) andNI,n(�) are closed andN2,n(�) ⊂
NI,n(�) ⊂ N1,n(�). Moreover, using arguments completely analogous to those contained
in the proofs of Lemmas I.12.5 and I.12.6 in[22], we can establish the validity of the
following results.
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Lemma 5.6. There exists a�′ ∈ ]0, �2] such that for all� ∈ ]0, �′], there exists an
n′(�) ∈ N such that for alln�n′(�) the pair (N1,n(�), N2,n(�)) is an FM-index pair
for Sn, relative to �n.

Lemma 5.7. If un → u0 in Ũ then t+n (un) → t+0 (u) as n → ∞.

Now Lemma5.8 below completes the proof of Theorem5.5. �

Lemma 5.8. There exists a�′′ ∈ ]0, �′] such that for all � ∈ ]0, �′′], there exists
an n′′(�) ∈ N, n′′(�)�n′(�), such that for alln�n′′(�) and all I ∈ A(≺) the pair
(NI,n(�), N2,n(�)) is an FM-index pair forMn(I), relative to �n.

Proof. In this proof we will writeBI := BI,�2,b2,ε2 for short.
Using standard arguments together with Proposition3.3 we see that there is a�′′ ∈

]0, �′] such that for all� ∈ ]0, �′′], there exists ann′′(�) ∈ N, n′′(�)�n′(�), so that
for all n�n′′(�) and all I ∈ A(≺), N2,n(�) is NI,n(�)-positively invariant,Mn(I) ⊂
Int(NI,n(�)\N2,n(�)) andMn(I) is the largest�n-invariant set in Cl(NI,n(�)\N2,n(�)).
Now notice that the set

Nc
I,n(�) := BI ∩ Cl{ y | there exist anx ∈ 	I,� and at�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt }

is BI -positively invariant relative to�n. Thus, if N2,n(�) is not an exit ramp for
NI,n(�) (relative to �n) then �BI ∩ NI,n(�) �⊂ N2,n(�). Therefore, the proof of the
lemma will be complete if we show that there exists a�′′′ ∈ ]0, �′′], such that for all
� ∈ ]0, �′′′], there exists ann′′′(�)�n′′(�) such that for alln�n′′′(�) and allI ∈ A(≺),
�BI ∩ NI,n(�) ⊂ N2,n(�). Suppose this is not true. Then there exist anI ∈ A(≺) and
a decreasing sequence(�m)m, with �m < �2 and sequences(nm)m and (ym)m such that
�m → 0, nm → ∞ asm → ∞ and

ym ∈ (�BI ∩ NI,nm(�m)) \ N2,nm(�m), m ∈ N. (5.2)

Hence, ym ∈ N1,nm(�m) and so for eachm ∈ N, t+nm
(ym) > b and there exists a

xm ∈ 	I,�m and a tm�0 such thatxm�nm [0, tm] ⊂ Ũ and d(ym, xm�nmtm) < 1/2m.
Admissibility and the properties of the set	I,�m imply that there exist subsequences
of (xm)m and (tm)m, denoted again by(xm)m and (tm)m, and x0, y0 ∈ X such that
xm → x0 andxm�nmtm → y0 asm → ∞. Sincexm ∈ 	I,�m ⊂ BI,�m,b3,ε3 ⊂ BI,�1,b3,ε3,
with �1 < �2, Lemma5.4 implies

x0 ∈ BI,�1,b3,ε3 ⊂ Int(BI ). (5.3)

We claim thatxm�nm [0, tm] ⊂ BI for all m ∈ N large enough. If our claim is not true,
then, using (5.3) and taking subsequences if necessary, we may assume that for each
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m ∈ N, there exists am� tm such that

xm�nm [0, m] ⊂ BI and xm�nmm ∈ �BI . (5.4)

Let b′ ∈ ]b2, b[. Since ym → y0 as m → ∞ Lemma 5.7 implies t+0 (y0)�b > b′.
Hence, again by Lemma5.7, t+nm

(xm�nmtm) > b′ for m large enough.
Suppose thatm → 0 asm → ∞. Since �n → �0, it follows that xm�nmm →

x0 as m → ∞. Formulas (5.3) and (5.4) imply that x0 ∈ Int(BI ) ∩ �BI which is a
contradiction. Hence, we may assume, taking subsequence if necessary, that there exists
an r > 0 such thatm > r for all m large enough.
Define zm := xm�nm(m − r), m ∈ N. Without loss of generality, we may assume

that there exists az0 ∈ X such thatzm → z0 asm → ∞. Note that, for allm ∈ N,
zm�nm [0, r] = xm�nm [m − r, m] ⊂ BI and soz0�0[0, r] ⊂ BI . Since, zm�nmr =
xm�nmm for all m ∈ N and �n → �0, it follows from (5.4) that z0�0r ∈ �BI . Since
z0�0[0, r] ⊂ BI and z0�0r ∈ �BI , it follows that z0�0r /∈ B+

I , where, as usual,B+
I

is the entrance set of the isolating blockBI , relative to�0. Since (BI , BP \I,�2,b2,ε2)
is a block pair for (�0, S0,M0(I ),M0(P \ I )) and soBI ∩ BP \I,�2,b2,ε2 ⊂ B+

I ∩
B−

P \I,�2,b2,ε2, it follows that z0�0r /∈ BP \I,�2,b2,ε2. Hence,z0�0r ∈ �BI \BP \I,�2,b2,ε2 ⊂
�B�2,b2. Since z0�0[0, r] ⊂ BI ⊂ B�2,b2, it follows that z0�0r ∈ B−

�2,b2
. Lemma

5.1 implies that t+0 (z0�0r) = b2. On the other hand, sincem� tm, it follows that
t+nm

(xm�nmm)� t+nm
(xm�nmtm) > b′ for all m large enough and sob2 = t+0 (z0�0r)�b′ >

b2 which is a contradiction. Therefore, our claim holds.
Suppose now thattm → 0 asm → ∞. Since�n → �0, it follows thatxm�nmtm → x0

asm → ∞ and soym → x0 asm → ∞. Formulas (5.2) and (5.3) imply that x0 ∈
Int(BI )∩�BI which is a contradiction. Hence, we may assume that, taking subsequence
if necessary, there exists ans > 0 such thattm > s for all m large enough.
Define wm := xm�nm(tm − s), m ∈ N. Taking subsequence if necessary, we may

assume that there exists aw0 ∈ X such thatwm → w0 as m → ∞. Note that,
for all m ∈ N, wm�nm [0, s] = xm�nm [tm − s, tm] ⊂ BI and sow0�0[0, s] ⊂ BI .
Sincewm�nms ≡ xm�nmtm it follows that w0�0s ∈ �BI . Thus w0�0s /∈ B+

I and so
w0�0s ∈ �BI \ BP \I,�2,b2,ε2 ⊂ �B�2,b2. Sincew0�0[0, s] ⊂ BI ⊂ B�2,b2, it follows that
w0�0s ∈ B−

�2,b2
. Lemma5.1 implies that t+0 (w0�0s) = b2. On the other hand, since

t+nm
(xm�nmtm) > b′ for all m large enough, we haveb2 = t+0 (w0�0s)�b′ > b2 which

is a contradiction. The proof of the lemma is complete.�

We conclude this section with the following result.

Theorem 5.9. Let the numbersb, b, b2, b3, ε, ε2, ε3, �, �2 and the sets	I,�
be as in the hypotheses of Theorem5.5. Let �3 ∈ ]0, �2] be as in the conclusion
of that theorem. Let the numbersb′

1, b′
2 and b′′

1 be such thatb3 < b′
1 < b′

2 <

b < b′′
1. For each � ∈ ]0, �3], let n0(�) ∈ N such that the conclusions of Theo-

rem 5.5 hold for all n�n0(�). Then there exists a�4 ∈ ]0, �3] such that for all
� ∈ ]0, �4], there exists ann1(�)�n0(�) such that for all n�n1(�), the following
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inclusions hold:

B�,b3 ∩ { y ∈ Ũ | t+0 (y)�b′
2 } ⊂ B�,b3 ∩ { y ∈ Ũ | t+n (y)�b }

and

N2,n(�) ⊂ B�2,b2 ∩ { y ∈ Ũ | t+0 (y)�b′′
1 }.

Proof. Suppose the conclusions of the theorem do not hold. Then there exist a de-
creasing sequence(�m)m converging to zero, a sequence(nm)m in N with nm → ∞
and a sequence(ym)m such that

ym ∈ B�m,b3, t+0 (ym)�b′
2 and t+nm

(ym) > b for all m ∈ N (5.5)

or

ym ∈ N2,nm(�m) and t+0 (ym) > b′′
1 for all m ∈ N. (5.6)

By admissibility there exists a subsequence of(ym)m which we denote again by(ym)m
and there is ay0 ∈ Ñ such thatym → y0 as m → ∞. If (5.5) holds, then, for all
m ∈ N large enough,ym ∈ B�m,b3 ⊂ B�3,b3 ⊂ B�2,b2 and soy0 ∈ B�2,b2 ⊂ Ũ . If (5.6)
holds, then, for allm ∈ N, ym ∈ B�2,b2 and so againy0 ∈ Ũ . In both cases Lemma
5.7 and the continuity oft+0 imply that t+nm

(ym) → t+0 (y0) and t+0 (ym) → t+0 (y0) as
m → ∞.
Suppose (5.5) holds. Then we gett+0 (y0)�b′

2 < b� t+0 (y0) which is a contradiction.
If (5.6) holds, the definition of theN2,nm(�m) implies that t+nm

(ym)�b for all m ∈
N and so t+0 (y0)�b < b′′

1� t+0 (y0) which is a contradiction again. The theorem is
proved. �

6. The proof of the nested index filtration theorem

Let b be as in Lemma5.1 and � and ε be as in Lemma5.2. Fix real numbersεi ,
bi , i = 1,…,5, �i , i = 1, 2, b, b′

i , b
′′
i , i = 1, 2 such that

0< ε1 < ε2 < ε3 < ε4 < ε5 < ε, 0< �2 < �1 < � (6.1)

and

b < b1 < b2 < b3 < b4 < b5 < b′
1 < b′

2 < b < b′′
1 < b′′

2. (6.2)

For all � ∈ ]0, �2] and I ∈ A(≺) define	I,� := BI,�,b3,ε3.
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It is immediately checked that the family	I,� of sets satisfies the hypotheses of
Theorem5.5.
For � ∈ ]0, �2], n ∈ N and I ∈ A(≺) define the setsN1,n(�), NI,n(�) andN2,n(�)

as in Theorem5.5 with respect to this choice of the set	I,�. More explicitly,

N1,n(�) := B�2,b2 ∩ Cl{ y | there exist anx ∈ B�,b3 and at�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt },
N2,n(�) := N1,n(�) ∩ { y ∈ Ũ | t+n (y)�b },
NI,n(�) := [

BI,�2,b2,ε2 ∩ Cl{ y | there exist anx ∈ BI,�,b3,ε3 and at�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt }] ∪ N2,n(�).

An application of Theorem5.5 shows that there is a�3 ∈ ]0, �2[ such that for every� ∈
]0, �3], there exists ann0(�) ∈ N such that for alln�n0(�) and for all I ∈ A(≺) the
triple (N1,n(�), NI,n(�), N2,n(�)) is an FM-index triple for(�n, Sn,Mn(I),Mn(P \ I )).
Let �4 ∈ [

0, �3
[
be as in Theorem5.9 and n2 := n1(�4) ∈ N as in the conclusions of

that theorem (again for the above choice of	I,�). Choose�5 with

�5 ∈ ]0, �4[ . (6.3)

For n�n2 and I ∈ A(≺) define the following sets:

N2
1 := B�5,b4, N2

2 := B�5,b4 ∩ { y ∈ Ũ | t+0 (y)�b′
1 },

N4
1 := B�1,b1, N4

2 := B�1,b1 ∩ { y ∈ Ũ | t+0 (y)�b′′
2 },

N1,n := N1,n(�4), N2,n := N2,n(�4),

N2
I := BI,�5,b4,ε4 ∪ N2

2 , N4
I := BI,�1,b1,ε1 ∪ N4

2 , NI,n := NI,n(�4),

V1 := Int(B�4,b3), VI,3 := Int(BI,�4,b3,ε3) ∩ { y ∈ Ũ | t+0 (y) > b′′
1 },

VI,4 := Int(B�4,b3) ∩ (X \ BI,�2,b2,ε2) ∩ { y ∈ Ũ | t+0 (y) > b′′
1 }.

It is clear that for eachI ∈ A(≺) the triple (Ni
1, N

i
I , N

i
2) is an FM-index triple for

(�0, S0,M0(I ),M0(P \ I )), i = 2, 4. Moreover, a lengthy but straightforward check
using Theorem5.9 confirms that for alln�n2 and I ∈ A(≺) the following inclusions
hold:

N2
1 ⊂ Ũ , N2

1 ⊂ V1 ⊂ N1,n ⊂ N4
1 , N2

2 ⊂ N4
2 , N2

I ⊂ N4
I ,

Cl(N2
I \ N4

2) ⊂ VI,3 ⊂ Int(NI,n \ N2,n),

Cl(N2
1 \ N4

I ) ⊂ VI,4 ⊂ Int(N1,n \ NI,n).
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This means that all assumptions of Theorem4.1 are satisfied. That theorem therefore
implies the following result.

Theorem 6.1.With the notation introduced above, there exists ann2 ∈ N such that
for everyn ∈ N0 with n = 0 or n�n2 there exists an index filtration(Nn(I ))I∈A(≺)

for (�n, Sn, (Mp,n)p∈P ) such that for allI ∈ A(≺) the following inclusions hold:

(1) BI,�5,b4,ε4 ∪ N2
2 = N2

I ⊂ N0(I ) ⊂ N2
1 = B�5,b4,

(2) N2
2 ⊂ N0(∅),

(3) NI,n ⊂ Nn(I) ⊂ N1,n,
(4) N2,n ⊂ Nn(∅).
Moreover, wheneverI ∈ A(≺), (nm)m is a sequence such thatnm → ∞ as m → ∞
and (xm)m is a sequence inN2

1 such thatxm ∈ Nnm(I) for all m ∈ N and (xm)m is
convergent(in X), then there exists anm0 ∈ N such thatxm ∈ N0(I ) for all m�m0.

Let n2 and (N0(I ))I∈A(≺) be as in Theorem6.1. For I ∈ A(≺) we will now define
a new familyG̃P \I,ε, ε ∈ ]0,∞[, of closed neighborhoods ofM0(P \ I ) to which the
results of the preceding section, in particular Theorems5.5 and 5.9, can be applied.
Given I ∈ A(≺) with M0(P \ I ) �= ∅ let

ŨP \I := Int(N0(P ) \ N0(I )). (6.4)

ŨP \I is an open neighborhood ofM0(P \ I ) with Cl(ŨP \I ) ∩ M0(I ) = ∅. Let
g̃+
P \I : ŨP \I → [0,∞[ be the map given by

g̃+
P \I (x) := inf { (1+ t)−1G̃(x�0t) | 0� t < �ŨP \I ,�0(x) },

whereG̃(x) := d(x,M0(P \ I ))/(d(x,M0(P \ I )) + d(x,X \ Cl(ŨP \I ))), x ∈ ŨP \I .
Choose open sets̃VP \I andW̃P \I such thatM0(P \I ) ⊂ ṼP \I ⊂ Cl(ṼP \I ) ⊂ W̃P \I ⊂

Cl(W̃P \I ) ⊂ ŨP \I andg+
P \I |Cl(W̃P \I ) is continuous. This is possible by Proposition I.5.2

in [22].
Now, for arbitraryI ∈ A(≺) and ε ∈ ]0,∞[ define

G̃P \I,ε :=
{
Cl{ y ∈ ṼP \I | g̃+

P \I (y) < ε } if M0(P \ I ) �= ∅,
∅ otherwise

and set

B̃P \I,�,b,ε := B1,�,b,G̃P \I,ε , B̃I,�,b,ε := B2,�,b,G̃P \I,ε , I ∈ A(≺), ε ∈ ]0,∞[ .

(cf. (5.1)).
Lemma 5.2, Corollary 5.3 and Lemma5.4 imply that there exist ã�0 ∈ ]0, �5[

(with �5 as in (6.3)) and an ε̃0 ∈ ]0, ε[ such that for all̃� ∈ ]0, �̃0], ε̃ ∈ ]0, ε̃0],
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b ∈ [
b,∞[

and for all I ∈ A(≺), the pair (B̃P \I,�,b,ε, B̃I,�,b,ε) is a block pair for

(�0, S0,M0(I ),M0(P \ I )). Moreover, if 0< ε̃3 < ε̃2� ε̃0, 0 < �̃3 < �̃2� �̃0 and
b̃2 < b̃3�b then B̃

I,̃�3,̃b3,̃ε3
⊂ Int(B̃

I,̃�2,̃b2,̃ε2
). Formula (6.4) implies that

N0(I ) ∩ B�̃,b ⊂ B̃
I,̃�,b,̃ε, �̃ ∈ ]0, �̃0] , ε̃ ∈ ]0, ε̃0] , b ∈ [

b,∞[
, I ∈ A(≺). (6.5)

Therefore, the following lemma is obvious:

Lemma 6.2. Let ε̃3 ∈ ]0, ε̃0[. Then for everỹ� ∈ ]0, �̃0] and I ∈ A(≺) the set
	

I,̃� := N0(I ) ∩ B�̃,b3
is a closed subset of X and

M0(I ) ⊂ Int(	
I,̃�) ⊂ 	

I,̃� ⊂ B̃
I,̃�,b3,̃ε3

.

Whenever̃� < �̃
′
, then 	

I,̃� ⊂ 	
I,̃�

′ . Furthermore, whenever(̃�n)n is a decreasing
sequence converging to zero andxn ∈ 	

I,̃�n
for all n ∈ N, then the sequence(xn)n

has a convergent subsequence.

For �̃ ∈ ]0, �̃2], n ∈ N and I ∈ A(≺) define

Ñ1,n(̃�) := B�̃2,b2
∩ Cl{ y | there exist anx ∈ B�̃,b3

and at�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt },
Ñ2,n(̃�) := Ñ1,n(̃�) ∩ { y ∈ Ũ | t+n (y)�b },
ÑI,n(̃�) :=

[
B̃

I,̃�2,b2,̃ε2
∩ Cl{ y | there exist anx ∈ N0(I ) ∩ B�̃,b3

and at�0 such

that x�n[0, t] ⊂ Ũ and y = x�nt }] ∪ Ñ2,n(̃�).

An application of Theorem5.5 shows that there is ã�3 ∈ ]0, �̃2[ such that for everỹ� ∈
]0, �̃3], there exists añn0(̃�) ∈ N such that for alln� ñ0(̃�) and for all I ∈ A(≺) the
triple (Ñ1,n(̃�), ÑI,n(̃�), Ñ2,n(̃�)) is an FM-index triple for(�n, Sn,Mn(I),Mn(P \ I )).
By Theorem5.9 there exists ã�4 ∈ ]0, �̃3] such that for all̃� ∈ ]0, �̃4], there exists an
ñ1(̃�)� ñ0(̃�) such that for alln� ñ1(̃�), the following inclusions hold:

B�̃,b3
∩ { y ∈ Ũ | t+0 (y)�b′

2 } ⊂ B�̃,b3
∩ { y ∈ Ũ | t+n (y)�b } (6.6)

and

Ñ2,n(̃�) ⊂ B�̃2,b2
∩ { y ∈ Ũ | t+0 (y)�b′′

1 }. (6.7)

Fix positive numbers̃εi , i = 1,…,4, �̃1 and �̃5 such that

0< ε̃1 < ε̃2 < ε̃3 < ε̃4 < ε̃0 and 0< �̃5 < �̃4 < �̃3 < �̃2 < �̃1 < �̃0. (6.8)
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For n�n3 := max{n2, ñ1(̃�4)} Define the following sets:

Ñ2
1 := B�̃5,b5

, Ñ2
2 := B�̃5,b5

∩ { y ∈ Ũ | t+0 (y)�b′
1 },

Ñ4
1 := B�̃1,b1

, Ñ4
2 := B�̃1,b1

∩ { y ∈ Ũ | t+0 (y)�b′′
2 },

Ñ1,n := Ñ1,n(̃�4), Ñ2,n := Ñ2,n(̃�4),

Ñ2
I := B

I,̃�5,b5,ε5
∪ Ñ2

2 , Ñ4
I := B̃

I,̃�1,b1,̃ε1
∪ Ñ4

2 , ÑI,n := ÑI,n(̃�4),

Ṽ1 := Int(B�̃4,b3
), ṼI,3 := Int(B

I,̃�4,b4,ε4
) ∩ { y ∈ Ũ | t+0 (y) > b′′

1 },
ṼI,4 := Int(B�̃4,b3

) ∩ (X \ B̃
I,̃�2,b2,̃ε2

) ∩ { y ∈ Ũ | t+0 (y) > b′′
1 }.

Note that there is no tildẽover the letter ‘B’ in the definitions ofÑ2
I and ṼI,3.

It is clear that for eachI ∈ A(≺) the triple (Ñ i
1, Ñ

i
I , Ñ

i
2) is an FM-index triple for

(�0, S0,M0(I ),M0(P \ I )), i = 2, 4. We claim that for alln�n3 and I ∈ A(≺) the
following inclusions hold:

Ñ2
1 ⊂ Ũ , Ñ2

1 ⊂ Ṽ1 ⊂ Ñ1,n ⊂ Ñ4
1 , Ñ2

2 ⊂ Ñ4
2 , Ñ2

I ⊂ Ñ4
I , (6.9)

Cl(Ñ2
I \ Ñ4

2) ⊂ ṼI,3 ⊂ Int(ÑI,n \ Ñ2,n), (6.10)

Cl(Ñ2
1 \ Ñ4

I ) ⊂ ṼI,4 ⊂ Int(Ñ1,n \ ÑI,n). (6.11)

We prove inclusion (6.10) and leave the other inclusions to the reader. Letn�n3
and I ∈ A(≺) be arbitrary. Notice that̃N2

I \ Ñ4
2 = (B

I,̃�5,b5,ε5
∪ Ñ2

2) \ Ñ4
2 . Clearly,

Ñ2
2 ⊂ Ñ4

2 , and soÑ2
I \ Ñ4

2 ⊂ B
I,̃�5,b5,ε5

\ Ñ4
2 and thusÑ2

I \ Ñ4
2 ⊂ B

I,̃�5,b5,ε5
∩ { y ∈

Ũ | t+0 (y)�b′′
2 } =: T . By Lemma5.4, B

I,̃�5,b5,ε5
⊂ Int(B

I,̃�4,b4,ε4
) so we obtain that

T ⊂ ṼI,3. Since T is closed we only need to show that̃VI,3 ⊂ ÑI,n \ Ñ2,n. The
definition of the setÑI,n implies thatN0(I ) ∩ B�̃4,b3

⊂ ÑI,n ⊂ B�̃2,b2
. Furthermore,

since �̃4 < �5 it follows that Int(B
I,̃�4,b4,ε4

) ⊂ BI,�5,b4,ε4 ⊂ BI,�5,b4,ε4 ∪ N2
2 = N2

I and
Int(B

I,̃�4,b4,ε4
) ⊂ B�̃4,b3

. Therefore, the previous inclusions and Theorem6.1 imply that

ṼI,3 ⊂ (N2
I ∩ B�̃4,b3

) ∩ { y ∈ Ũ | t+0 (y) > b′′
1 } ⊂ (N0(I ) ∩ B�̃4,b3

) ∩ { y ∈ Ũ | t+0 (y) >

b′′
1 } ⊂ ÑI,n ∩ { y ∈ Ũ | t+0 (y) > b′′

1 } ⊂ B�̃2,b2
∩ { y ∈ Ũ | t+0 (y) > b′′

1 } ⊂ X \ Ñ2,n. (The
last inclusion follows from (6.7).) This proves (6.10).
Inclusions (6.9)–(6.11) imply that the assumptions of Theorem4.1 are satisfied. That

theorem therefore implies the following result.

Theorem 6.3.With the notation introduced above, there exists ann3�n2 such that for
everyn ∈ N0 with n = 0 or n�n3 there exists an index filtration(Ñn(I ))I∈A(≺) for
(�n, Sn, (Mp,n)p∈P ) such that for allI ∈ A(≺) the following inclusions hold:

(1) Ñ2
I ⊂ Ñ0(I ) ⊂ Ñ2

1 = B�̃5,b5
,

(2) Ñ2
2 ⊂ Ñ0(∅),
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(3) N0(I ) ∩ B�̃4,b3
⊂ ÑI,n ⊂ Ñn(I ) ⊂ Ñ1,n,

(4) Ñ2,n ⊂ Ñn(∅).
Moreover, wheneverI ∈ A(≺), (nm)m is a sequence such thatnm → ∞ as m → ∞
and (xm)m is a sequence iñN2

1 such thatxm ∈ Ñnm(I ) for all m ∈ N and (xm)m is
convergent(in X), then there exists anm0 ∈ N such thatxm ∈ Ñ0(I ) for all m�m0.

The index filtrations that we have obtained from Theorems6.1 and6.3 do not as yet
form a nested sequence as described in Theorem3.4. However, after intersecting these
index filtrations with appropriate sets and using Proposition2.9 we will now obtain
new index filtrations which do satisfy the nesting property. This will complete the proof
of Theorem3.4.
For � ∈ ]0,∞[ define the sets

Ỹ1,n(�) := B�̃5,b5
∩ Cl{ y | there exist anx ∈ B�,b′

1
and at�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt },
Ỹ2,n(�) := Ỹ1,n(�) ∩ { y ∈ Ũ | t+n (y)�b′

1 }.

Then there exists ã�0 > 0 such that for all� ∈ ]0, �̃0], there exists añn0(�) ∈ N such
that for all n� ñ0(�), Sn ⊂ Int(Ỹ1,n(�)) and the pair(Ỹ1,n(�), Ỹ2,n(�)) is an FM-index
pair for Sn, relative to�n. (cf. Lemma5.6).
Given such ann, we see, using (6.2), (6.8) and Theorem6.3 that Ỹ2,n(�) ⊂ Ñ2,n ⊂

Ñn(∅). Since Ỹ2,n(�) is an exit ramp forỸ1,n(�), relative to�n, it thus follows that
Ñn(∅) is an exit ramp for̃Y1,n(�), relative to�n.
An application of Proposition2.9 now implies the following result.

Lemma 6.4. For every � ∈ ]0, �̃0], and all n� ñ0(�), (Ỹ1,n(�) ∩ Ñn(I ))I∈A(≺) is an
index filtration for (�n, Sn, (Mp,n)p∈P ).

We also have the following

Lemma 6.5. There exists ã�1 ∈ ]0, �̃0] such that for all� ∈ ]0, �̃1], there exists an
ñ1(�)� ñ0(�) such thatỸ1,n(�) ∩ Ñn(I ) ⊂ Ñ0(I ) for all n� ñ1(�) and all I ∈ A(≺).

Proof. Suppose the conclusion of the lemma is not true. Then for someI ∈ A(≺)

there exist sequences(�m)m, (nm)m and (xm)m such that�m → 0, nm → ∞ and

xm ∈ (Ỹ1,nm(�m) ∩ Ñnm(I )) \ Ñ0(I ) for all m.

Notice thatxm ∈ Ỹ1,nm(�m) ⊂ B�̃5,b5
= Ñ2

1 . By admissibility, (xm)m has a convergent
subsequence, denoted again by(xm)m. Theorem6.3 implies that there exists anm0 ∈ N

such thatxm ∈ Ñ0(I ) for all m�m0, which is a contradiction. �
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Define �̃ := min{̃�1, �̃5}. Hence, setting̃n1 := ñ1(̃�) we have the following corollary.

Corollary 6.6. There is ã� ∈ ]0, �̃5] and anñ1 ∈ N such that, for all n� ñ1, (Ỹ1,n(̃�)∩
Ñn(I ))I∈A(≺) is an index filtration for(�n, Sn, (Mp,n)p∈P ) and Ỹ1,n(̃�)∩Ñn(I ) ⊂ Ñ0(I )

for I ∈ A(≺).

We claim that

B−
�̃,b′

1
⊂ N2

2 ⊂ N0(∅). (6.12)

Here, of course,B−
�̃,b′

1
is the exit set of the isolating blockB̃�,b′

1
relative to�0.

In fact, the inequalities̃�� �̃5 < �5 andb5 > b4 and the definition of the set̃Y1,n(̃�)
imply that B̃�,b′

1
⊂ Ỹ1,n(̃�) ⊂ B�̃5,b5

⊂ B�5,b4. Moreover, if x ∈ B−
�̃,b′

1
, then x ∈ Ũ and

t+0 (x) = b′
1. It follows that B−

�̃,b′
1

⊂ B�5,b4 ∩ { y ∈ Ũ | t+0 (x)�b′
1 } = N2

2 . The last

inclusion in (6.12) follows from Theorem6.1. This proves (6.12).
Since B−

�̃,b′
1
is an exit ramp forB̃�,b′

1
, relative to �0, it follows from (6.12) that

N0(∅) is an exit set forB̃�,b′
1
, relative to�0, and sinceS0 ⊂ Int(B̃�,b′

1
), Proposition2.9

implies the following result.

Lemma 6.7. (N0(I ) ∩ B̃�,b′
1
)I∈A(≺) is an index filtration for(�0, S0, (Mp,0)p∈P ).

Sincẽ�� �̃5 < �̃4 andb3 < b′
1, it follows that B̃�,b′

1
⊂ B�̃4,b3

so B̃�,b′
1

= B̃�,b′
1
∩B�̃4,b3

and soN0(I )∩ B̃�,b′
1

= N0(I )∩ (B̃�,b′
1
∩B�̃4,b3

) ⊂ (N0(I )∩B�̃4,b3
)∩ Ỹ1,n(̃�). This fact,

together with Corollary6.6 and Theorem6.3, implies that, settingn′
0 := max{n3, ñ1},

N0(I ) ∩ B̃�,b′
1

⊂ Ỹ1,n(̃�) ∩ Ñn(I ) ⊂ Ñ0(I ), n�n′
0, I ∈ A(≺). (6.13)

Let �′ := min{̃�, �5}. For � ∈ ]0,∞[ define the sets

Y1,n(�) := B�′
,b′
1
∩ Cl{ y | there exist anx ∈ B�,b and at�0 such that

x�n[0, t] ⊂ Ũ and y = x�nt },
Y2,n(�) := Y1,n(�) ∩ { y ∈ Ũ | t+n (y)�b }.

Using arguments which are completely analogous to those leading to Corollary6.6 we
obtain the following:

Corollary 6.8. There is a �1 ∈ ]0,∞[ and an n1 ∈ N such that, for all n�n1,
(Y1,n(�1) ∩ Nn(I))I∈A(≺) is an index filtration for(�n, Sn, (Mp,n)p∈P ) and Y1,n(�1) ∩
Nn(I) ⊂ N0(I ) ∩ B�′

,b′
1
for all I ∈ A(≺).
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Proof of Theorem 3.4.Let n0 := max{n′
0, n1} and n�n0 be arbitrary. DefineN0 :=

(N0(I ) ∩ B̃�,b′
1
)I∈A(≺), Ñ0 := (Ñ0(I ))I∈A(≺), Nn := (Y1,n(�1) ∩ Nn(I))I∈A(≺) and

Ñn := (Ỹ1,n(̃�) ∩ Ñn(I ))I∈A(≺). Lemma6.7 and Corollaries6.6 and 6.8 imply that,
for eachn ∈ N0 with n = 0 or n�n0, Nn and Ñn are index filtrations for(�n, Sn,

(Mp,n)p∈P ). Formula (6.13) and Corollary6.8 imply that

Y1,n(�1) ∩ Nn(I) ⊂ N0(I ) ∩ B̃�,b′
1

⊂ Ỹ1,n(̃�) ∩ Ñn(I ) ⊂ Ñ0(I ), n�n0, I ∈ A(≺),

i.e. the nesting property (3.1) holds. SinceÑ0(P ) ⊂ Ũ it also follows that for each
n ∈ N0 with n = 0 or n�n0, Nn and Ñn are strongly�n-admissible. This completes
the proof of Theorem3.4. �
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