# Nested sequences of index filtrations and continuation of the connection matrix 

Maria C. Carbinatto ${ }^{\text {a, }}$, Krzysztof P. Rybakowski ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Departamento de Matemática, ICMC-USP, Caixa Postal 668, 13.560-970 São Carlos SP, Brazil<br>${ }^{\mathrm{b}}$ Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany

Received 11 November 2003
Available online 5 October 2004


#### Abstract

In this paper, we prove the existence of nested sequences of index filtrations for convergent sequences of (admissible) semiflows on a metric space. This result is new even in the context of flows on a locally compact space. The nested index filtration theorem implies the continuation of homology index braids which, in turn, implies the continuation of connection matrices in the infinite-dimensional Conley index theory. © 2004 Elsevier Inc. All rights reserved.


## 1. Introduction

Morse decompositions (see e.g. $[5,24,22,6]$ ) are a useful tool in the analysis of flows or semiflows defined by ordinary, functional and evolutionary partial differential equations. Combined with an appropriate version of the Conley index and a corresponding Morse equation, they often allow us to obtain multiplicity results for solutions of variational problems (see e.g. [1,12]). Through the use of some more refined topological tools like the Conley connection matrix, Morse decompositions can also be used to detect connections, i.e. heteroclinic orbits in dynamical systems.

[^0]The connection matrix theory for flows defined on locally compact spaces was developed by Franzosa in his thesis [6] and in subsequent papers [7-9]. Important contributions to the theory and applications were made in $[15,18,19]$. (Cf. also the recent volume [16] for various articles on connection and transition matrices and the references contained therein.)

One of the crucial results of Franzosa's theory is the continuation (i.e. homotopy invariance) property for homology index braids and the connection matrices along paths in the parameter space. The importance of this is clear: in order to compute a connection matrix for a complicated flow, one may first try to homotope this flow to a simpler one for which the connection matrix is easier to compute and use the same connection matrix for the original flow. Franzosa's proof of the continuation property heavily relies on continuation results along paths both for the categorial Morse index (established by Conley [5]) and for index triples (established by Kurland [13,14]).

In [10] Franzosa and Mischaikow extended part of the theory of partially ordered Morse decompositions and connection matrices to the setting of Conley index theory (developed in $[20,21]$ ) for admissible local semiflows on (not necessarily locally compact) metric spaces. While those authors establish the existence of index filtrations and connection matrices in this general setting, they do not prove any continuation property.

In previous papers $[1,3]$ we proved some continuation results for Morse decompositions under very general assumptions, applicable to local semiflows and even to equations without the uniqueness property of solutions.

It is the purpose of the present paper to prove a homotopy invariance property for homology index braids (and thus for connection matrices) for parameter-dependent admissible local semiflows on general metric spaces. However, instead of simply extending Franzosa's proof method to the noncompact case (which would require imposing an unnecessarily strong admissibility assumption on the parametrized semiflows) we choose a completely different approach, yielding a stronger result under weaker hypotheses. Our approach is similar in spirit to the proof of the continuation property of the homotopy Conley index given in [20,22]. In those works, for sequences of pairs ( $\pi_{n}, S_{n}$ ) (where $\pi_{n}$ is a local semiflow and $S_{n}$ is an isolated $\pi_{n}$-invariant set) converging to a corresponding limit pair ( $\pi_{0}, S_{0}$ ) one proves, under the usual admissibility assumptions, the existence of nested sequences of index pairs (for large $n \in \mathbb{N}$ )

$$
\left(N_{1, n}, N_{2, n}\right) \subset\left(N_{1,0}, N_{2,0}\right) \subset\left(\tilde{N}_{1, n}, \tilde{N}_{2, n}\right) \subset\left(\tilde{N}_{1,0}, \tilde{N}_{2,0}\right)
$$

This result immediately implies that the inclusion $N_{1, n} / N_{2, n} \rightarrow N_{1,0} / N_{2,0}$ is a homotopy equivalence of pointed spaces and this, in turn, establishes a homotopy invariance property of Conley index not only along paths but also along connected metric parameter spaces. In this paper, we will similarly establish the existence of nested sequences of index filtrations (cf. Theorem 3.4) which immediately imply the homotopy invariance property of homology index braids (cf. Theorem 3.5 and Theorem 3.7) along connected parameter spaces. This gives us continuation results for connection matrices. An advantage of our method is that it can also be adapted to singular perturbation
problems in the setting considered in [2]. This is treated in the subsequent publication [4].

The existence of nested sequences of index filtrations, new even in the locally compact case, is a strong statement which is of interest in its own right. The proof of this very technical result combines the ingenious construction of index filtration from [10] together with various ideas employed in the existence proofs, given in [20,21,24], for isolating blocks, index pairs and block pairs.

This paper is organized as follows. In the next section we recall some basic concepts from Conley index and homology index braid theory and establish some preliminary results. In particular, we state (in Theorem 2.10 below) an extension of an important existence result for index filtrations due to Franzosa-Mischaikow. In Section 3 we state the main results of this paper (Theorems 3.4, 3.5 and 3.7 below) and discuss their applicability. In particular, we show that homology index braids for certain types of parabolic equations are isomorphic to the corresponding homology index braids of their (sufficiently high dimensional) Galerkin approximations.

The last three sections of the paper are devoted to the proof of Theorem 3.4. In Section 4, we use Theorem 2.10 to prove an abstract existence result (Theorem 4.1) for a sequence of index filtrations $\left(\mathcal{N}_{n}\right)_{n \in \mathbb{N}_{0}}$ such that $\mathcal{N}_{n}$ is, in some sense, 'asymptotically' included in $\mathcal{N}_{0}$. In Section 5, we construct sequences of index triples having special properties required for the application of Theorem 4.1 (see Theorems 5.5 and 5.9 below). In Section 6, we make two very specific applications of Theorems 5.5, 5.9 and 4.1 to obtain two sequences of index filtrations which are 'almost' nested. By appropriately modifying these index filtrations (using Proposition 2.9 from Section 2) we finally achieve the full nesting property and thus complete the proof of Theorem 3.4.

Notation: In this paper, $\mathbb{N}$, resp. $\mathbb{N}_{0}$, denotes the set of all positive, resp. nonnegative, integers.

## 2. Preliminaries

The purpose of this section is to recall a few concepts from Conley index theory and to establish some preliminary results needed later in this paper. We assume the reader's familiarity with the (infinite dimensional) Conley index theory, as expounded in [22], and with the papers $[7,10]$.

In this section, unless otherwise specified, $X$ is a metric space, $\pi$ is a local semiflow on $X$ and all concepts are defined relative to $\pi$.

Suppose that $Y$ is a subset of $X$. $\operatorname{By~}^{\operatorname{Inv}}{ }_{\pi}^{+}(Y), \operatorname{resp}^{2} \operatorname{Inv}_{\pi}^{-}(Y), \operatorname{resp} . \operatorname{Inv}_{\pi}(Y)$ we denote the largest positively invariant, resp. negatively invariant, resp. invariant subset of $Y$. Moreover, let the function $\rho_{Y}=\rho_{Y, \pi}: Y \rightarrow \mathbb{R} \cup\{\infty\}$ be given by

$$
\rho_{Y}(x):=\sup \{t \geqslant 0 \mid x \pi t \text { is defined and } x \pi[0, t] \subset Y\} .
$$

$Y$ is called $\pi$-admissible if $Y$ is closed and whenever $\left(x_{n}\right)_{n}$ and $\left(t_{n}\right)_{n}$ are such that $t_{n} \rightarrow$ $\infty$ and $x_{n} \pi\left[0, t_{n}\right] \subset Y$ for all $n \in \mathbb{N}$, then the sequence $\left(x_{n} \pi t_{n}\right)_{n}$ has a convergent subsequence. We say that $\pi$ does not explode in $Y$ if whenever $x \in X$ and $x \pi t \in Y$
as long as $x \pi t$ is defined, then $x \pi t$ is defined for all $t \in[0, \infty[. Y$ is called strongly $\pi$-admissible if $Y$ is $\pi$-admissible and $\pi$ does not explode in $Y$.

Let $N$ and $Y$ be subsets of $X$. The set $Y$ is called $N$-positively invariant if whenever $x \in Y, t \geqslant 0$ are such that $x \pi[0, t] \subset N$, then $x \pi[0, t] \subset Y$.

Let $N, Y_{1}$ and $Y_{2}$ be subsets of $X$. The set $Y_{2}$ is called an exit ramp for $N$ within $Y_{1}$ if whenever $x \in Y_{1}$ and $x \pi t^{\prime} \notin N$ for some $t^{\prime} \in\left[0, \infty\left[\right.\right.$, then there exists a $t_{0} \in\left[0, t^{\prime}\right]$ such that $x \pi\left[0, t_{0}\right] \subset N$ and $x \pi t_{0} \in Y_{2}$.

If $Y_{1}$ and $Y_{2}$ are subsets of $X$ then $Y_{2}$ is called an exit ramp for $Y_{1}$ if $Y_{2}$ is an exit ramp for $N$ within $Y_{1}$, where $N=Y_{1}$.

Definition 2.1. Let $B \subset X$ be a closed set and $x \in \partial B$. The point $x$ is called a strict egress (respectively strict ingress, respectively bounce-off) point of $B$, if for every solution $\sigma:\left[-\delta_{1}, \delta_{2}\right] \rightarrow X$ through $x$, with $\delta_{1} \geqslant 0$ and $\delta_{2}>0$, the following properties hold:
(1) There exists an $\left.\varepsilon_{2} \in\right] 0, \delta_{2}[$ such that $\sigma(t) \notin B$ (respectively $\sigma(t) \in \operatorname{Int} B$, respectively, $\sigma(t) \notin B)$, for $\left.t \in] 0, \varepsilon_{2}\right]$.
(2) If $\delta_{1}>0$, then there exists an $\left.\varepsilon_{1} \in\right] 0, \delta_{1}[$ such that $\sigma(t) \in \operatorname{Int} B$ (respectively $\sigma(t) \notin B$, respectively, $\sigma(t) \notin B)$, for $t \in\left[-\varepsilon_{1}, 0[\right.$.
The set of all strict egress (respectively strict ingress, respectively bounce-off) points of $B$ is denoted by $B^{e}$ (respectively $B^{i}$, respectively $B^{b}$ ). Moreover, we call $B^{-}:=$ $B^{e} \cup B^{b}$ the exit set of $B$ and $B^{+}:=B^{i} \cup B^{b}$ the entrance set of $B . B$ is called an isolating block, if $\partial B=B^{e} \cup B^{i} \cup B^{b}$ and $B^{-}$is closed. If $B$ is also an isolating neighborhood of an invariant set $S$, then we say that $B$ is an isolating block for $S$.

If $B$ is an isolating block then $\left(B, B^{-}\right)$is an example of an index pair in $B$. More generally, we have the following definition.

Definition 2.2. Let $N$ be closed in $X$. A pair ( $N_{1}, N_{2}$ ) is called an index pair in $N$ if:
(1) $N_{1}$ and $N_{2}$ are closed and $N$-positively invariant subsets of $N$;
(2) $N_{2}$ is an exit ramp for $N$ within $N_{1}$;
(3) $\operatorname{Inv}_{\pi}(N)$ is closed and $\operatorname{Inv}_{\pi}(N) \subset \operatorname{Int}\left(N_{1} \backslash N_{2}\right)$.

The next definition introduces a more general concept.
Definition 2.3. A pair $\left(N_{1}, N_{2}\right)$ is called a Franzosa-Mischaikow-index pair (or FMindex pair) for $S$ if:
(1) $N_{1}$ and $N_{2}$ are closed subsets of $X$ with $N_{2} \subset N_{1}$ and $N_{2}$ is $N_{1}$-positively invariant;
(2) $N_{2}$ is an exit ramp for $N_{1}$;
(3) $S$ is closed, $S \subset \operatorname{Int}\left(N_{1} \backslash N_{2}\right)$ and $S$ is the largest invariant set in $\mathrm{Cl}\left(N_{1} \backslash N_{2}\right)$;

Proposition 2.4 (cf. Franzosa and Mischaikow [10]). Let $\left(N_{1}, N_{2}\right)$ be a pair of closed subsets of $X$ with $N_{2} \subset N_{1}$.
(1) If $S$ is an isolated invariant set, $N_{1}$ is an isolating neighborhood of $S$ and $\left(N_{1}, N_{2}\right)$ is an index pair in $N_{1}$, then $\left(N_{1}, N_{2}\right)$ is an FM-index pair for $S$.
(2) If $\left(N_{1}, N_{2}\right)$ is an FM-index pair for $S$ and $N$ is an isolating neighborhood of $S$ with $N_{1} \backslash N_{2} \subset N$, then $N_{1} \cap N$ is an isolating neighborhood of $S$ and $\left(N_{1} \cap N, N_{2} \cap N\right)$ is an index pair in $N_{1} \cap N$.

Proposition 2.5. Let $\left(N_{1}, N_{2}\right)$ be an FM-index pair for $S$. Let $Y$ be a closed set such that $S \subset \operatorname{Int}(Y)$ and such that $N_{2}$ is an exit ramp for $Y$. Then $\left(Y \cap N_{1}, Y \cap N_{2}\right)$ is an FM-index pair for $S$.

Proof. It is clear that $Y \cap N_{1}$ and $Y \cap N_{2}$ are closed. If $x \in Y \cap N_{2}$ and $x \pi[0, t] \subset Y \cap N_{1}$ for some $t \geqslant 0$, then, since $N_{2}$ is $N_{1}$-positively invariant, we obtain $x \pi[0, t] \subset N_{2}$ and so $x \pi[0, t] \subset Y \cap N_{2}$. This proves that $Y \cap N_{2}$ is $\left(Y \cap N_{1}\right)$-positively invariant.
There exist open sets $V$ and $W$ such that $S \subset W \subset N_{1} \backslash N_{2}$ and $S \subset V \subset Y$. Thus $S \subset V \cap W \subset Y \cap\left(N_{1} \backslash N_{2}\right) \subset\left(Y \cap N_{1}\right) \backslash\left(Y \cap N_{2}\right)$ and so $S \subset \operatorname{Int}\left(\left(Y \cap N_{1}\right) \backslash\right.$ $\left(Y \cap N_{2}\right)$ ). Thus $S \subset \operatorname{Inv}_{\pi} \mathrm{Cl}\left(\left(Y \cap N_{1}\right) \backslash\left(Y \cap N_{2}\right)\right)=\operatorname{Inv}_{\pi} \mathrm{Cl}\left(Y \cap\left(N_{1} \backslash N_{2}\right)\right) \subset \operatorname{Inv}_{\pi}$ $\mathrm{Cl}\left(N_{1} \backslash N_{2}\right)=S$.

To complete the proof, let $x \in Y \cap N_{1}$ and assume that there exists a $t^{\prime} \geqslant 0$ such that $x \pi t^{\prime} \notin Y \cap N_{1}$. Suppose first that $\rho_{Y}(x)>\rho_{N_{1}}(x)$. Then $\rho_{N_{1}}(x)<\infty$ and so $x \pi\left[0, \rho_{N_{1}}(x)\right] \subset Y \cap N_{1}$ and $x \pi \rho_{N_{1}}(x) \in N_{2}$ since $\left(N_{1}, N_{2}\right)$ is an FMindex pair for $S$. Thus, $x \pi \rho_{N_{1}}(x) \in Y \cap N_{2}$. Now assume that $\rho_{Y}(x) \leqslant \rho_{N_{1}}(x)$. Then $\rho_{Y}(x)<\infty$ and so $x \pi\left[0, \rho_{Y}(x)\right] \subset Y \cap N_{1}$. Moreover, since $N_{2}$ is an exit ramp for $Y$, we have $x \pi \rho_{Y}(x) \in N_{2}$ and so $x \pi \rho_{Y}(x) \in Y \cap N_{2}$. The proof is complete.

Definition 2.6. Let $S$ be an isolated invariant set and $\left(A, A^{*}\right)$ be an attractor-repeller pair in $S$. A pair $\left(B_{1}, B_{2}\right)$ is called a block pair $\left(\right.$ for $\left.\left(\pi, S, A, A^{*}\right)\right)$ if $B_{1}$ is an isolating block for $A^{*}, B_{2}$ is an isolating block for $A, B:=B_{1} \cup B_{2}$ is an isolating block for $S$ and $B_{1} \cap B_{2} \subset B_{1}^{-} \cap B_{2}^{+}$.

If $\left(B_{1}, B_{2}\right)$ is a block pair then $\left(B, B_{2} \cup B^{-}, B^{-}\right)$is an example of an FM-index triple:

Definition 2.7. Let $S$ be an isolated invariant set and $\left(A, A^{*}\right)$ be an attractor-repeller pair in $S$. A triple $\left(N_{1}, N_{2}, N_{3}\right.$ ) with $N_{3} \subset N_{2} \subset N_{1}$ is called an FM-index triple (for $\left.\left(\pi, S, A, A^{*}\right)\right)$ if $\left(N_{1}, N_{3}\right)$ is an FM-index pair for $S$ and $\left(N_{2}, N_{3}\right)$ is an FM-index pair for $A$.

Proposition 2.8 (cf. Franzosa and Mischaikow [10]). If ( $N_{1}, N_{2}, N_{3}$ ) is an FM-index triple for $\left(\pi, S, A, A^{*}\right)$ then $\left(N_{1}, N_{2}\right)$ is an FM-index pair for $A^{*}$.

Given an isolated invariant set $K$ having a strongly $\pi$-admissible isolating neighborhood we denote by $h(K)=h(\pi, K)$ the Conley-index of $K$ and by $H(K)=H(\pi, K)=$ $H(h(K))$ the homology Conley index, where $H$ is the singular homology functor (with coefficients in some fixed module $G$ over a PID).

If $\left(A, A^{*}\right)$ is an attractor-repeller pair in $S$ and $\left(N_{1}, N_{2}, N_{3}\right)$ is an FM-index triple for $\left(\pi, S, A, A^{*}\right)$ with $N_{1}$ strongly $\pi$-admissible, then the inclusion induced
sequence $N_{2} / N_{3} \xrightarrow{i} N_{1} / N_{3} \xrightarrow{p} N_{1} / N_{2}$ induces a long exact homology sequence

$$
\longrightarrow H_{q}\left(N_{2} / N_{3}\right) \xrightarrow{i} H_{q}\left(N_{1} / N_{3}\right) \xrightarrow{p} H_{q}\left(N_{1} / N_{2}\right) \xrightarrow{\partial} H_{q-1}\left(N_{2} / N_{3}\right) \longrightarrow .
$$

This sequence is independent of the choice of $\left(N_{1}, N_{2}, N_{3}\right)$ and so there is a welldefined long exact sequence

$$
\longrightarrow H_{q}(A) \xrightarrow{i} H_{q}(S) \xrightarrow{p} H_{q}\left(A^{*}\right) \xrightarrow{\partial} H_{q-1}(A) \longrightarrow
$$

called the homology index sequence of $\left(\pi, S, A, A^{*}\right)$.
Recall that a strict partial order on a set $P$ is a relation $\prec \subset P \times P$ which is irreflexive and transitive. As usual, we write $x \prec y$ instead of $(x, y) \in \prec$. The symbol $<$ will be reserved for the less-than-relation on $\mathbb{R}$.

For the rest of this paper, unless specified otherwise, let $P$ be a fixed finite set and $\prec$ be a fixed strict partial order on $P$.
A set $I \subset P$ is called $a \prec$-interval if whenever $i, j, k \in P, i, k \in I$ and $i \prec$ $j \prec k$, then $j \in I$. By $\mathcal{I}(\prec)$ we denote the set of all $\prec$-intervals in $P$. A set $I$ is called $a \prec$-attracting interval if whenever $i, j \in P, j \in I$ and $i \prec j$, then $i \in$ I. By $\mathcal{A}(\prec)$ we denote the set of all $\prec$-attracting intervals in $P$. Of course, $\mathcal{A}(\prec)$ $\subset \mathcal{I}(\prec)$.

An adjacent $n$-tuple of <-intervals is a sequence $\left(I_{j}\right)_{j=1}^{n}$ of pairwise disjoint $\prec-$ intervals whose union is a $\prec$-interval and such that, whenever $j<k, p \in I_{j}$ and $p^{\prime} \in I_{k}$, then $p^{\prime} \nprec p$ (i.e. $p \prec p^{\prime}$ or else $p$ and $p^{\prime}$ are not related by $\prec$ ). By $\mathcal{I}_{n}(\prec)$ we denote the set of all adjacent $n$-tuples of $\prec$-intervals.

Let $S$ be a compact invariant set. A family $\left(M_{i}\right)_{i \in P}$ of subsets of $S$ is called a $\prec$-ordered Morse decomposition of $S$ if the following properties hold:
(1) The sets $M_{i}, i \in P$, are closed, $\pi$-invariant and pairwise disjoint.
(2) For every full solution $\sigma$ of $\pi$ lying in $S$ either $\sigma(\mathbb{R}) \subset M_{k}$ for some $k \in$ $P$ or else there are $k, l \in P$ with $k \prec l, \alpha(\sigma) \subset M_{l}$ and $\omega(\sigma)$ $\subset M_{k}$.

Let $S$ be a compact invariant set and $\left(M_{i}\right)_{i \in P}$ be a $\prec$-ordered Morse decomposition of $S$. If $A, B \subset X$ then the $(\pi, S)$-connection set $\mathrm{CS}_{\pi, S}(A, B)$ from $A$ to $B$ is the set of all points $x \in X$ for which there is a solution $\sigma: \mathbb{R} \rightarrow S$ of $\pi$ with $\sigma(0)=x, \alpha(\sigma) \subset A$ and $\omega(\sigma) \subset B$.

For an arbitrary $\prec$-interval I set

$$
M(I)=M_{\pi, S}(I)=\bigcup_{(i, j) \in I \times I} \mathrm{CS}_{\pi, S}\left(M_{i}, M_{j}\right)
$$

An index filtration for $\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$ is a family $\mathcal{N}=(N(I))_{I \in \mathcal{A}(\alpha)}$ of closed subsets of $X$ such that
(1) for each $I \in \mathcal{A}(\prec)$, the pair $(N(I), N(\emptyset))$ is an FM-index pair for $M(I)$,
(2) for each $I_{1}, I_{2} \in \mathcal{A}(\prec), N\left(I_{1} \cap I_{2}\right)=N\left(I_{1}\right) \cap N\left(I_{2}\right)$ and $N\left(I_{1} \cup I_{2}\right)=N\left(I_{1}\right) \cup N\left(I_{2}\right)$.
$\mathcal{N}$ is called strongly $\pi$-admissible if $N(P)$ is strongly $\pi$-admissible.
The following result is an immediate consequence of Proposition 2.5.
Proposition 2.9. Let $Y$ be a closed set such that $S \subset \operatorname{Int}(Y)$ and such that $N(\emptyset)$ is an exit ramp for $Y$. Let $\mathcal{N}=(N(I))_{I \in \mathcal{A}(\prec)}$ be an index filtration for $\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$. Then $(Y \cap N(I))_{I \in \mathcal{A}(<)}$ is an index filtration for $\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$.

A special version of the following basic result was established in [10].
Theorem 2.10 (cf. Franzosa and Mischaikow [10, Theorem 3.5]). Let $N_{1}^{i}, N_{2}^{i}, N_{I}^{i}$, $i=2,4, I \in \mathcal{A}(\prec)$, be sets such that, for each $I \in \mathcal{A}(\prec),\left(N_{1}^{i}, N_{I}^{i}, N_{2}^{i}\right), i=2$, 4 , is an $F M$-index triple for $(\pi, S, M(I), M(P \backslash I))$. Suppose $N_{1}^{2} \subset N_{1}^{4}, N_{2}^{2} \subset N_{2}^{4}$ and $N_{I}^{2} \subset N_{I}^{4}, I \in \mathcal{A}(\prec)$. For each $p \in P$ define the following sets:

$$
D_{p}:=\left(\bigcap_{\substack{I \\ p \in I}} \operatorname{Int}\left(N_{I}^{2} \backslash N_{2}^{4}\right)\right) \cap\left(\bigcap_{\substack{I \\ p \notin I}} \operatorname{Int}\left(N_{1}^{2} \backslash N_{I}^{4}\right)\right)
$$

and

$$
E_{p}:=\left\{x \in N_{1}^{2} \mid \text { there exists a } t \geqslant 0 \text { such that } x \pi[0, t] \subset N_{1}^{2} \text { and } x \pi t \in D_{p}\right\}
$$

For each $I \in \mathcal{A}(\prec)$, define $N(I):=N_{1}^{2} \backslash \bigcup_{p \in P \backslash I} E_{p}$. Then $(N(I))_{I \in \mathcal{A}(\prec)}$ is an index filtration for $\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$. Moreover, $N_{2}^{2} \subset N(\emptyset)$ and $N_{I}^{2} \subset N(I)$ for all $I \in \mathcal{A}(\prec)$.

Proof. For $N_{1}^{2}=N_{1}^{4}, N_{2}^{2}=N_{2}^{4}$ and $N_{I}^{2}=N_{I}^{4}, I \in \mathcal{A}(\prec)$, this is just Theorem 3.5 in [10], whose proof carries over almost verbatim to the present, more general case. Details are left to the reader.

Let $\mathcal{N}$ be a strongly $\pi$-admissible index filtration for $\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$. For $J \in \mathcal{I}(\prec)$ the set $M(J)$ is an isolated invariant set and we write $H(J)=H(\pi, J):=H(\pi, M(J))$. If $(I, J) \in \mathcal{I}_{2}(\prec)$, then $(M(I), M(J))$ is an attractor-repeller filtration in $M(I J)$, where $I J:=I \cup J$. Hence there is the corresponding homology index sequence

$$
\longrightarrow H_{q}(I) \xrightarrow{i_{I, J}} H_{q}(I J) \xrightarrow{p_{I, J}} H_{q}(J) \xrightarrow{\partial_{I, J}} H_{q-1}(I) \longrightarrow
$$

of $(\pi, M(I J), M(I), M(J))$. Using the filtration $\mathcal{N}$ one proves that for every triple $(I, J, K) \in \mathcal{I}_{3}(\prec)$ the following diagram, made up of the four homology index
sequences defined by $(I, J, K)$, commutes:


The collection of all the homology indices $H(\pi, M(J)), J \in \mathcal{I}(\prec)$, and all the maps $i_{I, J}, p_{I, J}$ and $\partial_{I, J},(I, J) \in \mathcal{I}_{2}(\prec)$, is called the homology index braid of $\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$ and is denoted by $\mathcal{H}\left(\pi, S,\left(M_{p}\right)_{p \in P}\right)$.

For the rest of this section assume that, for $i=1,2, \pi_{i}$ is a local semiflow on the metric space $X_{i}, S_{i}$ is an isolated invariant set and $\left(M_{p, i}\right)_{p \in P}$ is a $\prec$-ordered Morse decomposition of $S_{i}$, relative to $\pi_{i}$. Write $M_{i}(I)=M_{\pi_{i}, S_{i}}(I), H_{i}(I)=H\left(\pi_{i}, M_{i}(I)\right)$ and $\mathcal{H}_{i}:=\mathcal{H}\left(\pi_{i}, S_{i},\left(M_{p, i}\right)_{p \in P}\right)$, for $i=1,2$ and $I \in \mathcal{I}(\prec)$.

Suppose $\theta:=(\theta(J))_{J \in \mathcal{I}(<)}$ is a family $\theta(J): H_{1}(J) \rightarrow H_{2}(J), J \in \mathcal{I}(\prec)$, of maps such that, for all $(I, J) \in \mathcal{I}_{2}(\prec)$, the diagram

commutes. Then we say that $\theta$ is a morphism from $\mathcal{H}_{1}$ to $\mathcal{H}_{2}$ and we write $\theta: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$. If each $\theta(J)$ is an isomorphism, then we say that $\theta$ is an isomorphism and that $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ are isomorphic homology index braids.

Remark 2.11. If $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ are isomorphic homology index braids, then, by Proposition 1.5 in [9], $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ determine the same collection of connection matrices and the same collection of $C$-connection matrices.

We will now introduce an important class of morphisms between homology index braids. Let $\mathcal{N}_{i}=\left(N_{i}(I)\right)_{I \in \mathcal{A}(\alpha)}$ be a strongly $\pi_{i}$-admissible index filtration for $\left(\pi_{i}, S_{i},\left(M_{p, i}\right)_{p \in P}\right), i=1,2$. Assume the nesting property

$$
N_{1}(I) \subset N_{2}(I), \quad I \in \mathcal{A}(\prec) .
$$

For $J \in \mathcal{I}(\prec)$ choose $I, K \in \mathcal{A}(\prec)$ with $(I, J) \in \mathcal{I}_{2}(\prec)$ and $K=I J$. Then, for $i=1$, 2 , $\left(N_{i}(K), N_{i}(I)\right)$ is an FM-index pair for $M_{i}(J)$, relative to $\pi_{i}$. The inclusion induced map from $N_{1}(K) / N_{1}(I)$ to $N_{2}(K) / N_{2}(I)$ induces a homomorphism

$$
\theta(J)=\theta_{\mathcal{N}_{1}, \mathcal{N}_{2}}(J): H\left(\pi_{1}, M_{1}(J)\right) \rightarrow H\left(\pi_{2}, M_{2}(J)\right)
$$

Of course, this homomorphism depends on the choice of $\mathcal{N}_{i}, i=1,2$, but we claim that it is independent of the choice of $I$ and $K$. In fact, if $I^{\prime}$ and $K^{\prime} \in \mathcal{A}(\prec)$ are such that $\left(I^{\prime}, J\right) \in \mathcal{I}_{2}(\prec)$ and $K^{\prime}=I^{\prime} J$ then property (2) of index filtrations implies that $N_{i}(K) \backslash N_{i}(I)=N_{i}\left(K^{\prime}\right) \backslash N_{i}\left(I^{\prime}\right), i=1,2$, so there is an inclusion induced, commutative diagram of pointed spaces


This proves the claim in view of the identifications made in the definition of the homology Conley index. We write

$$
\theta_{\mathcal{N}_{1}, \mathcal{N}_{2}}=\left(\theta_{\mathcal{N}_{1}, \mathcal{N}_{2}}(J)\right)_{J \in \mathcal{I}(<)}
$$

We also claim that $\theta_{\mathcal{N}_{1}, \mathcal{N}_{2}}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$. In fact, let $(I, J) \in \mathcal{I}_{2}(\prec)$ and let $B$ be the set of all $p \in P \backslash(I J)$ for which there is a $p^{\prime} \in I J$ with $p \prec p^{\prime}$. It follows that $B, B I, B I J \in$ $\mathcal{A}(\prec)$. Setting, for $i=1,2, N_{1, i}=N_{i}(B I J), N_{2, i}=N_{i}(B I)$ and $N_{3, i}=N_{i}(B)$ we see that $\left(N_{1, i}, N_{2, i}, N_{3, i}\right)$ is an FM-index triple for $\left(\pi_{i}, M_{i}(I J), M_{i}(I), M_{i}(J)\right)$. Thus the inclusion induced commutative diagram

implies the commutativity of diagram (2.1). This proves our second claim.
We call $\theta:=(\theta(J))_{J \in \mathcal{I}(<)}$ the inclusion induced morphism from $\mathcal{H}_{1}$ to $\mathcal{H}_{2}$.
We now obtain the following result:
Proposition 2.12. For $i=1,2$ let $\mathcal{N}_{i}=\left(N_{i}(I)\right)_{I \in \mathcal{A}(\alpha)}$ and $\widetilde{\mathcal{N}}_{i}=\left(\tilde{N}_{i}(I)\right)_{I \in \mathcal{A}(\alpha)}$ be strongly $\pi_{i}$-admissible index filtrations for $\left(\pi_{i}, S_{i},\left(M_{p, i}\right)_{p \in P}\right)$. Assume the nesting property

$$
\begin{equation*}
N_{1}(I) \subset N_{2}(I) \subset \widetilde{N}_{1}(I) \subset \widetilde{N}_{2}(I), \quad I \in \mathcal{A}(\prec) \tag{2.2}
\end{equation*}
$$

Then the inclusion induced morphism $\theta_{\mathcal{N}_{1}, \mathcal{N}_{2}}$ is an isomorphism.

Proof. Let $J \in \mathcal{I}(\prec)$ be arbitrary, $a:=\theta_{\mathcal{N}_{1}, \mathcal{N}_{2}}(J), b:=\theta_{\mathcal{N}_{2}, \tilde{\mathcal{N}}_{1}}(J)$ and $c:=$ $\theta_{\tilde{\mathcal{N}}_{1}, \tilde{\mathcal{N}}_{2}}(J)$. Then $b \circ a$ and $c \circ b$ are isomorphisms, being induced by maps lying in the same connected simple system (the categorial Morse index of $\left(\pi_{1}, M_{1}(J)\right)$ and $\left(\pi_{2}, M_{2}(J)\right)$, respectively). It follows that $a, b$ and $c$ are isomorphisms. This proves the proposition.

## 3. Continuation of homology index braids

Let $\pi_{n}, n \in \mathbb{N}_{0}$, be local semiflows on the metric space $X$. We say that the sequence $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ converges $\pi_{0}$ and we write $\pi_{n} \rightarrow \pi_{0}$ if whenever $x_{n} \rightarrow x_{0}$ in $X, t_{n} \rightarrow t_{0}$ in $\left[0, \infty\left[\right.\right.$ and $x_{0} \pi_{0} t_{0}$ is defined, then $x_{n} \pi_{n} t_{n}$ is defined for all $n$ large enough and $x_{n} \pi_{n} t_{n} \rightarrow x_{0} \pi_{0} t_{0}$ in $X$.

Given $Y \subset X$ we say that $Y$ is $\left(\pi_{n}\right)_{n}$-admissible if $Y$ is closed and whenever $\left(x_{n}\right)_{n}$ and $\left(t_{n}\right)_{n}$ are such that $t_{n} \rightarrow \infty, x_{n} \pi_{n} t_{n}$ is defined and $x_{n} \pi_{n}\left[0, t_{n}\right] \subset Y$ for all $n \in \mathbb{N}$, then the sequence $\left(x_{n} \pi_{n} t_{n}\right)_{n}$ has a convergent subsequence.

The following continuation result for Morse decompositions was established in [3].

Theorem 3.1 (cf. Carbinatto and Rybakowski [3, Corollaries 3.5 and 3.6]). Let $\pi_{n}$, where $n \in \mathbb{N}_{0}$, be local semiflows on $X$ and $\widetilde{N}$ be a closed subset of $X$ which is strongly $\pi_{n}$-admissible for every $n \in \mathbb{N}_{0}$. Moreover, assume that
(A) $\pi_{n} \rightarrow \pi_{0}$ and $\tilde{N}$ is $\left(\pi_{n_{m}}\right)_{m}$-admissible for every subsequence $\left(\pi_{n_{m}}\right)_{m}$ of $\left(\pi_{n}\right)_{n}$.

Suppose that $S_{0}:=\operatorname{Inv}_{\pi_{0}}(\tilde{N}) \subset \operatorname{Int}(\tilde{N})$ and $\left(M_{p, 0}\right)_{p \in P}$ is $\underset{\sim}{a} \prec$-ordered Morse decomposition of $S_{0}$ relative to $\pi_{0}$. For each $p \in P$, let $\Xi_{p} \subset \widetilde{N}$ be closed in $X$ and such that $M_{p, 0}=\operatorname{Inv}_{\pi_{0}}\left(\Xi_{p}\right) \subset \operatorname{Int}\left(\Xi_{p}\right)$. (Such sets $\Xi_{p}, p \in P$, always exist.) For $n \in \mathbb{N}$ and $p \in P$ set $S_{n}:=\operatorname{Inv}_{\pi_{n}}(\tilde{N})$ and $M_{p, n}:=\operatorname{Inv}_{\pi_{及}}\left(\Xi_{p}\right)$. Then there is an $\bar{n} \in \mathbb{N}$ such that whenever $n \geqslant \bar{n}$ and $p \in P$ then $S_{n} \subset \operatorname{Int}(N), M_{p, n} \subset \operatorname{Int}\left(\Xi_{p}\right)$ and the family $\left(M_{p, n}\right)_{p \in P}$ is $a \prec$-ordered Morse decomposition of $S_{n}$ relative to $\pi_{n}$.

Remark 3.2. It follows from [3, Theorem 3.3 and the proof of Corollary 3.5] that Theorem 3.1 remains valid if we replace assumption ( $A$ ) by the following weaker assumption:
(B) Whenever $\left(n_{m}\right)_{m}$ is a sequence $\underset{\sim}{\operatorname{N}} \mathbb{N}$ with $n_{m} \rightarrow \infty$ and, for every $m \in \mathbb{N}, u_{m}$ is a full solution of $\pi_{n_{m}}$ lying in $\widetilde{N}$, then there is a subsequence $\left(u_{m_{k}}\right)_{k}$ of $\left(u_{m}\right)_{m}$ and a full solution $u_{0}$ of $\pi_{0}$ such that $u_{m_{k}}(t) \rightarrow u_{0}(t)$ as $k \rightarrow \infty$, uniformly for $t$ lying in compact subset of $\mathbb{R}$.

However, we require the stronger assumption (A) in Theorem 3.4 below.
The sets $S_{n}$ and $M_{p, n}$ are asymptotically independent of the choice of $\widetilde{N}$ and $\Xi_{p}, p \in$ $P$, in the sense that, given other sets $\widetilde{N}^{\prime}$ and $\Xi_{p}^{\prime}, p \in P$ satisfying the same properties as $\tilde{N}$ and $\Xi_{p}$, then, for $n$ large enough, $\operatorname{Inv}_{\pi_{n}}(\tilde{N})=\operatorname{Inv}_{\pi_{n}}\left(\tilde{N}^{\prime}\right)$ and $\operatorname{Inv}_{\pi_{n}}\left(\Xi_{p}\right)=\operatorname{Inv}_{\pi_{n}}\left(\Xi_{p}^{\prime}\right)$, $p \in P$. This follows from the following result (cf. [2, Proposition 2.17]).

Proposition 3.3. Suppose $\pi_{n} \rightarrow \pi_{0}$ and $Y_{1}, Y_{2}$ are two (not necessarily distinct) closed sets which are strongly $\pi_{n}$-admissible for every $n \in \mathbb{N}_{0}$ and $\left(\pi_{n_{m}}\right)_{m}$-admissible for every subsequence $\left(\pi_{n_{m}}\right)_{m}$ of $\left(\pi_{n}\right)_{n}$. Suppose that $\operatorname{Inv}_{\pi_{0}}\left(Y_{1}\right)=\operatorname{Inv}_{\pi_{0}}\left(Y_{2}\right) \subset \operatorname{Int}\left(Y_{1}\right) \cap \operatorname{Int}\left(Y_{2}\right)$ (resp. suppose that $\operatorname{Inv}_{\pi_{0}}\left(Y_{1}\right)=\emptyset$ ). Then there is an $n_{0} \in \mathbb{N}$ such that, for all $n \geqslant n_{0}$, $\operatorname{Inv}_{\pi_{n}}\left(Y_{1}\right)=\operatorname{Inv}_{\pi_{n}}\left(Y_{2}\right) \subset \operatorname{Int}\left(Y_{1}\right) \cap \operatorname{Int}\left(Y_{2}\right)\left(\operatorname{resp} . \operatorname{Inv}_{\pi_{n}}\left(Y_{1}\right)=\emptyset\right)$.

We will tacitly use this result in the sequel.
We can now state the main result of this paper, the nested index filtration theorem.
Theorem 3.4. Assume the hypotheses (and thus also the conclusions) of Theorem 3.1 and let $\bar{n}$ be as in that theorem. Then there is an $n_{1} \geqslant \bar{n}$ such that for every $n \in \mathbb{N}_{0}$ with $n=\underset{\sim}{0}$ or $n \geqslant \tilde{\mathcal{N}}_{n}$ there exist strongly $\pi_{n}$-admissible index filtrations $\mathcal{N}_{n}=\left(N_{n}(I)\right)_{I \in \mathcal{A}(\prec)}$ and $\widetilde{\mathcal{N}}_{n}=\left(\tilde{N}_{n}(I)\right)_{I \in \mathcal{A}(<)}$ for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ such that the following nesting property holds:

$$
\begin{equation*}
N_{n}(I) \subset N_{0}(I) \subset \tilde{N}_{n}(I) \subset \tilde{N}_{0}(I) \text { for all } n \geqslant n_{1} \text { and } I \in \mathcal{A}(\prec) \tag{3.1}
\end{equation*}
$$

Theorem 3.4, Proposition 2.12 and Remark 2.11 immediately imply the following continuation result for homology index braids and connection matrices.

Theorem 3.5. Under the hypotheses of Theorem 3.4 the homology index braids $\mathcal{H}\left(\pi_{0}\right.$, $\left.S_{0},\left(M_{p, 0}\right)_{p \in P}\right)$ and $\mathcal{H}\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right), n \geqslant n_{1}$, are isomorphic and determine the same collection of connection matrices and the same collection of $C$-connection matrices.

Let us make the following definition.
Definition 3.6. Let $\Lambda$ be a metric space. A family $\left(\pi_{\lambda}, S_{\lambda},\left(M_{p, \lambda}\right)_{p \in P}\right)_{\lambda \in \Lambda}$ is called $\mathcal{S}$-continuous if for every $\lambda_{0} \in \Lambda$ there is a neighborhood $W_{\lambda_{0}}$ of $\lambda_{0}$ in $\Lambda$ and there are closed subsets $N_{\lambda_{0}}, \Xi_{p, \lambda_{0}} \subset N_{\lambda_{0}}, p \in P$, of $X$ such that for every $\lambda \in W_{\lambda_{0}}, \pi_{\lambda}$ is a local semiflow on $X, S_{\lambda}$ is a (compact) $\pi_{\lambda}$-invariant set, $\left(M_{p, \lambda}\right)_{p \in P}$ is a Morse decomposition of $S_{\lambda}$, relative to $\pi_{\lambda}, N_{\lambda_{0}}$ is a strongly $\pi_{\lambda}$-admissible isolating neighborhood of $S_{\lambda}$ and, for $p \in P, \Xi_{p, \lambda_{0}}$ is an isolating neighborhood of $M_{p, \lambda}$, relative to $\pi_{\lambda}$. Moreover, whenever $\lambda_{n} \rightarrow \lambda_{0}$ in $W_{\lambda_{0}}$ then $\pi_{\lambda_{n}} \rightarrow \pi_{\lambda_{0}}$ and $N_{\lambda_{0}}$ is $\left(\pi_{\lambda_{n}}\right)_{n}$-admissible.

We can now state our second continuation result for homology index braids and connection matrices.

Theorem 3.7. Let $\Lambda$ be a metric space and $\left(\pi_{\lambda}, S_{\lambda},\left(M_{p, \lambda}\right)_{p \in P}\right)_{\lambda \in \Lambda}$ be an $\mathcal{S}$-continuous family. Then for every $\lambda \in \Lambda$ the homology index braid

$$
\mathcal{H}_{\lambda}:=\mathcal{H}\left(\pi_{\lambda}, S_{\lambda},\left(M_{p, \lambda}\right)_{p \in P}\right)
$$

is defined and for every $\lambda_{0} \in \Lambda$ there is a neighborhood $W$ of $\lambda_{0}$ in $\Lambda$ such that $\mathcal{H}_{\lambda}$ is isomorphic to $\mathcal{H}_{\lambda_{0}}$ for every $\lambda \in W$. In particular, if $\Lambda$ is connected, then $\mathcal{H}_{\lambda_{1}}$ and
$\mathcal{H}_{\lambda_{2}}$ are isomorphic for all $\lambda_{1}, \lambda_{2} \in \Lambda$ and determine the same collection of connection matrices and the same collection of C-connection matrices.

Proof. A simple application of Theorem 3.4 shows that $\mathcal{H}_{\lambda_{0}}$ is defined for every $\lambda_{0} \in \Lambda$. Thus, if the second assertion is not true then there is a $\lambda_{0} \in \Lambda$ and a sequence $\left(\lambda_{n}\right)_{n}$ with $\lambda_{n} \rightarrow \lambda_{0}$ and for all $n \in \mathbb{N}, \mathcal{H}_{\lambda_{n}}$ is not isomorphic to $\mathcal{H}_{\lambda_{0}}$. It is clear that all assumptions of Theorem 3.5 are satisfied with $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p}\right):=$ $\left(\pi_{\lambda_{n}}, S_{\lambda_{n}},\left(M_{p, \lambda_{n}}\right)_{p \in P}\right), n \in \mathbb{N}_{0}, \widetilde{N}:=N_{\lambda_{0}}$ and $\Xi_{p}:=\Xi_{p, \lambda_{0}}, p \in P$. Thus, by Theorem 3.5, there is an $n_{1}$ such that $\mathcal{H}_{\lambda_{0}}$ is isomorphic to $\mathcal{H}_{\lambda_{n}}$, for all $n \geqslant n_{1}$, a contradiction which proves the second assertion of the theorem. The last assertion now follows immediately.

Remark. Both Definition 3.6 and Theorem 3.7 can be generalized to topological spaces $\Lambda$ satisfying the first countability axiom, because that is all we use in the proof of Theorem 3.7.

Theorems 3.5 and 3.7 refine the corresponding homotopy invariance results for the (infinite dimensional) Conley index established in [20] (or [22]). The convergence and admissibility assumptions make these results applicable to various classes of parameter dependent evolution equations (e.g. parabolic or damped hyperbolic equations on bounded domains and even some parabolic equations on unbounded domains, see the recent paper [17]).

We will not discuss applications in this paper, reserving them for a subsequent publication. However, we will show that in certain cases homology index braids (and connection matrices) of infinite-dimensional semiflows can be computed by restricting to their finite-dimensional Galerkin approximations.

For the rest of this section let $X$ be a real Hilbert space and $A: D(A) \subset X \rightarrow X$ be a positive selfadjoint operator with compact resolvent. Let $\left(\phi_{v}\right)_{v \in \mathbb{N}}$ be a complete $X$-orthonormal basis of $X$ consisting of eigenfunctions of $A$. Let $P_{n}: X \rightarrow X$ be the orthogonal projection of $X$ onto the subspace spanned by the first $n$ eigenfunctions. Moreover, set $Q_{n}:=I-P_{n}$ where $I$ is the identity map on $X$. Note that $A$ is sectorial on $X$ and so it generates a family $\left(X^{\alpha}\right)_{\alpha \in[0, \infty[ }$ of fractional power spaces. Given $\alpha \in\left[0,1\left[\right.\right.$ and a locally Lipschitzian map $g: X^{\alpha} \rightarrow X$ we denote by $\pi_{g}$ the local semiflow on $X^{\alpha}$ generated by the abstract parabolic equation (see [11])

$$
\dot{u}=-A u+g(u), \quad u \in X^{\alpha} .
$$

The following result has been proved in [23] (see [23, Theorem 4.3, Proposition 4.4]).

Proposition 3.8. Let $f: X^{\alpha} \rightarrow X$ be Lipschitzian on bounded subsets of $X^{\alpha}$. For $n \in \mathbb{N}$ and $\tau \in[0,1]$ let $f_{n, \tau}: X^{\alpha} \rightarrow X$ be defined by

$$
f_{n, \tau}(u)=(1-\tau) f(u)+\tau P_{n} f\left(P_{n} u\right), \quad u \in X^{\alpha} .
$$

Let $N \subset X^{\alpha}$ be bounded and closed. Furthermore, let $\left(n_{m}\right)_{m}$ be a sequence in $\mathbb{N}$ with $n_{m} \rightarrow \infty$ and $\left(\tau_{m}\right)_{m}$ be an arbitrary sequence in $[0,1]$. For every $m \in \mathbb{N}$ let $u_{m}$ be a full solution of $\pi_{f_{n_{m}, \tau_{m}}}$ lying in $N$. Then there is a sequence $\left(m_{k}\right)_{k}$ with $m_{k} \rightarrow \infty$ and there is a full solution $u$ of $\pi_{f}$ lying in $N$ such that $u_{m_{k}}(t) \rightarrow u(t)$ in $X^{\alpha}$, uniformly for $t$ lying in compact subsets of $\mathbb{R}$.

Corollary 3.9. Let $f: X^{\alpha} \rightarrow X$ and $f_{n, \tau}, n \in \mathbb{N}, \tau \in[0,1]$, be as in Proposition 3.8. Let $N$ be bounded and closed in $X^{\alpha}$ with $S:=\operatorname{Inv}_{\pi_{f}}(N) \subset \operatorname{Int}_{X^{\alpha}}(N)$. Moreover, let $\left(M_{p}\right)_{p \in P}$ be a <-ordered Morse decomposition of $S$, relative to $\pi_{f}$. For each $p \in P$ let $\Xi_{p} \subset N$ be closed in $X^{\alpha}$ such that $M_{p}=\operatorname{Inv}_{\pi_{f}}\left(\Xi_{p}\right) \subset \operatorname{Int}_{X^{\alpha}}\left(\Xi_{p}\right)$. For $n \in \mathbb{N}$, $\tau \in[0,1]$ and $p \in P$ define $S_{n, \tau}=\operatorname{Inv}_{\pi_{f n, \tau}}(N)$ and $M_{p, n, \tau}=\operatorname{Inv}_{\pi_{f_{n, \tau}}}\left(\Xi_{p}\right)$. Then there is an $n_{0} \in \mathbb{N}$ so that whenever $n \geqslant n_{0}$ and $\tau \in[0,1]$, then $S_{n, \tau} \subset \operatorname{Int}_{X^{\alpha}}(N)$, $M_{p, n, \tau} \subset \operatorname{Int}_{X^{\alpha}}\left(\Xi_{p}\right), p \in P$, and the family $\left(M_{p, n, \tau}\right)_{p \in P}$ is a Morse decomposition of $S_{n, \tau}$, relative to $\pi_{f_{n, \tau}}$.

Proof. It is well known (cf. [22]) that $N$ is strongly $\pi_{f_{n, \tau}}$-admissible for all $n \in \mathbb{N}$ and $\tau \in[0,1]$. Now the proof is completed by a contradiction argument, using Proposition 3.8, Remark 3.2 and Theorem 3.1 with assumption ( $A$ ) replaced by assumption ( $B$ ). Note that, for sequences $n_{m} \rightarrow \infty$ and $\tau_{m}$ in $[0,1]$ we do not, in general, have that $f_{n_{m}, \tau_{m}}(u) \rightarrow f(u)$ in $X$ locally uniformly in $u \in X^{\alpha}$, so that we cannot assert that $\pi_{f_{n_{m}, \tau_{m}}} \rightarrow \pi_{f}$. This is the reason for having to use the weaker assumption (B).

Corollary 3.10. Let $n_{0}$ be as in Corollary 3.9. Then for $n \geqslant n_{0}$ and $\tau \in[0,1]$ the homology index braid of $\left(\pi_{f_{n, \tau}}, S_{n, \tau},\left(M_{p, n, \tau}\right)_{p \in P}\right)$ is isomorphic to the homology index braid of $\left(\pi_{f}, S,\left(M_{p}\right)_{p \in P}\right)$.

Proof. Let $n \geqslant n_{0}$ be arbitrary. If $\tau_{k} \rightarrow \tau$ in [0, 1] then $f_{n, \tau_{k}}(u) \rightarrow f_{n, \tau}(u)$ in $X$, locally uniformly in $u \in X^{\alpha}$. This implies, by results in [22], that $\pi_{f_{n, \tau_{k}} \rightarrow} \rightarrow \pi_{f_{n, \tau}}$. Results in [22] also imply that $N$ is $\left(\pi_{f_{n, \tau_{k}}}\right)_{k}$-admissible. Now Corollary 3.9 and Theorem 3.7 complete the proof.

Given $n \in \mathbb{N}$ and $f$ as in Proposition 3.8 we may consider the local semiflow $\pi_{n}^{\prime}=\pi_{f, n}^{\prime}$ generated on the finite-dimensional space $Y_{n}:=P_{n}\left(X^{\alpha}\right)=P_{n}(X)$ by the ordinary differential equation

$$
\begin{equation*}
\dot{u}=-A u+P_{n} f\left(P_{n} u\right), \quad u \in Y_{n} . \tag{3.2}
\end{equation*}
$$

The local semiflow $\pi_{n}^{\prime}$ is the $n$-Galerkin approximation of $\pi_{f}$.
Moreover, let $\pi_{n}^{\prime \prime}=\pi_{f, n}^{\prime \prime}$ be the semiflow generated on $Z_{n}:=Q_{n}\left(X^{\alpha}\right)$ by the evolution equation

$$
\begin{equation*}
\dot{u}=-A u, \quad u \in Z_{n} \tag{3.3}
\end{equation*}
$$

If $f_{n}:=f_{n, 1}=P_{n} \circ f \circ P_{n}$ then, by Proposition 4.2 in [23] and its proof, the space $Y_{n}$ is positively invariant relative to the local semiflow $\pi_{f_{n}}$ and every bounded $\pi_{f_{n}}$ -
invariant set is included in $Y_{n}$ and is $\pi_{n}^{\prime}$-invariant. Moreover, every $\pi_{n}^{\prime}$-invariant set is $\pi_{f_{n}}$-invariant. Setting

$$
S_{n}:=S_{n, 1} \quad \text { and } \quad M_{p, n}:=M_{p, n, 1}, \quad p \in P
$$

we thus see that, whenever $n \geqslant n_{0}$, then $S_{n}$ is a compact $\pi_{n}^{\prime}$-invariant set and $\left(M_{p, n}\right)_{p \in P}$ is a Morse decomposition of $S_{n}$, relative to $\pi_{n}^{\prime}$. Moreover,

$$
M_{\pi_{f_{n}, S_{n}}(I)}=M_{\pi_{n}^{\prime}, S_{n}}(I)=: M_{n}(I), \quad I \in \mathcal{I}(\prec)
$$

Choose an arbitrary strongly $\pi_{n}^{\prime}$-admissible index filtration $\mathcal{N}_{n}^{\prime}=\left(N_{n}^{\prime}(I)\right)_{I \in \mathcal{A}(\prec)}$ for $\left(\pi_{n}^{\prime}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$. (Strong $\pi_{n}^{\prime}$-admissibility means, in this finite-dimensional case, simply that $N^{\prime}(P)$ is bounded in $Y_{n}$.) Let $B=B_{n}$ be the closed unit ball in $Z_{n}$. Since $\left|u \pi_{n}^{\prime \prime} t\right|_{Z_{n}} \leqslant e^{-\beta_{n} t}|u|_{Z_{n}}$ for some $\left.\beta_{n} \in\right] 0, \infty\left[\right.$ and all $u \in Z_{n}$ and $t \in[0, \infty[$ it follows that, relative to $\pi_{n}^{\prime \prime}, B$ is an isolating block for $\{0\}$ with empty exit set, so in particular, $B$ is positively invariant.

We define $N_{n}(I):=N_{n}^{\prime}(I)+B \cong N_{n}^{\prime}(I) \times B, I \in \mathcal{A}(\prec)$. It is now a simple exercise to show that $\mathcal{N}_{n}=\left(N_{n}(I)\right)_{I \in \mathcal{A}(<)}$ is a strongly $\pi_{f_{n}}$-admissible index filtration for $\left(\pi_{f_{n}}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$. Since $N_{n}^{\prime}(I) \subset N_{n}(I)$ for $I \in \mathcal{A}(\prec)$ there is an inclusion induced morphism $\theta_{\mathcal{N}_{n}, \mathcal{N}_{n}}=\left(\theta_{\mathcal{N}_{n}^{\prime}, \mathcal{N}_{n}}(J)\right)_{J \in \mathcal{I}(\prec)}$ from the homology index braid $\mathcal{H}_{n}^{\prime}$ of $\left(\pi_{n}^{\prime}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ to the homology index braid $\mathcal{H}_{n}$ of $\left(\pi_{f_{n}}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$. We claim that $\theta_{\mathcal{N}_{n}, \mathcal{N}_{n}}$ is an isomorphism. In fact, let $J \in \mathcal{I}(\prec)$ be arbitrary. Choose $I, K \in$ $\mathcal{A}(\prec)$ with $(I, J) \in \mathcal{I}_{2}(\prec)$ and $K=I J$. Let $\phi: N_{n}^{\prime}(K) / N_{n}^{\prime}(I) \rightarrow N_{n}(K) / N_{n}(I)$ be inclusion induced and $\psi: N_{n}(K) / N_{n}(I) \rightarrow N_{n}^{\prime}(K) / N_{n}^{\prime}(I)$ be induced by the canonical projection $y+z \mapsto y$ of $X^{\alpha}=Y_{n} \oplus Z_{n}$ onto $Y_{n}$. It follows that $\psi \circ \phi$ is the identity on $N_{n}^{\prime}(K) / N_{n}^{\prime}(I)$ while $\phi \circ \psi$ is homotopic to the identity on $N_{n}(K) / N_{n}(I)$ via the homotopy $N_{n}(K) / N_{n}(I) \times[0,1] \rightarrow N_{n}(K) / N_{n}(I)$ induced by the homotopy $X^{\alpha} \times$ $[0,1] \rightarrow X^{\alpha},(y+z, \tau) \mapsto y+(1-\tau) z$. The homotopy axiom for singular homology now implies that the map

$$
\theta_{\mathcal{N}_{n}^{\prime}, \mathcal{N}_{n}}(J): H\left(\pi_{n}^{\prime}, M_{n}(J)\right) \rightarrow H\left(\pi_{f_{n}}, M_{n}(J)\right)
$$

(which is induced by $\phi$ ) is an isomorphism. Using Corollary 3.10 we have now established the following result:

Theorem 3.11. If $n_{0}$ is as in Corollary 3.10, then, for $n \geqslant n_{0}$, the homology index braids of $\left(\pi_{f}, S,\left(M_{p}\right)_{p \in P}\right)$ and $\left(\pi_{n}^{\prime}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ are isomorphic so they share the same connection matrices and the same $C$-connection matrices.

## 4. Sequences of index filtrations

The rest of this paper is devoted to the proof of Theorem 3.4. Therefore, for the rest of the paper, assume the hypotheses of Theorem 3.1 and let $\bar{n}$ be as in that theorem. For $I \in \mathcal{I}(\prec)$ and $n \in \mathbb{N}_{0}$ let $M_{n}(I):=M_{\pi_{n}, S_{n}}(I)$.

If $S_{0}=\emptyset$, then, by Proposition 3.3, $S_{n}=\emptyset$ for all $n$ large enough, so we may choose $N_{n}(I):=\widetilde{N}_{n}(I):=\emptyset, I \in \mathcal{A}(\prec), n \in \mathbb{N}_{0}$. Hence Theorem 3.4 holds in this case.

Therefore we may assume that $S_{0} \neq \emptyset$. Consequently, using Proposition 3.3 and taking the sets $\tilde{N}$ and $\Xi_{p}, p \in P$, smaller and the number $\bar{n}$ larger, if necessary, we may assume from now on that $\widetilde{N}$ is an isolating block relative to $\pi_{0}$. (cf. [20] or [22].) Let $\tilde{U}=\operatorname{Int}(\tilde{N})$.

In this section, starting with sequences of FM-index triples satisfying certain inclusion conditions, we will construct index filtrations with an asymptotic nesting property. This will be the crucial abstract step in the proof of Theorem 3.4.

Theorem 4.1. Let $N_{1}^{i}, N_{2}^{i}, N_{I}^{i}, i=2,4, I \in \mathcal{A}(\prec)$ be sets such that, for each $I \in$ $\mathcal{A}(\prec),\left(N_{1}^{i}, N_{I}^{i}, N_{2}^{i}\right)$ is an FM-index triple for $\left(\pi_{0}, S_{0}, M_{0}(I), M_{0}(P \backslash I)\right), i=2$, 4. Moreover let $n_{0} \geqslant \bar{n}$ and for each $n \geqslant n_{0}$, let $N_{1, n}, N_{2, n}, N_{I, n}, I \in \mathcal{A}(\prec)$, be sets such that, for each $I \in \mathcal{A}(\prec)$, $\left(N_{1, n}, N_{I, n}, N_{2, n}\right)$ is an FM-index triple for $\left(\pi_{n}, S_{n}, M_{n}(I), M_{n}(P \backslash I)\right)$. For each $p \in P$ and $n \geqslant n_{0}$ define the following sets:

$$
\begin{aligned}
D_{p, n}:= & \left(\bigcap_{\substack{I \\
p \in I}} \operatorname{Int}\left(N_{I, n} \backslash N_{2, n}\right)\right) \cap\left(\bigcap_{\substack{I \\
p \notin I}} \operatorname{Int}\left(N_{1, n} \backslash N_{I, n}\right)\right), \\
D_{p, 0}:= & \left(\bigcap_{\substack{I \\
p \in I}} \operatorname{Int}\left(N_{I}^{2} \backslash N_{2}^{4}\right)\right) \cap\left(\bigcap_{\substack{I \\
p \notin I}} \operatorname{Int}\left(N_{1}^{2} \backslash N_{I}^{4}\right)\right), \\
E_{p, n}:= & \left\{x \in N_{1, n} \mid \text { there is a } t \geqslant 0 \text { such that } x \pi_{n}[0, t]\right. \\
& \left.\subset N_{1, n} \text { and } x \pi_{n} t \in D_{p, n}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{p, 0}:= & \left\{x \in N_{1}^{2} \mid \text { there exists a } t \geqslant 0 \text { such that } x \pi_{0}[0, t]\right. \\
& \left.\subset N_{1}^{2} \text { and } x \pi_{0} t \in D_{p, 0}\right\} .
\end{aligned}
$$

Suppose that there are open sets $V_{1}$ and $V_{I, i}, i=3,4, I \in \mathcal{A}(\prec)$, such that for all $n \geqslant n_{0}$ and $I \in \mathcal{A}(\prec)$ the following inclusions hold:

$$
\begin{aligned}
& N_{1}^{2} \subset \tilde{U}, \quad N_{1}^{2} \subset V_{1} \subset N_{1, n} \subset N_{1}^{4}, \quad N_{2}^{2} \subset N_{2}^{4}, \quad N_{I}^{2} \subset N_{I}^{4} \\
& \mathrm{Cl}\left(N_{I}^{2} \backslash N_{2}^{4}\right) \subset V_{I, 3} \subset \operatorname{Int}\left(N_{I, n} \backslash N_{2, n}\right) \\
& \mathrm{Cl}\left(N_{1}^{2} \backslash N_{I}^{4}\right) \subset V_{I, 4} \subset \operatorname{Int}\left(N_{1, n} \backslash N_{I, n}\right) .
\end{aligned}
$$

For each $I \in \mathcal{A}(\prec)$ define

$$
N_{0}(I):=N_{1}^{2} \backslash \bigcup_{p \in P \backslash I} E_{p, 0}
$$

$$
N_{n}(I):=N_{1, n} \backslash \bigcup_{p \in P \backslash I} E_{p, n}, \quad n \geqslant n_{0} .
$$

Then $\left(N_{n}(I)\right)_{I \in \mathcal{A}(\prec)}$ is an index filtration for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$, for all $n \in \mathbb{N}_{0}$ with $n=0$ or $n \geqslant n_{0}$. Moreover,

$$
\begin{equation*}
N_{2}^{2} \subset N_{0}(I), \quad N_{I}^{2} \subset N_{0}(\emptyset), \quad I \in \mathcal{A}(\prec) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2, n} \subset N_{n}(\emptyset) \text { and } N_{I, n} \subset N_{n}(I), n \geqslant n_{0}, I \in \mathcal{A}(\prec) . \tag{4.2}
\end{equation*}
$$

Furthermore, whenever $I \in \mathcal{A}(\prec),\left(n_{m}\right)_{m}$ is a sequence such that $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ and $\left(x_{m}\right)_{m}$ is a sequence in $N_{1}^{2}$ such that $x_{m} \in N_{n_{m}}(I)$ for all $m \in \mathbb{N}$ and $\left(x_{m}\right)_{m}$ is convergent (in $X$ ), then there exists an $m_{0} \in \mathbb{N}$ such that $x_{m} \in N_{0}(I)$ for all $m \geqslant m_{0}$.

Proof. Theorem 2.10 immediately implies that $\left(N_{0}(I)\right)_{I \in \mathcal{A}(<)}$ is an index filtration for ( $\left.\pi_{0}, S_{0},\left(M_{p, 0}\right)_{p \in P}\right)$ satisfying (4.1). Moreover, the same theorem with $N_{j}^{i}=N_{j, n}$ and $N_{I}^{i}=N_{I, n}$ for $i=2,4$ and $j=1,2$ implies that for all $n \geqslant n_{0},\left(N_{n}(I)\right)_{I \in \mathcal{A}(\prec)}$ is an index filtration for ( $\left.\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ satisfying (4.2).

Suppose the second part of the theorem does not hold. Then there exist a $J \in \mathcal{A}(\prec)$, a sequence $\left(n_{m}\right)_{m}$ with $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ and a sequence $\left(x_{m}\right)_{m}$ in $N_{1}^{2}$ such that $x_{m} \rightarrow x$ as $m \rightarrow \infty$, for some $x \in X$, and $x_{m} \in N_{n_{m}}(J) \backslash N_{0}(J)$ for all $m \in \mathbb{N}$. The definition of the sets $N_{n}(J)$ and $N_{0}(J)$ imply that for all $m \in \mathbb{N}$,

$$
x_{m} \in N_{1, n_{m}} \backslash \bigcup_{p \in P \backslash J} E_{p, n_{m}} \text { and } x_{m} \notin N_{1}^{2} \backslash \bigcup_{p \in P \backslash J} E_{p, 0}
$$

Since $x_{m} \in N_{1}^{2}$ for all $m \in \mathbb{N}$, it follows that for all $m \in \mathbb{N}, x_{m} \in \bigcup_{p \in P \backslash J} E_{p, 0}$. Thus, taking further subsequences if necessary, we may assume that there exists a $q \in P \backslash J$ such that for all $m \in \mathbb{N}, x_{m} \in E_{q, 0}$. So, for each $m \in \mathbb{N}$, there exists a $t_{m} \geqslant 0$ such that $x_{m} \pi_{0}\left[0, t_{m}\right] \subset N_{1}^{2}$ and $x_{m} \pi_{0} t_{m} \in D_{q, 0}$.

We claim that for all $p \in P$, there exists an open set $\widetilde{V}_{p}$ such that for all $n \geqslant n_{0}$, $\mathrm{Cl}\left(D_{p, 0}\right) \subset \widetilde{V}_{p} \subset D_{p, n}$. In fact, fix $p \in P$ and $n \geqslant n_{0}$. It follows that

$$
\begin{aligned}
\mathrm{Cl}\left(D_{p, 0}\right) & \subset\left(\bigcap_{\substack{I \\
p \in I}} \mathrm{Cl}\left(N_{I}^{2} \backslash N_{2}^{4}\right)\right) \cap\left(\bigcap_{\substack{I \\
p \notin I}} \mathrm{Cl}\left(N_{1}^{2} \backslash N_{I}^{4}\right)\right) \\
& \subset \widetilde{V}_{p}:=\left(\bigcap_{\substack{I \\
p \in I}} V_{I, 3}\right) \cap\left(\bigcap_{\substack{I \\
p \notin I}} V_{I, 4}\right) \\
& \subset\left(\bigcap_{\substack{I \\
p \in I}} \operatorname{Int}\left(N_{I, n} \backslash N_{2, n}\right)\right) \cap\left(\bigcap_{\substack{I \\
p \notin I}} \operatorname{Int}\left(N_{1, n} \backslash N_{I, n}\right)\right)=D_{p, n} .
\end{aligned}
$$

To complete the proof we will consider two cases.

Case 1: Suppose that $\left(t_{m}\right)_{m}$ is a bounded sequence. We can assume, taking subsequences if necessary, that there exists a $t \in\left[0, \infty\right.$ [ such that $t_{m} \rightarrow t$ as $m \rightarrow \infty$. Since $N_{1}^{2} \subset \widetilde{U} \subset \widetilde{N}$, it follows that $\pi_{0}$ does not explode in $N_{1}^{2}$ and so $x \pi_{0}[0, t] \subset N_{1}^{2} \subset V_{1}$. Recall that $\pi_{n} \rightarrow \pi_{0}$ as $n \rightarrow \infty$ and $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Hence, there exists an $m_{0} \in \mathbb{N}$ such that $x_{m} \pi_{n_{m}}\left[0, t_{m}\right] \subset V_{1} \subset N_{\mathbb{V}_{n}}$ for all $m \geqslant m_{0}$.

Moreover, we have $x \pi_{0} t \in \mathrm{Cl}\left(D_{q, 0}\right) \subset \widetilde{V}_{q}$ and so there exists an $m_{1} \geqslant m_{0}$ such that $x_{m} \pi_{n_{m}} t_{m} \in \widetilde{V}_{q} \subset D_{q, n_{m}}$ for all $m \geqslant m_{1}$. Therefore, $x_{m} \in E_{q, n_{m}}$ for all $m \geqslant m_{1}$. Since $q \in P \backslash J$, we have a contradiction to our choice of the sequence $\left(x_{m}\right)_{m}$.

Case 2: Suppose that $\left(t_{m}\right)_{m}$ is an unbounded sequence. We can assume, taking subsequences if necessary, that $t_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Hence $x \pi_{0}\left[0, \infty\left[\subset N_{1}^{2}\right.\right.$.

Note that if $m \in \mathbb{N}$ and $0 \leqslant t \leqslant t_{m}$, since $x_{m} \pi_{0}\left[0, t_{m}\right] \subset N_{1}^{2}$ and $x_{m} \pi_{0} t_{m} \in D_{q, 0}$, it follows that $\left(x_{m} \pi_{0} t\right) \pi_{0}\left[0, t_{m}-t\right] \subset N_{1}^{2}$ and $\left(x_{m} \pi_{0} t\right) \pi_{0}\left(t_{m}-t\right) \in D_{q, 0}$. In other words, $x_{m} \pi_{0} t \in E_{q, 0}$. Thus, for every $t \in\left[0, \infty\left[\right.\right.$ and for all $m \geqslant m_{t}$, for some $m_{t} \in \mathbb{N}$, we have $x_{m} \pi_{0} t \in E_{q, 0}$. Since $E_{q, 0} \subset X \backslash N_{0}(J)$, we conclude that

$$
\begin{equation*}
x \pi_{0} t \in \mathrm{Cl}\left(E_{q, 0}\right) \subset X \backslash \operatorname{Int}\left(N_{0}(J)\right) \text { for all } t \geqslant 0 \tag{4.3}
\end{equation*}
$$

Let $\left(s_{k}\right)_{k}$ be a sequence of positive numbers such that $s_{k} \rightarrow \infty$ as $k \rightarrow \infty$. By admissibility, there exist a subsequence of $\left(x \pi_{0} s_{k}\right)_{k}$ which will be denoted again by $\left(x \pi_{0} s_{k}\right)_{k}$ and a $y \in S_{0}$ such that $x \pi_{0} s_{k} \rightarrow y$ as $k \rightarrow \infty$. Formula (4.3) implies that $y \pi_{0}\left[0, \infty\left[\subset X \backslash \operatorname{Int}\left(N_{0}(J)\right)\right.\right.$. The properties of Morse decompositions imply that the $\omega$-limit set $\omega(y)$ of $y$ relative to $\pi_{0}$ is included in $M_{r, 0}$, for some $r \in P$. Since $M_{r, 0} \subset M_{0}(J) \subset \operatorname{Int}\left(N_{0}(J)\right)$ for all $r \in J$, it follows that $r \in P \backslash J$. Since $M_{r, 0} \subset D_{r, 0}$ and $D_{r, 0}$ is an open set, we have that there exists a $t \geqslant 0$ such that $y \pi_{0} t \in D_{r, 0}$ and so, for some $k \in \mathbb{N}, x \pi_{0}\left(s_{k}+t\right) \in D_{r, 0}$. Hence

$$
\begin{equation*}
x_{m} \pi_{n_{m}} s \in D_{r, 0} \subset D_{r, n_{m}} \text { for all } m \text { large enough, } \tag{4.4}
\end{equation*}
$$

where $s:=s_{k}+t$. Moreover, $x \pi_{0}[0, s] \subset N_{1}^{2} \subset V_{1}$ and so $x_{m} \pi_{n_{m}}[0, s] \subset V_{1} \subset N_{1, n_{m}}$ for all $m$ large enough. This, together with (4.4), shows that $x_{m} \in E_{r, n_{m}}$ for all $m$ large enough, a contradiction as $r \in P \backslash J$. The theorem is proved.

## 5. Index triple constructions

In this section we will prove the existence of FM-index triples (relative to the approximating semiflows $\pi_{n}$ ) with special properties. We use some arguments from the proof of existence of isolating blocks from [20] (or [22]). Define the function $F: X \rightarrow[0,1]$ by $F(x):=\min \left\{1, \mathrm{~d}\left(x, \operatorname{Inv}_{\pi_{0}}^{-}(\tilde{N})\right)\right\}$. Furthermore, let

$$
s_{n}^{+}:=\rho_{\tilde{N}, \pi_{n}}, \quad t_{n}^{+}:=\rho_{\tilde{U}, \pi_{n}}, \quad n \in \mathbb{N}_{0}
$$

and define the function $g^{-}: \widetilde{N} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
g^{-}(x):=\sup \left\{\alpha(t) F\left(x \pi_{0} t\right) \mid\right. & t \in\left[0, s_{0}^{+}(x)\right], \text { if } s_{0}^{+}(x)<\infty \text { and } \\
& t \in\left[0, \infty\left[, \text { if } s_{0}^{+}(x)=\infty\right\},\right.
\end{aligned}
$$

where $\alpha:\left[0, \infty\left[\rightarrow\left[1,2\left[\right.\right.\right.\right.$ is a monotone increasing $C^{\infty}$-diffeomorphism. Given $\delta>0$ and $b>0$, define

$$
B_{\delta, b}:=\mathrm{Cl}\left\{x \in \tilde{U} \mid g^{-}(x)<\delta \text { and } t_{0}^{+}(x)>b\right\}
$$

The sets $B_{\delta, b}$ enjoy the following property.
Lemma 5.1. There exist $\left.\delta_{0}, \bar{b} \in\right] 0, \infty[$ such that, for all $\left.\delta \in] 0, \delta_{0}\right]$ and $b \in[\bar{b}, \infty[$, $B_{\delta, b} \subset \widetilde{U}$ and $B_{\delta, b}$ is an isolating block for $S_{0}$ relative to $\pi_{0}$ with exit set $B_{\delta, b}^{-}=$ $\left\{x \in \partial B_{\delta, b} \mid g^{-}(x) \leqslant \delta\right.$ and $\left.t_{0}^{+}(x)=b\right\}$.

Proof. Suppose there exist sequences $\left(\delta_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ of positive numbers and $\left(x_{n}\right)_{n}$ such that $\delta_{n} \rightarrow 0, b_{n} \rightarrow \infty$ and $x_{n} \in B_{\delta_{n}, b_{n}} \cap(X \backslash \widetilde{U})$ for all $n \in \mathbb{N}$. Hence, for each $n \in$ $\mathbb{N}$, there exists a $y_{n} \in \tilde{U}$ with $g^{-}\left(y_{n}\right)<\delta_{n}$ and $t_{0}^{+}\left(y_{n}\right)>b_{n}$ such that $\mathrm{d}\left(x_{n}, y_{n}\right)<2^{-n}$. By admissibility, we may assume, taking subsequences if necessary, that there exists an $x_{0} \in S_{0}$ such that $y_{n} \rightarrow x_{0}$ and so $x_{n} \rightarrow x_{0}$. Therefore, $x_{0} \in S_{0} \cap(X \backslash \widetilde{U})$ which is a contradiction to the definition of the open set $\widetilde{U}$. Thus, there exist a $\left.\delta_{0} \in\right] 0, \infty[$ and a $\bar{b} \in] 0, \infty\left[\right.$ such that $B_{\delta, b} \subset \widetilde{U}$ for all $\left.\left.\delta \in\right] 0, \delta_{0}\right]$ and $b \in[\bar{b}, \infty[$. Moreover, $\operatorname{Inv}_{\pi_{0}}\left(B_{\delta, b}\right) \subset \operatorname{Inv}_{\pi_{0}}(\operatorname{Cl}(\tilde{U})) \subset \operatorname{Inv}_{\pi_{0}}(\tilde{N})=S_{0}$. On the other hand, if $x \in S_{0}$, then $x \in \widetilde{U}, g^{-}(x)=0$ and $t_{0}^{+}(x)=\infty$ so $x \in B_{\delta, b}$. Thus $S_{0} \subset \operatorname{Inv}_{\pi_{0}}\left(B_{\delta, b}\right)$. Therefore, $S_{0}=\operatorname{Inv}_{\pi_{0}}\left(B_{\delta, b}\right) \subset\left\{x \in \widetilde{U} \mid g^{-}(x)<\delta\right.$ and $\left.t_{0}^{+}(x)>b\right\} \subset \operatorname{Int}\left(B_{\delta, b}\right)$. The remaining assertions follow immediately since the functions $g^{-}$and $t_{0}^{+}$decrease along solutions of $\pi_{0}$ and $g^{-}$is upper-semicontinuous while $t_{0}^{+}$is lower-semicontinuous.

Given $\delta, b \in] 0, \infty]$ and $G \subset X$ define the sets

$$
\begin{equation*}
B_{1, \delta, b, G}:=B_{\delta, b} \cap G, \quad B_{2, \delta, b, G}:=\mathrm{Cl}\left(B_{\delta, b} \backslash G\right) \tag{5.1}
\end{equation*}
$$

Given any $I \in \mathcal{A}(\prec)$ with $M_{0}(P \backslash I) \neq \emptyset$ let $U_{P \backslash I} \subset \tilde{N}$ be an arbitrary open neighborhood of $M_{0}(P \backslash I)$ with $\mathrm{Cl}\left(U_{P \backslash I}\right) \cap M_{0}(I)=\emptyset$. Let $g_{P \backslash I}^{+}: U_{P \backslash I} \rightarrow[0, \infty[$ be the map given by

$$
g_{P \backslash I}^{+}(x):=\inf \left\{(1+t)^{-1} G\left(x \pi_{0} t\right) \mid 0 \leqslant t<\rho_{U_{P \backslash I}, \pi_{0}}(x)\right\},
$$

where $G(x):=\mathrm{d}\left(x, M_{0}(P \backslash I)\right) /\left(\mathrm{d}\left(x, M_{0}(P \backslash I)\right)+\mathrm{d}\left(x, X \backslash \mathrm{Cl}\left(U_{P \backslash I}\right)\right)\right), x \in U_{P \backslash I}$.
Choose open sets $V_{P \backslash I}$ and $W_{P \backslash I}$ such that $M_{0}(P \backslash I) \subset V_{P \backslash I} \subset \mathrm{Cl}\left(V_{P \backslash I}\right) \subset W_{P \backslash I} \subset$ $\mathrm{Cl}\left(W_{P \backslash I}\right) \subset U_{P \backslash I}$ and $\left.g_{P \backslash I}^{+}\right|_{\mathrm{Cl}\left(W_{P \backslash I}\right)}$ is continuous. This is possible by Proposition I.5.2 in [22].

Now, for arbitrary $I \in \mathcal{A}(\prec)$ and $\varepsilon \in] 0, \infty[$ define

$$
G_{P \backslash I, \varepsilon}:= \begin{cases}\mathrm{Cl}\left\{y \in V_{P \backslash I} \mid g_{P \backslash I}^{+}(y)<\varepsilon\right\} & \text { if } M_{0}(P \backslash I) \neq \emptyset, \\ \emptyset & \text { otherwise }\end{cases}
$$

and set

$$
\left.B_{P \backslash I, \delta, b, \varepsilon}:=B_{1, \delta, b, G_{P \backslash I, \varepsilon}}, B_{I, \delta, b, \varepsilon}:=B_{2, \delta, b, G_{P \backslash I, \varepsilon}}, I \in \mathcal{A}(\prec), \varepsilon \in\right] 0, \infty[
$$

The next lemma is fundamental for what follows.
Lemma 5.2. Let $\left.\delta_{0} \in\right] 0, \infty[$ and $\bar{b} \in] 0, \infty[$ as in Lemma 5.1. Then there exist a $\left.\bar{\delta} \in] 0, \delta_{0}\right]$ and an $\left.\bar{\varepsilon} \in\right] 0, \infty[$ such that for all $\left.\left.\left.\delta \in] 0, \bar{\delta}\right], \varepsilon \in\right] 0, \bar{\varepsilon}\right], b \in[\bar{b}, \infty[$ and for all $I \in \mathcal{A}(\prec)$ with $M_{0}(P \backslash I) \neq \emptyset$,

$$
B_{P \backslash I, \delta, b, \varepsilon}=B_{\delta, b} \cap G_{P \backslash I, \varepsilon} \subset V_{P \backslash I} .
$$

Proof. Otherwise, there exist an $I \in \mathcal{A}(\prec)$ with $M_{0}(P \backslash I) \neq \emptyset$, sequences $\left(\delta_{n}\right)_{n}$ and $\left(\varepsilon_{n}\right)_{n}$ converging to zero, a sequence $\left(b_{n}\right)_{n}$ in $\left[\bar{b}, \infty\left[\right.\right.$ and $\left(x_{n}\right)_{n}$ such that

$$
x_{n} \in B_{\delta_{n}, b_{n}} \cap G_{P \backslash I, \varepsilon_{n}} \cap\left(X \backslash V_{P \backslash I}\right) \quad \text { for all } n \in \mathbb{N} .
$$

Since $x_{n} \in B_{\delta_{n}, b_{n}}$, it follows that $g^{-}\left(x_{n}\right) \leqslant \delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. By admissibility, there exist a subsequence of $\left(x_{n}\right)_{n}$, denoted again by $\left(x_{n}\right)_{n}$, and an $x_{0} \in \operatorname{Inv}_{\pi_{0}}^{-}(\tilde{N})$ such that $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. The definition of the set $G_{P \backslash I, \varepsilon_{n}}$ implies that $x_{0} \in \mathrm{Cl}\left(V_{P \backslash I}\right) \subset$ $\mathrm{Cl}\left(W_{P \backslash I}\right)$. The continuity of $g_{P \backslash I}^{+} \mid \mathrm{Cl}\left(W_{P \backslash I}\right)$ implies that $g_{P \backslash I}^{+} \mid \mathrm{Cl}\left(W_{P \backslash I}\right)\left(x_{0}\right)=0$. It follows from Proposition I.5.2 in [22] that $x_{0} \in \operatorname{Inv}_{\pi_{0}}^{+}\left(\operatorname{Cl}\left(U_{P \backslash I}\right)\right) \subset \operatorname{Inv}_{\pi_{0}}^{+}(\tilde{N})$ and so $x_{0} \in S_{0}$. Since $\mathrm{Cl}\left(U_{P \backslash I}\right) \cap M_{0}(I)=\emptyset$ and $\left(M_{0}(I), M_{0}(P \backslash I)\right)$ is an attractor-repeller pair in $S_{0}$, relative to $\pi_{0}$, we see that the $\omega$-limit set $\omega\left(x_{0}\right)$ of $x_{0}$ relative to $\pi_{0}$ is a subset of $M_{0}(P \backslash I)$. Theorem III.1.4 in [22] implies that $x_{0} \in M_{0}(P \backslash I)$ and so $x_{0} \in M_{0}(P \backslash I) \cap\left(X \backslash V_{P \backslash I}\right)$ which contradicts our choice of the open set $V_{P \backslash I}$. The lemma is proved.

Let $\bar{b}>0$ be as in Lemma 5.1 and $\bar{\delta}>0$ and $\bar{\varepsilon}>0$ be as in Lemma 5.2.
Corollary 5.3. For all $\delta \in] 0, \bar{\delta}], \varepsilon \in] 0, \bar{\varepsilon}], b \in[\bar{b}, \infty[$ and for all $I \in \mathcal{A}(\prec)$, the pair $\left(B_{P \backslash I, \delta, b, \varepsilon}, B_{I, \delta, b, \varepsilon}\right)$ is a block pair for $\left(\pi_{0}, S_{0}, M_{0}(I), M_{0}(P \backslash I)\right)$.

Proof. This follows from Lemma 5.2 and the proof of Theorem III.2.4 in [22].
We also have the following result.
Lemma 5.4. Let $I \in \mathcal{A}(\prec)$ and $b_{2}, b_{3}, \varepsilon_{2}, \varepsilon_{3}, \delta$ and $\delta_{2}$ be positive numbers such that $\bar{b} \leqslant b_{2}<b_{3}, \varepsilon_{2}<\varepsilon_{3} \leqslant \bar{\varepsilon}$ and $\delta<\delta_{2} \leqslant \bar{\delta}$. Then $B_{I, \delta, b_{3}, \varepsilon_{3}} \subset \operatorname{Int}\left(B_{I, \delta_{2}, b_{2}, \varepsilon_{2}}\right)$.

Proof. Let $I \in \mathcal{A}(\prec)$ be arbitrary. If $M_{0}(P \backslash I)=\emptyset$ then the result is clear. Therefore, let $M_{0}(P \backslash I) \neq \emptyset$. We claim that $B_{I, \delta, b_{3}, \varepsilon_{3}} \subset \operatorname{Int}\left(B_{\delta_{2}, b_{2}}\right) \backslash G_{P \backslash I, \varepsilon_{2}}$. Let $y \in B_{I, \delta, b_{3}, \varepsilon_{3}}$ be arbitrary. Then there exists a sequence $\left(x_{n}\right)_{n}$ such that $x_{n} \in B_{\delta, b_{3}} \backslash G_{P \backslash I, \varepsilon_{3}}$ for
all $n$ and $x_{n} \rightarrow y$. In particular, $y \in \tilde{U}$ and $g^{-}(y) \leqslant \delta<\delta_{2}$ and $t_{0}^{+}(y) \geqslant b_{3}>b_{2}$. Thus $y \in\left\{x \in \widetilde{U} \mid g^{-}(y)<\delta_{2}\right.$ and $\left.t_{0}^{+}(y)>b_{2}\right\} \subset \operatorname{Int}\left(B_{\delta_{2}, b_{2}}\right)$. Suppose $y \in G_{P \backslash I, \varepsilon_{2}}$. It follows from Lemma 5.2 that $y \in B_{\delta_{2}, b_{2}} \cap G_{P \backslash I, \varepsilon_{2}} \subset V_{P \backslash I}$. So $y \in V_{P \backslash I}$ and $g_{P \backslash I}^{+}(y) \leqslant \varepsilon_{2}<\varepsilon_{3}$. Then for all $n$ large enough, $x_{n} \in V_{P \backslash I}$ and $g_{P \backslash I}^{+}\left(x_{n}\right)<\varepsilon_{3}$. Thus $x_{n} \in G_{P \backslash I, \varepsilon_{3}}$ for all $n$ large enough which is a contradiction. This proves the claim and completes the proof.

We can now state the main result of this section.
Theorem 5.5. Let $\bar{b}$ be as in Lemma 5.1 and $\bar{\delta}$ and $\bar{\varepsilon}$ be as in Lemma 5.2. Fix positive numbers $b, b_{2}, b_{3}, \varepsilon_{2}, \varepsilon_{3}$ and $\delta_{2}$ with $\bar{b}<b_{2}<b_{3}<b, \varepsilon_{2}<\varepsilon_{3}<\bar{\varepsilon}$ and $\delta_{2}<\bar{\delta}$. For all $I \in \mathcal{A}(\prec)$ and all $\left.\delta \in] 0, \delta_{2}\right]$, let $\Lambda_{I, \delta}$ be a closed subset of $X$ with

$$
M_{0}(I) \subset \operatorname{Int}\left(\Lambda_{I, \delta}\right) \subset \Lambda_{I, \delta} \subset B_{I, \delta, b_{3}, \varepsilon_{3}}
$$

and such that whenever $\delta<\delta^{\prime}$ then $\Lambda_{I, \delta} \subset \Lambda_{I, \delta^{\prime}}$.
Assume also that whenever $I \in \mathcal{A}(\prec)$ and $\left(\delta_{n}\right)_{n}$ is a decreasing sequence converging to zero and $x_{n} \in \Lambda_{I, \delta_{n}}$ for all $n \in \mathbb{N}$, then the sequence $\left(x_{n}\right)_{n}$ has a convergent subsequence.

For $\left.\delta \in] 0, \delta_{2}\right], n \in \mathbb{N}$ and $I \in \mathcal{A}(\prec)$ define the sets

$$
\begin{aligned}
& N_{1, n}(\delta):=B_{\delta_{2}, b_{2}} \cap \mathrm{Cl}\left\{y \mid \text { there exist an } x \in B_{\delta, b_{3}} \text { and a } t \geqslant 0\right. \text { such that } \\
& \left.\qquad x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\} \\
& \qquad N_{2, n}(\delta):=N_{1, n}(\delta) \cap\left\{y \in \widetilde{U} \mid t_{n}^{+}(y) \leqslant b\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
N_{I, n}(\delta):= & {\left[B _ { I , \delta _ { 2 } , b _ { 2 } , \varepsilon _ { 2 } } \cap \mathrm { Cl } \left\{y \mid \text { there exist an } x \in \Lambda_{I, \delta} \text { and a } t \geqslant 0\right.\right. \text { such that }} \\
& \left.\left.x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}\right] \cup N_{2, n}(\delta) .
\end{aligned}
$$

Under these assumptions there exists a $\left.\delta_{3} \in\right] 0, \delta_{2}[$ such that for all $\left.\delta \in] 0, \delta_{3}\right]$, there exists an $n_{0}(\delta) \in \mathbb{N}$ such that for all $n \geqslant n_{0}(\delta)$ and for all $I \in \mathcal{A}(\prec)$ the triple $\left(N_{1, n}(\delta), N_{I, n}(\delta), N_{2, n}(\delta)\right)$ is an FM-index triple for $\left(\pi_{n}, S_{n}, M_{n}(I)\right.$, $\left.M_{n}(P \backslash I)\right)$.

Proof. It is clear that the sets $N_{1, n}(\delta), N_{2, n}(\delta)$ and $N_{I, n}(\delta)$ are closed and $N_{2, n}(\delta) \subset$ $N_{I, n}(\delta) \subset N_{1, n}(\delta)$. Moreover, using arguments completely analogous to those contained in the proofs of Lemmas I.12.5 and I.12.6 in [22], we can establish the validity of the following results.

Lemma 5.6. There exists a $\left.\left.\delta^{\prime} \in\right] 0, \delta_{2}\right]$ such that for all $\left.\left.\delta \in\right] 0, \delta^{\prime}\right]$, there exists an $n^{\prime}(\delta) \in \mathbb{N}$ such that for all $n \geqslant n^{\prime}(\delta)$ the pair $\left(N_{1, n}(\delta), N_{2, n}(\delta)\right)$ is an $F M$-index pair for $S_{n}$, relative to $\pi_{n}$.

Lemma 5.7. If $u_{n} \rightarrow u_{0}$ in $\tilde{U}$ then $t_{n}^{+}\left(u_{n}\right) \rightarrow t_{0}^{+}(u)$ as $n \rightarrow \infty$.
Now Lemma 5.8 below completes the proof of Theorem 5.5.
Lemma 5.8. There exists a $\left.\left.\delta^{\prime \prime} \in\right] 0, \delta^{\prime}\right]$ such that for all $\left.\left.\delta \in\right] 0, \delta^{\prime \prime}\right]$, there exists an $n^{\prime \prime}(\delta) \in \mathbb{N}, n^{\prime \prime}(\delta) \geqslant n^{\prime}(\delta)$, such that for all $n \geqslant n^{\prime \prime}(\delta)$ and all $I \in \mathcal{A}(\prec)$ the pair $\left(N_{I, n}(\delta), N_{2, n}(\delta)\right)$ is an $F M$-index pair for $M_{n}(I)$, relative to $\pi_{n}$.

Proof. In this proof we will write $B_{I}:=B_{I, \delta_{2}, b_{2}, \varepsilon_{2}}$ for short.
Using standard arguments together with Proposition 3.3 we see that there is a $\delta^{\prime \prime} \in$ $\left.] 0, \delta^{\prime}\right]$ such that for all $\left.\left.\delta \in\right] 0, \delta^{\prime \prime}\right]$, there exists an $n^{\prime \prime}(\delta) \in \mathbb{N}, n^{\prime \prime}(\delta) \geqslant n^{\prime}(\delta)$, so that for all $n \geqslant n^{\prime \prime}(\delta)$ and all $I \in \mathcal{A}(\prec), N_{2, n}(\delta)$ is $N_{I, n}(\delta)$-positively invariant, $M_{n}(I) \subset$ $\operatorname{Int}\left(N_{I, n}(\delta) \backslash N_{2, n}(\delta)\right)$ and $M_{n}(I)$ is the largest $\pi_{n}$-invariant set in $\mathrm{Cl}\left(N_{I, n}(\delta) \backslash N_{2, n}(\delta)\right)$.

Now notice that the set

$$
\begin{gathered}
N_{I, n}^{c}(\delta):=B_{I} \cap \mathrm{Cl}\left\{y \mid \text { there exist an } x \in \Lambda_{I, \delta} \text { and a } t \geqslant 0\right. \text { such that } \\
\left.\qquad x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}
\end{gathered}
$$

is $B_{I}$-positively invariant relative to $\pi_{n}$. Thus, if $N_{2, n}(\delta)$ is not an exit ramp for $N_{I, n}(\delta)$ (relative to $\pi_{n}$ ) then $\partial B_{I} \cap N_{I, n}(\delta) \not \subset N_{2, n}(\delta)$. Therefore, the proof of the lemma will be complete if we show that there exists a $\left.\left.\delta^{\prime \prime \prime} \in\right] 0, \delta^{\prime \prime}\right]$, such that for all $\left.\delta \in] 0, \delta^{\prime \prime \prime}\right]$, there exists an $n^{\prime \prime \prime}(\delta) \geqslant n^{\prime \prime}(\delta)$ such that for all $n \geqslant n^{\prime \prime \prime}(\delta)$ and all $I \in \mathcal{A}(\prec)$, $\partial B_{I} \cap N_{I, n}(\delta) \subset N_{2, n}(\delta)$. Suppose this is not true. Then there exist an $I \in \mathcal{A}(\prec)$ and a decreasing sequence $\left(\gamma_{m}\right)_{m}$, with $\gamma_{m}<\delta_{2}$ and sequences $\left(n_{m}\right)_{m}$ and $\left(y_{m}\right)_{m}$ such that $\gamma_{m} \rightarrow 0, n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ and

$$
\begin{equation*}
y_{m} \in\left(\partial B_{I} \cap N_{I, n_{m}}\left(\gamma_{m}\right)\right) \backslash N_{2, n_{m}}\left(\gamma_{m}\right), \quad m \in \mathbb{N} . \tag{5.2}
\end{equation*}
$$

Hence, $y_{m} \in N_{1, n_{m}}\left(\gamma_{m}\right)$ and so for each $m \in \mathbb{N}, t_{n_{m}}^{+}\left(y_{m}\right)>b$ and there exists a $x_{m} \in \Lambda_{I, \gamma_{m}}$ and a $t_{m} \geqslant 0$ such that $x_{m} \pi_{n_{m}}\left[0, t_{m}\right] \subset \widetilde{U}$ and $\mathrm{d}\left(y_{m}, x_{m} \pi_{n_{m}} t_{m}\right)<1 / 2^{m}$. Admissibility and the properties of the set $\Lambda_{I, \gamma_{m}}$ imply that there exist subsequences of $\left(x_{m}\right)_{m}$ and $\left(t_{m}\right)_{m}$, denoted again by $\left(x_{m}\right)_{m}$ and $\left(t_{m}\right)_{m}$, and $x_{0}, y_{0} \in X$ such that $x_{m} \rightarrow x_{0}$ and $x_{m} \pi_{n_{m}} t_{m} \rightarrow y_{0}$ as $m \rightarrow \infty$. Since $x_{m} \in \Lambda_{I, \gamma_{m}} \subset B_{I, \gamma_{m}, b_{3}, \varepsilon_{3}} \subset B_{I, \gamma_{1}, b_{3}, \varepsilon_{3}}$, with $\gamma_{1}<\delta_{2}$, Lemma 5.4 implies

$$
\begin{equation*}
x_{0} \in B_{I, \gamma_{1}, b_{3}, \varepsilon_{3}} \subset \operatorname{Int}\left(B_{I}\right) \tag{5.3}
\end{equation*}
$$

We claim that $x_{m} \pi_{n_{m}}\left[0, t_{m}\right] \subset B_{I}$ for all $m \in \mathbb{N}$ large enough. If our claim is not true, then, using (5.3) and taking subsequences if necessary, we may assume that for each
$m \in \mathbb{N}$, there exists a $\tau_{m} \leqslant t_{m}$ such that

$$
\begin{equation*}
x_{m} \pi_{n_{m}}\left[0, \tau_{m}\right] \subset B_{I} \text { and } x_{m} \pi_{n_{m}} \tau_{m} \in \partial B_{I} \tag{5.4}
\end{equation*}
$$

Let $\left.b^{\prime} \in\right] b_{2}, b\left[\right.$. Since $y_{m} \rightarrow y_{0}$ as $m \rightarrow \infty$ Lemma 5.7 implies $t_{0}^{+}\left(y_{0}\right) \geqslant b>b^{\prime}$. Hence, again by Lemma 5.7, $t_{n_{m}}^{+}\left(x_{m} \pi_{n_{m}} t_{m}\right)>b^{\prime}$ for $m$ large enough.

Suppose that $\tau_{m} \rightarrow 0$ as $m \rightarrow \infty$. Since $\pi_{n} \rightarrow \pi_{0}$, it follows that $x_{m} \pi_{n_{m}} \tau_{m} \rightarrow$ $x_{0}$ as $m \rightarrow \infty$. Formulas (5.3) and (5.4) imply that $x_{0} \in \operatorname{Int}\left(B_{I}\right) \cap \partial B_{I}$ which is a contradiction. Hence, we may assume, taking subsequence if necessary, that there exists an $r>0$ such that $\tau_{m}>r$ for all $m$ large enough.

Define $z_{m}:=x_{m} \pi_{n_{m}}\left(\tau_{m}-r\right), m \in \mathbb{N}$. Without loss of generality, we may assume that there exists a $z_{0} \in X$ such that $z_{m} \rightarrow z_{0}$ as $m \rightarrow \infty$. Note that, for all $m \in \mathbb{N}$, $z_{m} \pi_{n_{m}}[0, r]=x_{m} \pi_{n_{m}}\left[\tau_{m}-r, \tau_{m}\right] \subset B_{I}$ and so $z_{0} \pi_{0}[0, r] \subset B_{I}$. Since, $z_{m} \pi_{n_{m}} r=$ $x_{m} \pi_{n_{m}} \tau_{m}$ for all $m \in \mathbb{N}$ and $\pi_{n} \rightarrow \pi_{0}$, it follows from (5.4) that $z_{0} \pi_{0} r \in \partial B_{I}$. Since $z_{0} \pi_{0}[0, r] \subset B_{I}$ and $z_{0} \pi_{0} r \in \partial B_{I}$, it follows that $z_{0} \pi_{0} r \notin B_{I}^{+}$, where, as usual, $B_{I}^{+}$ is the entrance set of the isolating block $B_{I}$, relative to $\pi_{0}$. Since ( $B_{I}, B_{P \backslash I, \delta_{2}, b_{2}, \varepsilon_{2}}$ ) is a block pair for ( $\pi_{0}, S_{0}, M_{0}(I), M_{0}(P \backslash I)$ ) and so $B_{I} \cap B_{P \backslash I, \delta_{2}, b_{2}, \varepsilon_{2}} \subset B_{I}^{+} \cap$ $B_{P \backslash I, \delta_{2}, b_{2}, \varepsilon_{2}}^{-}$, it follows that $z_{0} \pi_{0} r \notin B_{P \backslash I, \delta_{2}, b_{2}, \varepsilon_{2}}$. Hence, $z_{0} \pi_{0} r \in \partial B_{I} \backslash B_{P \backslash I, \delta_{2}, b_{2}, \varepsilon_{2}} \subset$ $\partial B_{\delta_{2}, b_{2}}$. Since $z_{0} \pi_{0}[0, r] \subset B_{I} \subset B_{\delta_{2}, b_{2}}$, it follows that $z_{0} \pi_{0} r \in B_{\delta_{2}, b_{2}}^{-}$. Lemma 5.1 implies that $t_{0}^{+}\left(z_{0} \pi_{0} r\right)=b_{2}$. On the other hand, since $\tau_{m} \leqslant t_{m}$, it follows that $t_{n_{m}}^{+}\left(x_{m} \pi_{n_{m}} \tau_{m}\right) \geqslant t_{n_{m}}^{+}\left(x_{m} \pi_{n_{m}} t_{m}\right)>b^{\prime}$ for all $m$ large enough and so $b_{2}=t_{0}^{+}\left(z_{0} \pi_{0} r\right) \geqslant b^{\prime}>$ $b_{2}$ which is a contradiction. Therefore, our claim holds.

Suppose now that $t_{m} \rightarrow 0$ as $m \rightarrow \infty$. Since $\pi_{n} \rightarrow \pi_{0}$, it follows that $x_{m} \pi_{n_{m}} t_{m} \rightarrow x_{0}$ as $m \rightarrow \infty$ and so $y_{m} \rightarrow x_{0}$ as $m \rightarrow \infty$. Formulas (5.2) and (5.3) imply that $x_{0} \in$ $\operatorname{Int}\left(B_{I}\right) \cap \partial B_{I}$ which is a contradiction. Hence, we may assume that, taking subsequence if necessary, there exists an $s>0$ such that $t_{m}>s$ for all $m$ large enough.

Define $w_{m}:=x_{m} \pi_{n_{m}}\left(t_{m}-s\right), m \in \mathbb{N}$. Taking subsequence if necessary, we may assume that there exists a $w_{0} \in X$ such that $w_{m} \rightarrow w_{0}$ as $m \rightarrow \infty$. Note that, for all $m \in \mathbb{N}, w_{m} \pi_{n_{m}}[0, s]=x_{m} \pi_{n_{m}}\left[t_{m}-s, t_{m}\right] \subset B_{I}$ and so $w_{0} \pi_{0}[0, s] \subset B_{I}$. Since $w_{m} \pi_{n_{m}} s \equiv x_{m} \pi_{n_{m}} t_{m}$ it follows that $w_{0} \pi_{0} s \in \partial B_{I}$. Thus $w_{0} \pi_{0} s \notin B_{I}^{+}$and so $w_{0} \pi_{0} s \in \partial B_{I} \backslash B_{P \backslash I, \delta_{2}, b_{2}, \varepsilon_{2}} \subset \partial B_{\delta_{2}, b_{2}}$. Since $w_{0} \pi_{0}[0, s] \subset B_{I} \subset B_{\delta_{2}, b_{2}}$, it follows that $w_{0} \pi_{0} s \in B_{\delta_{2}, b_{2}}^{-}$. Lemma 5.1 implies that $t_{0}^{+}\left(w_{0} \pi_{0} s\right)=b_{2}$. On the other hand, since $t_{n_{m}}^{+}\left(x_{m} \pi_{n_{m}} t_{m}\right)>b^{\prime}$ for all $m$ large enough, we have $b_{2}=t_{0}^{+}\left(w_{0} \pi_{0} s\right) \geqslant b^{\prime}>b_{2}$ which is a contradiction. The proof of the lemma is complete.

We conclude this section with the following result.
Theorem 5.9. Let the numbers $\bar{b}, b, b_{2}, b_{3}, \bar{\varepsilon}, \varepsilon_{2}, \varepsilon_{3}, \bar{\delta}, \delta_{2}$ and the sets $\Lambda_{I, \delta}$ be as in the hypotheses of Theorem 5.5. Let $\left.\left.\delta_{3} \in\right] 0, \delta_{2}\right]$ be as in the conclusion of that theorem. Let the numbers $b_{1}^{\prime}, b_{2}^{\prime}$ and $b_{1}^{\prime \prime}$ be such that $b_{3}<b_{1}^{\prime}<b_{2}^{\prime}<$ $b<b_{1}^{\prime \prime}$. For each $\left.\left.\delta \in\right] 0, \delta_{3}\right]$, let $n_{0}(\delta) \in \mathbb{N}$ such that the conclusions of Theorem 5.5 hold for all $n \geqslant n_{0}(\delta)$. Then there exists a $\left.\delta_{4} \in\right] 0, \delta_{3}$ ] such that for all $\left.\delta \in] 0, \delta_{4}\right]$, there exists an $n_{1}(\delta) \geqslant n_{0}(\delta)$ such that for all $n \geqslant n_{1}(\delta)$, the following
inclusions hold:

$$
B_{\delta, b_{3}} \cap\left\{y \in \tilde{U} \mid t_{0}^{+}(y) \leqslant b_{2}^{\prime}\right\} \subset B_{\delta, b_{3}} \cap\left\{y \in \tilde{U} \mid t_{n}^{+}(y) \leqslant b\right\}
$$

and

$$
N_{2, n}(\delta) \subset B_{\delta_{2}, b_{2}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{1}^{\prime \prime}\right\}
$$

Proof. Suppose the conclusions of the theorem do not hold. Then there exist a decreasing sequence $\left(\gamma_{m}\right)_{m}$ converging to zero, a sequence $\left(n_{m}\right)_{m}$ in $\mathbb{N}$ with $n_{m} \rightarrow \infty$ and a sequence $\left(y_{m}\right)_{m}$ such that

$$
\begin{equation*}
y_{m} \in B_{\gamma_{m}, b_{3}}, t_{0}^{+}\left(y_{m}\right) \leqslant b_{2}^{\prime} \text { and } t_{n_{m}}^{+}\left(y_{m}\right)>b \quad \text { for all } m \in \mathbb{N} \tag{5.5}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{m} \in N_{2, n_{m}}\left(\gamma_{m}\right) \text { and } t_{0}^{+}\left(y_{m}\right)>b_{1}^{\prime \prime} \quad \text { for all } m \in \mathbb{N} . \tag{5.6}
\end{equation*}
$$

By admissibility there exists a subsequence of $\left(y_{m}\right)_{m}$ which we denote again by $\left(y_{m}\right)_{m}$ and there is a $y_{0} \in \widetilde{N}$ such that $y_{m} \rightarrow y_{0}$ as $m \rightarrow \infty$. If (5.5) holds, then, for all $m \in \mathbb{N}$ large enough, $y_{m} \in B_{\gamma_{m}, b_{3}} \subset B_{\delta_{3}, b_{3}} \subset B_{\delta_{2}, b_{2}}$ and so ${\underset{\tilde{U}}{0}} \in B_{\delta_{2}, b_{2}} \subset \widetilde{U}$. If (5.6) holds, then, for all $m \in \mathbb{N}, y_{m} \in B_{\delta_{2}, b_{2}}$ and so again $y_{0} \in \widetilde{U}$. In both cases Lemma 5.7 and the continuity of $t_{0}^{+}$imply that $t_{n_{m}}^{+}\left(y_{m}\right) \rightarrow t_{0}^{+}\left(y_{0}\right)$ and $t_{0}^{+}\left(y_{m}\right) \rightarrow t_{0}^{+}\left(y_{0}\right)$ as $m \rightarrow \infty$.

Suppose (5.5) holds. Then we get $t_{0}^{+}\left(y_{0}\right) \leqslant b_{2}^{\prime}<b \leqslant t_{0}^{+}\left(y_{0}\right)$ which is a contradiction. If (5.6) holds, the definition of the $N_{2, n_{m}}\left(\gamma_{m}\right)$ implies that $t_{n_{m}}^{+}\left(y_{m}\right) \leqslant b$ for all $m \in$ $\mathbb{N}$ and so $t_{0}^{+}\left(y_{0}\right) \leqslant b<b_{1}^{\prime \prime} \leqslant t_{0}^{+}\left(y_{0}\right)$ which is a contradiction again. The theorem is proved.

## 6. The proof of the nested index filtration theorem

Let $\bar{b}$ be as in Lemma 5.1 and $\bar{\delta}$ and $\bar{\varepsilon}$ be as in Lemma 5.2. Fix real numbers $\varepsilon_{i}$, $b_{i}, i=1, \ldots, 5, \delta_{i}, i=1,2, b, b_{i}^{\prime}, b_{i}^{\prime \prime}, i=1,2$ such that

$$
\begin{equation*}
0<\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}<\varepsilon_{4}<\varepsilon_{5}<\bar{\varepsilon}, 0<\delta_{2}<\delta_{1}<\bar{\delta} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{b}<b_{1}<b_{2}<b_{3}<b_{4}<b_{5}<b_{1}^{\prime}<b_{2}^{\prime}<b<b_{1}^{\prime \prime}<b_{2}^{\prime \prime} . \tag{6.2}
\end{equation*}
$$

For all $\left.\delta \in] 0, \delta_{2}\right]$ and $I \in \mathcal{A}(\prec)$ define $\Lambda_{I, \delta}:=B_{I, \delta, b_{3}, \varepsilon_{3}}$.

It is immediately checked that the family $\Lambda_{I, \delta}$ of sets satisfies the hypotheses of Theorem 5.5.

For $\left.\delta \in] 0, \delta_{2}\right], n \in \mathbb{N}$ and $I \in \mathcal{A}(\prec)$ define the sets $N_{1, n}(\delta), N_{I, n}(\delta)$ and $N_{2, n}(\delta)$ as in Theorem 5.5 with respect to this choice of the set $\Lambda_{I, \delta}$. More explicitly,

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
N_{1, n}(\delta):=B_{\delta_{2}, b_{2}} \cap \mathrm{Cl}\left\{y \mid \text { there exist an } x \in B_{\delta, b_{3}} \text { and a } t \geqslant 0\right. \text { such that } \\
\left.\qquad x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}, \\
N_{2, n}(\delta):=N_{1, n}(\delta) \cap\left\{y \in \widetilde{U} \mid t_{n}^{+}(y) \leqslant b\right\}, \\
N_{I, n}(\delta):=\left[B _ { I , \delta _ { 2 } , b _ { 2 } , \varepsilon _ { 2 } } \cap \mathrm { Cl } \left\{y \mid \text { there exist an } x \in B_{I, \delta, b_{3}, \varepsilon_{3}} \text { and a } t \geqslant 0\right.\right. \text { such that } \\
\qquad
\end{array} \quad x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}\right] \cup N_{2, n}(\delta) .
\end{aligned}
$$

An application of Theorem 5.5 shows that there is a $\left.\delta_{3} \in\right] 0, \delta_{2}[$ such that for every $\delta \in$ $\left.] 0, \delta_{3}\right]$, there exists an $n_{0}(\delta) \in \mathbb{N}$ such that for all $n \geqslant n_{0}(\delta)$ and for all $I \in \mathcal{A}(\prec)$ the triple $\left(N_{1, n}(\delta), N_{I, n}(\delta), N_{2, n}(\delta)\right)$ is an FM-index triple for $\left(\pi_{n}, S_{n}, M_{n}(I), M_{n}(P \backslash I)\right.$ ). Let $\delta_{4} \in\left[0, \delta_{3}\left[\right.\right.$ be as in Theorem 5.9 and $n_{2}:=n_{1}\left(\delta_{4}\right) \in \mathbb{N}$ as in the conclusions of that theorem (again for the above choice of $\Lambda_{I, \delta}$ ). Choose $\delta_{5}$ with

$$
\begin{equation*}
\left.\delta_{5} \in\right] 0, \delta_{4}[ \tag{6.3}
\end{equation*}
$$

For $n \geqslant n_{2}$ and $I \in \mathcal{A}(\prec)$ define the following sets:

$$
\begin{aligned}
& N_{1}^{2}:=B_{\delta_{5}, b_{4}}, \quad N_{2}^{2}:=B_{\delta_{5}, b_{4}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{1}^{\prime}\right\}, \\
& N_{1}^{4}:=B_{\delta_{1}, b_{1}}, \quad N_{2}^{4}:=B_{\delta_{1}, b_{1}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{2}^{\prime \prime}\right\}, \\
& N_{1, n}:=N_{1, n}\left(\delta_{4}\right), \quad N_{2, n}:=N_{2, n}\left(\delta_{4}\right), \\
& N_{I}^{2}:=B_{I, \delta_{5}, b_{4}, \varepsilon_{4}} \cup N_{2}^{2}, \quad N_{I}^{4}:=B_{I, \delta_{1}, b_{1}, \varepsilon_{1}} \cup N_{2}^{4}, \quad N_{I, n}:=N_{I, n}\left(\delta_{4}\right), \\
& V_{1}:=\operatorname{Int}\left(B_{\delta_{4}, b_{3}}\right), \quad V_{I, 3}:=\operatorname{Int}\left(B_{I, \delta_{4}, b_{3}, \varepsilon_{3}}\right) \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\}, \\
& V_{I, 4}:=\operatorname{Int}\left(B_{\delta_{4}, b_{3}}\right) \cap\left(X \backslash B_{I, \delta_{2}, b_{2}, \varepsilon_{2}}\right) \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\} .
\end{aligned}
$$

It is clear that for each $I \in \mathcal{A}(\prec)$ the triple $\left(N_{1}^{i}, N_{I}^{i}, N_{2}^{i}\right)$ is an FM-index triple for $\left(\pi_{0}, S_{0}, M_{0}(I), M_{0}(P \backslash I)\right), i=2$, 4. Moreover, a lengthy but straightforward check using Theorem 5.9 confirms that for all $n \geqslant n_{2}$ and $I \in \mathcal{A}(\prec)$ the following inclusions hold:

$$
\begin{aligned}
& N_{1}^{2} \subset \tilde{U}, \quad N_{1}^{2} \subset V_{1} \subset N_{1, n} \subset N_{1}^{4}, \quad N_{2}^{2} \subset N_{2}^{4}, \quad N_{I}^{2} \subset N_{I}^{4} \\
& \mathrm{Cl}\left(N_{I}^{2} \backslash N_{2}^{4}\right) \subset V_{I, 3} \subset \operatorname{Int}\left(N_{I, n} \backslash N_{2, n}\right) \\
& \mathrm{Cl}\left(N_{1}^{2} \backslash N_{I}^{4}\right) \subset V_{I, 4} \subset \operatorname{Int}\left(N_{1, n} \backslash N_{I, n}\right) .
\end{aligned}
$$

This means that all assumptions of Theorem 4.1 are satisfied. That theorem therefore implies the following result.

Theorem 6.1. With the notation introduced above, there exists an $n_{2} \in \mathbb{N}$ such that for every $n \in \mathbb{N}_{0}$ with $n=0$ or $n \geqslant n_{2}$ there exists an index filtration $\left(N_{n}(I)\right)_{I \in \mathcal{A}(<)}$ for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ such that for all $I \in \mathcal{A}(\prec)$ the following inclusions hold:
(1) $B_{I, \delta_{5}, b_{4}, \varepsilon_{4}} \cup N_{2}^{2}=N_{I}^{2} \subset N_{0}(I) \subset N_{1}^{2}=B_{\delta_{5}, b_{4}}$,
(2) $N_{2}^{2} \subset N_{0}(\emptyset)$,
(3) $N_{I, n} \subset N_{n}(I) \subset N_{1, n}$,
(4) $N_{2, n} \subset N_{n}(\emptyset)$.

Moreover, whenever $I \in \mathcal{A}(\prec),\left(n_{m}\right)_{m}$ is a sequence such that $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ and $\left(x_{m}\right)_{m}$ is a sequence in $N_{1}^{2}$ such that $x_{m} \in N_{n_{m}}(I)$ for all $m \in \mathbb{N}$ and $\left(x_{m}\right)_{m}$ is convergent (in $X$ ), then there exists an $m_{0} \in \mathbb{N}$ such that $x_{m} \in N_{0}(I)$ for all $m \geqslant m_{0}$.

Let $n_{2}$ and $\left(N_{0}(I)\right)_{I \in \mathcal{A}(<)}$ be as in Theorem 6.1. For $I \in \mathcal{A}(\prec)$ we will now define a new family $\left.\widetilde{G}_{P \backslash I, \varepsilon}, \varepsilon \in\right] 0, \infty\left[\right.$, of closed neighborhoods of $M_{0}(P \backslash I)$ to which the results of the preceding section, in particular Theorems 5.5 and 5.9 , can be applied.

Given $I \in \mathcal{A}(\prec)$ with $M_{0}(P \backslash I) \neq \emptyset$ let

$$
\begin{equation*}
\widetilde{U}_{P \backslash I}:=\operatorname{Int}\left(N_{0}(P) \backslash N_{0}(I)\right) . \tag{6.4}
\end{equation*}
$$

$\widetilde{U}_{P \backslash I}$ is an open neighborhood of $M_{0}(P \backslash I)$ with $\operatorname{Cl}\left(\widetilde{U}_{P \backslash I}\right) \cap M_{0}(I)=\emptyset$. Let $\widetilde{g}_{P \backslash I}^{+}: \widetilde{U}_{P \backslash I} \rightarrow[0, \infty[$ be the map given by

$$
\widetilde{g}_{P \backslash I}^{+}(x):=\inf \left\{(1+t)^{-1} \widetilde{G}\left(x \pi_{0} t\right) \mid 0 \leqslant t<\rho_{\widetilde{U}_{P \backslash I}, \pi_{0}}(x)\right\},
$$

where $\widetilde{G}(x):=\mathrm{d}\left(x,{\underset{\sim}{M}}_{0}(P \backslash I)\right) /\left(\mathrm{d}\left(x, M_{0}(P \backslash I)\right)+\mathrm{d}\left(x, X_{\tilde{\sim}} \backslash \mathrm{Cl}\left(\tilde{U}_{P \backslash I}\right)\right)\right), x \in \widetilde{U}_{P} \tilde{W}_{P \backslash I}$.
Choose open sets $\widetilde{V}_{P \backslash I}$ and $\widetilde{W}_{P \backslash I}$ such that $M_{0}(P \backslash I) \subset \widetilde{V}_{P \backslash I} \subset \mathrm{Cl}\left(\widetilde{V}_{P \backslash I}\right) \subset \widetilde{W}_{P \backslash I} \subset$ $\mathrm{Cl}\left(\widetilde{W}_{P \backslash I}\right) \subset \widetilde{U}_{P \backslash I}$ and $\left.g_{P \backslash I}^{+}\right|_{\mathrm{Cl}\left(\tilde{W}_{P \backslash I}\right)}$ is continuous. This is possible by Proposition I.5.2 in [22].

Now, for arbitrary $I \in \mathcal{A}(\prec)$ and $\varepsilon \in] 0, \infty[$ define

$$
\widetilde{G}_{P \backslash I, \varepsilon}:= \begin{cases}\mathrm{Cl}\left\{y \in \widetilde{V}_{P \backslash I} \mid \tilde{g}_{P \backslash I}^{+}(y)<\varepsilon\right\} & \text { if } M_{0}(P \backslash I) \neq \emptyset, \\ \emptyset & \text { otherwise }\end{cases}
$$

and set

$$
\left.\widetilde{B}_{P \backslash I, \delta, b, \varepsilon}:=B_{1, \delta, b, \widetilde{G}_{P \backslash I, \varepsilon}}, \widetilde{B}_{I, \delta, b, \varepsilon}:=B_{2, \delta, b, \widetilde{G}_{P \backslash I, \varepsilon}}, I \in \mathcal{A}(\prec), \varepsilon \in\right] 0, \infty[.
$$

(cf. (5.1)).
Lemma 5.2, Corollary 5.3 and Lemma 5.4 imply that there exist a $\left.\widetilde{\delta}_{0} \in\right] 0, \delta_{5}[$ (with $\delta_{5}$ as in (6.3)) and an $\left.\widetilde{\varepsilon}_{0} \in\right] 0, \bar{\varepsilon}[$ such that for all $\left.\left.\left.\widetilde{\delta} \in] 0, \widetilde{\delta}_{0}\right], \widetilde{\varepsilon} \in\right] 0, \widetilde{\varepsilon}_{0}\right]$,
$b \in\left[\bar{b}, \infty\left[\right.\right.$ and for all $I \in \mathcal{A}(\prec)$, the pair $\left(\widetilde{B}_{P \backslash I, \delta, b, \varepsilon}, \widetilde{B}_{I, \delta, b, \varepsilon}\right)$ is a block pair for $\left(\pi_{0}, S_{0}, M_{\underline{0}}(I), M_{\tilde{0}}(P \backslash I)\right)$. Moreover, if $0<\widetilde{\varepsilon}_{3}<\widetilde{\varepsilon}_{2} \leqslant \widetilde{\varepsilon}_{0}, 0<\widetilde{\delta}_{3}<\widetilde{\delta}_{2} \leqslant \widetilde{\delta}_{0}$ and $\widetilde{b}_{2}<\widetilde{b}_{3} \leqslant \bar{b}$ then $\widetilde{B}_{I, \widetilde{\delta}_{3}, \widetilde{b}_{3}, \widetilde{\varepsilon}_{3}} \subset \operatorname{Int}\left(\widetilde{B}_{I}, \widetilde{\delta}_{2}, \widetilde{b}_{2}, \widetilde{\varepsilon}_{2}\right)$. Formula (6.4) implies that

$$
\begin{equation*}
\left.\left.\left.\left.N_{0}(I) \cap B_{\widetilde{\delta}, b} \subset \widetilde{B}_{I, \tilde{\delta}, b, \widetilde{\varepsilon}}, \quad \widetilde{\delta} \in\right] 0, \widetilde{\delta}_{0}\right], \widetilde{\varepsilon} \in\right] 0, \widetilde{\varepsilon}_{0}\right], b \in[\bar{b}, \infty[, I \in \mathcal{A}(\prec) \tag{6.5}
\end{equation*}
$$

Therefore, the following lemma is obvious:
Lemma 6.2. Let $\left.\widetilde{\varepsilon}_{3} \in\right] 0, \widetilde{\varepsilon}_{0}[$. Then for every $\left.\widetilde{\delta} \in] 0, \widetilde{\delta}_{0}\right]$ and $I \in \mathcal{A}(\prec)$ the set $\Lambda_{I, \tilde{\delta}}:=N_{0}(I) \cap B_{\widetilde{\delta}, b_{3}}$ is a closed subset of $X$ and

$$
M_{0}(I) \subset \operatorname{Int}\left(\Lambda_{I, \tilde{\delta}}\right) \subset \Lambda_{I, \tilde{\delta}} \subset \widetilde{B}_{I, \widetilde{\delta}_{\delta}, b_{3}, \widetilde{\varepsilon}_{3}}
$$

Whenever $\widetilde{\delta}<\widetilde{\delta}^{\prime}$, then $\Lambda_{I, \tilde{\delta}} \subset \Lambda_{I, \tilde{\delta}^{\prime}}$. Furthermore, whenever $\left(\widetilde{\delta}_{n}\right)_{n}$ is a decreasing sequence converging to zero and $x_{n} \in \Lambda_{I, \widetilde{\delta}_{n}}$ for all $n \in \mathbb{N}$, then the sequence $\left(x_{n}\right)_{n}$ has a convergent subsequence.

For $\left.\widetilde{\delta} \in] 0, \widetilde{\delta}_{2}\right], n \in \mathbb{N}$ and $I \in \mathcal{A}(\prec)$ define

$$
\begin{aligned}
& \tilde{N}_{1, n}(\widetilde{\delta}):=B_{\widetilde{\delta}_{2}, b_{2}} \cap \mathrm{Cl}\left\{y \mid \text { there exist an } x \in B_{\widetilde{\delta}, b_{3}} \text { and a } t \geqslant 0\right. \text { such that } \\
& \left.\qquad x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}, \\
& \widetilde{N}_{2, n}(\widetilde{\delta}):=\widetilde{N}_{1, n}(\widetilde{\delta}) \cap\left\{y \in \widetilde{U} \mid t_{n}^{+}(y) \leqslant b\right\}, \\
& \widetilde{N}_{I, n}(\widetilde{\delta}):=\left[\widetilde { B } _ { I , \widetilde { \delta } _ { 2 } , b _ { 2 } , \tilde { \varepsilon } _ { 2 } } \cap \mathrm { Cl } \left\{y \mid \text { there exist an } x \in N_{0}(I) \cap B_{\tilde{\delta}, b_{3}} \text { and a } t \geqslant 0\right.\right. \text { such } \\
& \left.\left.\quad \text { that } x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}\right] \cup \widetilde{N}_{2, n}(\widetilde{\delta}) .
\end{aligned}
$$

An application of Theorem 5.5 shows that there is a $\left.\widetilde{\delta}_{3} \in\right] 0, \widetilde{\delta}_{2}[$ such that for every $\widetilde{\delta} \in$ $\left.] 0, \widetilde{\delta}_{3}\right]$, there exists an $\widetilde{\sim}_{0}(\widetilde{\delta}) \in \mathbb{N}$ such that for all $n \geqslant \widetilde{n}_{0}(\widetilde{\delta})$ and for all $I \in \mathcal{A}(\prec)$ the triple $\left(\widetilde{N}_{1, n}(\widetilde{\delta}), \widetilde{N}_{I, n}(\widetilde{\delta}), \widetilde{N}_{2, n}(\widetilde{\delta})\right)$ is an $\underset{\sim}{\text { FM}}$-index triple for $\left(\pi_{n}, S_{n}, M_{n}(I), M_{n}(P \backslash I)\right)$. By Theorem 5.9 there exists a $\left.\widetilde{\delta}_{4} \in\right] 0_{2} \widetilde{\delta}_{3}$ ] such that for all $\left.\left.\widetilde{\delta} \in\right] 0, \widetilde{\delta}_{4}\right]$, there exists an $\widetilde{n}_{1}(\widetilde{\delta}) \geqslant \widetilde{n}_{0}(\widetilde{\delta})$ such that for all $n \geqslant \widetilde{n}_{1}(\widetilde{\delta})$, the following inclusions hold:

$$
\begin{equation*}
B_{\tilde{\delta}, b_{3}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{2}^{\prime}\right\} \subset B_{\tilde{\delta}, b_{3}} \cap\left\{y \in \tilde{U} \mid t_{n}^{+}(y) \leqslant b\right\} \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{N}_{2, n}(\widetilde{\delta}) \subset B_{\tilde{\delta}_{2}, b_{2}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{1}^{\prime \prime}\right\} \tag{6.7}
\end{equation*}
$$

Fix positive numbers $\widetilde{\varepsilon}_{i}, i=1, \ldots, 4, \widetilde{\delta}_{1}$ and $\widetilde{\delta}_{5}$ such that

$$
\begin{equation*}
0<\widetilde{\varepsilon}_{1}<\widetilde{\varepsilon}_{2}<\widetilde{\varepsilon}_{3}<\widetilde{\varepsilon}_{4}<\widetilde{\varepsilon}_{0} \text { and } 0<\widetilde{\delta}_{5}<\widetilde{\delta}_{4}<\widetilde{\delta}_{3}<\widetilde{\delta}_{2}<\widetilde{\delta}_{1}<\widetilde{\delta}_{0} \tag{6.8}
\end{equation*}
$$

For $n \geqslant n_{3}:=\max \left\{n_{2}, \tilde{n}_{1}\left(\widetilde{\delta}_{4}\right)\right\}$ Define the following sets:

$$
\begin{aligned}
& \widetilde{N}_{1}^{2}:=B_{\tilde{\delta}_{5}, b_{5}}, \quad \widetilde{N}_{2}^{2}:=B_{\tilde{\delta}_{5}, b_{5}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{1}^{\prime}\right\}, \\
& \widetilde{N}_{1}^{4}:=\widetilde{\delta}_{1}, b_{1}, \quad \widetilde{N}_{2}^{4}:=B_{\tilde{\delta}_{1}, b_{1}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y) \leqslant b_{2}^{\prime \prime}\right\}, \\
& \widetilde{N}_{1, n}:=\widetilde{N}_{1, n}\left(\widetilde{\delta}_{4}\right), \quad \widetilde{N}_{2, n}:=\widetilde{N}_{2, n}\left(\widetilde{\delta}_{4}\right), \\
& \widetilde{N}_{I}^{2}:=B_{I, \widetilde{\delta}_{5}, b_{5}, \varepsilon_{5}} \cup \widetilde{N}_{2}^{2}, \quad \widetilde{N}_{I}^{4}:=\widetilde{B}_{I, \widetilde{\delta}_{1}, b_{1}, \widetilde{\varepsilon}_{1}} \cup \widetilde{N}_{2}^{4}, \quad \widetilde{N}_{I, n}:=\widetilde{N}_{I, n}\left(\widetilde{\delta}_{4}\right), \\
& \widetilde{V}_{1}:=\operatorname{Int}\left(B_{\tilde{\delta}_{4}, b_{3}}\right), \widetilde{V}_{I, 3}:=\operatorname{Int}\left(B_{I, \widetilde{\delta}_{4}, b_{4}, \varepsilon_{4}}\right) \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\}, \\
& \widetilde{V}_{I, 4}:=\operatorname{Int}\left(B_{\tilde{\delta}_{4}, b_{3}}\right) \cap\left(X \backslash \widetilde{B}_{I, \tilde{\delta}_{2}, b_{2}, \widetilde{\varepsilon}_{2}}\right) \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\} .
\end{aligned}
$$

Note that there is no tilde ${ }^{\sim}$ over the letter ' $B$ ' in the definitions of $\widetilde{N}_{I}^{2}$ and $\widetilde{V}_{I, 3}$.
It is clear that for each $I \in \mathcal{A}(\prec)$ the triple $\left(\widetilde{N}_{1}^{i}, \widetilde{N}_{I}^{i}, \widetilde{N}_{2}^{i}\right)$ is an FM-index triple for $\left(\pi_{0}, S_{0}, M_{0}(I), M_{0}(P \backslash I)\right), i=2$, 4. We claim that for all $n \geqslant n_{3}$ and $I \in \mathcal{A}(\prec)$ the following inclusions hold:

$$
\begin{align*}
& \tilde{N}_{1}^{2} \subset \tilde{U}, \quad \tilde{N}_{1}^{2} \subset \tilde{V}_{1} \subset \tilde{N}_{1, n} \subset \tilde{N}_{1}^{4}, \quad \tilde{N}_{2}^{2} \subset \tilde{N}_{2}^{4}, \quad \tilde{N}_{I}^{2} \subset \tilde{N}_{I}^{4}  \tag{6.9}\\
& \mathrm{Cl}\left(\tilde{N}_{I}^{2} \backslash \tilde{N}_{2}^{4}\right) \subset \widetilde{V}_{I, 3} \subset \operatorname{Int}\left(\tilde{N}_{I, n} \backslash \tilde{N}_{2, n}\right),  \tag{6.10}\\
& \mathrm{Cl}\left(\tilde{N}_{1}^{2} \backslash \widetilde{N}_{I}^{4}\right) \subset \widetilde{V}_{I, 4} \subset \operatorname{Int}\left(\tilde{N}_{1, n} \backslash \tilde{N}_{I, n}\right) . \tag{6.11}
\end{align*}
$$

We prove inclusion (6.10) and leave the other inclusions to the reader. Let $n \geqslant n_{3}$ and $I \in \mathcal{A}(\prec)$ be arbitrary. Notice that $\widetilde{N}_{I}^{2} \backslash \widetilde{N}_{2}^{4}=\left(B_{I, \widetilde{\delta}_{5}, b_{5}, \xi_{5}} \cup \widetilde{N}_{2}^{2}\right) \backslash \widetilde{N}_{2}^{4}$. Clearly, $\widetilde{N}_{2}^{2} \subset \widetilde{N}_{2}^{4}$, and so $\widetilde{N}_{I}^{2} \backslash \widetilde{N}_{2}^{4} \subset B_{I, \tilde{\delta}_{5}, b_{5}, \varepsilon_{5}} \backslash \widetilde{N}_{2}^{4}$ and thus $\widetilde{N}_{I}^{2} \backslash \widetilde{N}_{2}^{4} \subset B_{I, \widetilde{\delta}_{5}, b_{5}, \varepsilon_{5}} \cap\{y \in$ $\left.\tilde{U} \mid t_{0}^{+}(y) \geqslant b_{2}^{\prime \prime}\right\}=: T$. By Lemma 5.4, $B_{I, \tilde{\delta}_{5}, b_{5}, \varepsilon_{5}} \subset \operatorname{Int}\left(B_{I, \tilde{\delta}_{4}, b_{4}, \varepsilon_{4}}\right)$ so we obtain that $T \subset \widetilde{V}_{I, 3}$. Since $T$ is closed we only need to show that $\widetilde{N}_{I, 3} \subset \widetilde{N}_{I, n} \backslash \widetilde{N}_{2, n}$. The definition of the set $\widetilde{N}_{I, n}$ implies that $N_{0}(I) \cap B_{\tilde{\delta}_{4}, b_{3}} \subset \widetilde{N}_{I, n} \subset B_{\tilde{\delta}_{2}, b_{2}}$. Furthermore, since $\widetilde{\delta}_{4}<\delta_{5}$ it follows that $\operatorname{Int}\left(B_{I, \widetilde{\delta}_{4}, b_{4}, \varepsilon_{4}}\right) \subset B_{I, \delta_{5}, b_{4}, \varepsilon_{4}} \subset B_{I, \delta_{5}, b_{4}, \varepsilon_{4}} \cup N_{2}^{2}=N_{I}^{2}$ and $\underset{\sim}{\operatorname{Int}}\left(B_{I, \tilde{\delta}_{4}, b_{4}, \varepsilon_{4}}\right) \subset B_{\widetilde{\delta}_{4}, b_{3}}$. Therefore, the previous inclusions and Theorem 6.1 imply that $\widetilde{V}_{I, 3} \subset\left(N_{I}^{2} \cap B_{\tilde{\delta}_{4}, b_{3}}\right) \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\} \subset\left(N_{0}(I) \cap B_{\tilde{\delta}_{4}, b_{3}}\right) \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>\right.$ $\left.b_{1}^{\prime \prime}\right\} \subset \widetilde{N}_{I, n} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\} \subset B_{\tilde{\delta}_{2}, b_{2}} \cap\left\{y \in \widetilde{U} \mid t_{0}^{+}(y)>b_{1}^{\prime \prime}\right\} \subset X \backslash \widetilde{N}_{2, n}$. (The last inclusion follows from (6.7).) This proves (6.10).

Inclusions (6.9)-(6.11) imply that the assumptions of Theorem 4.1 are satisfied. That theorem therefore implies the following result.

Theorem 6.3. With the notation introduced above, there exists an $n_{3} \geqslant n_{2}$ such that for every $n \in \mathbb{N}_{0}$ with $n=0$ or $n \geqslant n_{3}$ there exists an index filtration $\left(\tilde{N}_{n}(I)\right)_{I \in \mathcal{A}(<)}$ for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ such that for all $I \in \mathcal{A}(\prec)$ the following inclusions hold:
(1) $\widetilde{N}_{I}^{2} \subset \widetilde{N}_{0}(I) \subset \widetilde{N}_{1}^{2}=B_{\tilde{N}_{5}, b_{5}}$,
(2) $\widetilde{N}_{2}^{2} \subset \widetilde{N}_{0}(\emptyset)$,
(3) $\underset{\sim}{N}(I) \cap{\underset{\sim}{\tilde{\delta}}}_{4}, b_{3} \subset \tilde{N}_{I, n} \subset \tilde{N}_{n}(I) \subset \tilde{N}_{1, n}$,
(4) $\tilde{N}_{2, n} \subset \tilde{N}_{n}(\emptyset)$.

Moreover, whenever $I \in \mathcal{A}(\prec),\left(n_{m}\right)_{m}$ is a sequence such that $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ and $\left(x_{m}\right)_{m}$ is a sequence in $\tilde{N}_{1}^{2}$ such that $x_{m} \in \widetilde{N}_{n_{m}}(I)$ for all $m \in \mathbb{N}$ and $\left(x_{m}\right)_{m}$ is convergent (in $X$ ), then there exists an $m_{0} \in \mathbb{N}$ such that $x_{m} \in \widetilde{N}_{0}(I)$ for all $m \geqslant m_{0}$.

The index filtrations that we have obtained from Theorems 6.1 and 6.3 do not as yet form a nested sequence as described in Theorem 3.4. However, after intersecting these index filtrations with appropriate sets and using Proposition 2.9 we will now obtain new index filtrations which do satisfy the nesting property. This will complete the proof of Theorem 3.4.

For $\gamma \in] 0, \infty[$ define the sets

$$
\begin{aligned}
& \widetilde{Y}_{1, n}(\gamma):=B_{\tilde{\delta}_{5}, b_{5}} \cap \mathrm{Cl}\left\{y \mid \text { there exist an } x \in B_{\gamma, b_{1}^{\prime}} \text { and a } t \geqslant 0\right. \text { such that } \\
& \left.\qquad x \pi_{n}[0, t] \subset \widetilde{U} \text { and } y=x \pi_{n} t\right\}, \\
& \widetilde{Y}_{2, n}(\gamma):=\widetilde{Y}_{1, n}(\gamma) \cap\left\{y \in \widetilde{U} \mid t_{n}^{+}(y) \leqslant b_{1}^{\prime}\right\} .
\end{aligned}
$$

Then there exists a $\widetilde{\gamma}_{0}>0$ such that for all $\left.\left.\gamma \in\right] 0, \widetilde{\gamma}_{0}\right]$, there exists an $\tilde{n}_{0}(\gamma) \in \mathbb{N}$ such that for all $n \geqslant \tilde{n}_{0}(\gamma), S_{n} \subset \operatorname{Int}\left(\tilde{Y}_{1, n}(\gamma)\right)$ and the pair $\left(\widetilde{Y}_{1, n}(\gamma), \widetilde{Y}_{2, n}(\gamma)\right)$ is an FM-index pair for $S_{n}$, relative to $\pi_{n}$. (cf. Lemma 5.6).

Given such an $n$, we see, using (6.2), (6.8) and Theorem 6.3 that $\widetilde{Y}_{2, n}(\gamma) \subset \widetilde{N}_{2, n} \subset$ $\tilde{N}_{n}(\emptyset)$. Since $\widetilde{Y}_{2, n}(\gamma)$ is an exit ramp for $\widetilde{Y}_{1, n}(\gamma)$, relative to $\pi_{n}$, it thus follows that $\widetilde{N}_{n}(\emptyset)$ is an exit ramp for $\widetilde{Y}_{1, n}(\gamma)$, relative to $\pi_{n}$.

An application of Proposition 2.9 now implies the following result.
Lemma 6.4. For every $\left.\gamma \in] 0, \widetilde{\gamma}_{0}\right]$, and all $n \geqslant \tilde{n}_{0}(\gamma),\left(\widetilde{Y}_{1, n}(\gamma) \cap \widetilde{N}_{n}(I)\right)_{I \in \mathcal{A}(<)}$ is an index filtration for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$.

We also have the following
Lemma 6.5. There exists a $\left.\left.\tilde{\gamma}_{1} \in\right] 0, \widetilde{\gamma}_{0}\right]$ such that for all $\left.\left.\gamma \in\right] 0, \widetilde{\gamma}_{1}\right]$, there exists an $\widetilde{n}_{1}(\gamma) \geqslant \widetilde{n}_{0}(\gamma)$ such that $\widetilde{Y}_{1, n}(\gamma) \cap \widetilde{N}_{n}(I) \subset \widetilde{N}_{0}(I)$ for all $n \geqslant \widetilde{n}_{1}(\gamma)$ and all $I \in \mathcal{A}(\prec)$.

Proof. Suppose the conclusion of the lemma is not true. Then for some $I \in \mathcal{A}(\prec)$ there exist sequences $\left(\gamma_{m}\right)_{m},\left(n_{m}\right)_{m}$ and $\left(x_{m}\right)_{m}$ such that $\gamma_{m} \rightarrow 0, n_{m} \rightarrow \infty$ and

$$
x_{m} \in\left(\tilde{Y}_{1, n_{m}}\left(\gamma_{m}\right) \cap \tilde{N}_{n_{m}}(I)\right) \backslash \tilde{N}_{0}(I) \quad \text { for all } m
$$

Notice that $x_{m} \in \widetilde{Y}_{1, n_{m}}\left(\gamma_{m}\right) \subset B_{\tilde{\delta}_{5}, b_{5}}=\widetilde{N}_{1}^{2}$. By admissibility, $\left(x_{m}\right)_{m}$ has a convergent subsequence, denoted again by $\left(x_{m}\right)_{m}$. Theorem 6.3 implies that there exists an $m_{0} \in \mathbb{N}$ such that $x_{m} \in \widetilde{N}_{0}(I)$ for all $m \geqslant m_{0}$, which is a contradiction.

Define $\widetilde{\gamma}:=\min \left\{\widetilde{\gamma}_{1}, \widetilde{\delta}_{5}\right\}$. Hence, setting $\tilde{n}_{1}:=\widetilde{n}_{1}(\widetilde{\gamma})$ we have the following corollary.
Corollary 6.6. There is a $\left.\widetilde{\gamma} \in] 0, \widetilde{\delta}_{5}\right]$ and an $\tilde{n}_{1} \in \mathbb{N}$ such that, for all $n \geqslant \tilde{\sim}_{1},\left(\tilde{Y}_{1, n}(\tilde{\gamma}) \cap\right.$ $\left.\widetilde{N}_{n}(I)\right)_{I \in \mathcal{A}(<)}$ is an index filtration for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ and $\left.\widetilde{Y}_{1, n} \widetilde{\gamma}\right) \cap \widetilde{N}_{n}(I) \subset \widetilde{N}_{0}(I)$ for $I \in \mathcal{A}(\prec)$.

We claim that

$$
\begin{equation*}
B_{\widetilde{\gamma}, b_{1}^{\prime}}^{-} \subset N_{2}^{2} \subset N_{0}(\emptyset) \tag{6.12}
\end{equation*}
$$

Here, of course, $B_{\widetilde{\gamma}, b_{1}^{\prime}}^{-}$is the exit set of the isolating block $B_{\widetilde{\gamma}, b_{1}^{\prime}}$ relative to $\pi_{0}$.
In fact, the inequalities $\tilde{\gamma} \leqslant \widetilde{\delta}_{5}<\delta_{5}$ and $b_{5}>b_{4}$ and the definition of the set $\widetilde{Y}_{1, n}(\widetilde{\gamma})$ imply that $\left.B_{\widetilde{\gamma}, b_{1}^{\prime}} \subset \widetilde{Y}_{1, n} \widetilde{\gamma}\right) \subset B_{\delta_{5}, b_{5}} \subset B_{\delta_{5}, b_{4}}$. Moreover, if $x \in B_{\widetilde{\gamma}, b_{1}^{\prime}}^{-}$, then $x \in \widetilde{U}$ and $t_{0}^{+}(x)=b_{1}^{\prime}$. It follows that $B_{\widetilde{\gamma}, b_{1}^{\prime}}^{-} \subset B_{\delta_{5}, b_{4}} \cap\left\{y \in \tilde{U} \mid t_{0}^{+}(x) \leqslant b_{1}^{\prime}\right\}=N_{2}^{2}$. The last inclusion in (6.12) follows from Theorem 6.1. This proves (6.12).

Since $B_{\widetilde{\gamma}, b_{1}^{\prime}}^{-}$is an exit ramp for $B_{\widetilde{\gamma}, b_{1}^{\prime}}$, relative to $\pi_{0}$, it follows from (6.12) that $N_{0}(\emptyset)$ is an exit set for $B_{\widetilde{\gamma}, b_{1}^{\prime}}$, relative to $\pi_{0}$, and since $S_{0} \subset \operatorname{Int}\left(B_{\widetilde{\gamma}, b_{1}^{\prime}}\right)$, Proposition 2.9 implies the following result.

Lemma 6.7. $\left(N_{0}(I) \cap B_{\widetilde{\gamma}, b_{1}^{\prime}}\right)_{I \in \mathcal{A}(\alpha)}$ is an index filtration for $\left(\pi_{0}, S_{0},\left(M_{p, 0}\right)_{p \in P}\right)$.
Since $\tilde{\gamma} \leqslant \widetilde{\delta}_{5}<\widetilde{\delta}_{4}$ and $b_{3}<b_{1}^{\prime}$, it follows that $B_{\widetilde{\gamma}, b_{1}^{\prime}} \subset B_{\widetilde{\delta}_{4}, b_{3}}$ so $B_{\widetilde{\gamma}, b_{1}^{\prime}}=B_{\widetilde{\gamma}, b_{1}^{\prime}} \cap B_{\tilde{\delta}_{4}, b_{3}}$ and so $N_{0}(I) \cap B_{\widetilde{\gamma}, b_{1}^{\prime}}=N_{0}(I) \cap\left(B_{\widetilde{\gamma}, b_{1}^{\prime}} \cap B_{\tilde{\delta}_{4}, b_{3}}\right) \subset\left(N_{0}(I) \cap B_{\tilde{\delta}_{4}, b_{3}}\right) \cap \widetilde{Y}_{1, n}(\widetilde{\gamma})$. This fact, together with Corollary 6.6 and Theorem 6.3, implies that, setting $n_{0}^{\prime}:=\max \left\{n_{3}, \tilde{n}_{1}\right\}$,

$$
\begin{equation*}
N_{0}(I) \cap B_{\widetilde{\gamma}, b_{1}^{\prime}} \subset \widetilde{Y}_{1, n}(\widetilde{\gamma}) \cap \tilde{N}_{n}(I) \subset \widetilde{N}_{0}(I), \quad n \geqslant n_{0}^{\prime}, I \in \mathcal{A}(\prec) \tag{6.13}
\end{equation*}
$$

Let $\delta^{\prime}:=\min \left\{\tilde{\gamma}, \delta_{5}\right\}$. For $\left.\gamma \in\right] 0, \infty[$ define the sets

$$
\begin{aligned}
& Y_{1, n}(\gamma):=B_{\delta^{\prime}, b_{1}^{\prime}} \cap \mathrm{Cl}\left\{y \mid \text { there exist an } x \in B_{\gamma, b} \text { and a } t \geqslant 0\right. \text { such that } \\
& \left.\qquad \quad x \pi_{n}[0, t] \subset \tilde{U} \text { and } y=x \pi_{n} t\right\}, \\
& Y_{2, n}(\gamma):=Y_{1, n}(\gamma) \cap\left\{y \in \widetilde{U} \mid t_{n}^{+}(y) \leqslant b\right\} .
\end{aligned}
$$

Using arguments which are completely analogous to those leading to Corollary 6.6 we obtain the following:

Corollary 6.8. There is a $\left.\gamma_{1} \in\right] 0, \infty\left[\right.$ and an $n_{1} \in \mathbb{N}$ such that, for all $n \geqslant n_{1}$, $\left(Y_{1, n}\left(\gamma_{1}\right) \cap N_{n}(I)\right)_{I \in \mathcal{A}(\prec)}$ is an index filtration for $\left(\pi_{n}, S_{n},\left(M_{p, n}\right)_{p \in P}\right)$ and $Y_{1, n}\left(\gamma_{1}\right) \cap$ $N_{n}(I) \subset N_{0}(I) \cap B_{\delta^{\prime}, b_{1}^{\prime}}$ for all $I \in \mathcal{A}(\prec)$.

Proof of Theorem 3.4. Let $n_{0}:=\max \left\{n_{0}^{\prime}, n_{1}\right\}$ and $n \geqslant n_{0}$ be arbitrary. Define $\mathcal{N}_{0}:=$ $\left(N_{0}(I) \cap B_{\widetilde{\gamma}, b_{1}^{\prime}}\right)_{I \in \mathcal{A}(\alpha)}, \widetilde{\mathcal{N}}_{0}:=\left(\widetilde{N}_{0}(I)\right)_{I \in \mathcal{A}(\alpha)}, \mathcal{N}_{n}:=\left(Y_{1, n}\left(\gamma_{1}\right) \cap N_{n}(I)\right)_{I \in \mathcal{A}(\alpha)}$ and $\widetilde{\mathcal{N}}_{n}:=\left(\widetilde{Y}_{1, n}(\widetilde{\gamma}) \cap \widetilde{N}_{n}(I)\right)_{I \in \mathcal{A}(<)}$. Lemma 6.7 and Corollaries 6.6 and 6.8 imply that, for each $n \in \mathbb{N}_{0}$ with $n=0$ or $n \geqslant n_{0}, \mathcal{N}_{n}$ and $\widetilde{\mathcal{N}}_{n}$ are index filtrations for $\left(\pi_{n}, S_{n}\right.$, $\left.\left(M_{p, n}\right)_{p \in P}\right)$. Formula (6.13) and Corollary 6.8 imply that

$$
Y_{1, n}\left(\gamma_{1}\right) \cap N_{n}(I) \subset N_{0}(I) \cap B_{\widetilde{\gamma}, b_{1}^{\prime}} \subset \widetilde{Y}_{1, n}(\widetilde{\gamma}) \cap \tilde{N}_{n}(I) \subset \widetilde{N}_{0}(I), n \geqslant n_{0}, I \in \mathcal{A}(\prec)
$$

i.e. the nesting property (3.1) holds. Since $\widetilde{N}_{0}(P) \subset \widetilde{U}$ it also follows that for each $n \in \mathbb{N}_{0}$ with $n=0$ or $n \geqslant n_{0}, \mathcal{N}_{n}$ and $\widetilde{\mathcal{N}}_{n}$ are strongly $\pi_{n}$-admissible. This completes the proof of Theorem 3.4.

## References

[1] M.C. Carbinatto, K.P. Rybakowski, Morse decompositions in the absence of uniqueness, Topological Methods Nonlinear Anal. 18 (2001) 205-242.
[2] M.C. Carbinatto, K.P. Rybakowski, On a general Conley index continuation principle for singular perturbation problems, Ergodic Theory Dynamical Systems 22 (2002) 729-755.
[3] M.C. Carbinatto, K.P. Rybakowski, Morse decompositions in the absence of uniqueness, II, Topological Methods Nonlinear Anal. 22 (2003) 15-51.
[4] M.C. Carbinatto, K.P. Rybakowski, Continuation of the connection matrix in singular perturbation problems, submitted.
[5] C.C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38, American Mathematical Society, Providence, RI, 1978.
[6] R.D. Franzosa, Index filtrations and connection matrices for partially ordered Morse decompositions, Ph.D. dissertation, University of Wisconsin, Madison, 1984.
[7] R.D. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986) 193-213.
[8] R.D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989) 561-592.
[9] R.D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. Amer. Math. Soc. 310 (1988) 781-803.
[10] R.D. Franzosa, K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces, J. Differential Equations 71 (1988) 270-287.
[11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1981.
[12] M. Izydorek, K.P. Rybakowski, Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory, Fund. Math. 176 (2003) 233-249.
[13] H.L. Kurland, Homotopy invariants of a repeller-attractor pair, I: The Püppe-sequence of an R-A pair, J. Differential Equations 43 (1982) 1-31.
[14] H.L. Kurland, Homotopy invariants of a repeller-attractor pair, II: Continuation of R-A pairs, J. Differential Equations 49 (1983) 281-329.
[15] C. McCord, The connection matrix for attractor-repeller pairs, Trans. Amer. Math. Soc. 308 (1988) 195-203.
[16] K. Mischaikow, M. Mrozek, P. Zgliczyński (Eds.), Conley Index Theory, Banach Center Publications, vol. 47, Warszawa, 1999.
[17] M. Prizzi, On admissibility for parabolic equations in $\mathbb{R}^{n}$, Fund. Math. 176 (2003) 261-275.
[18] J. Reineck, The connection matrix in Morse-Smale flows, Trans. Amer. Math. Soc. 322 (1990) 523-545.
[19] J. Reineck, The connection matrix analysis of ecological models, Nonlinear Anal. 17 (1991) 361-384.
[20] K.P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269 (1982) 351-382.
[21] K.P. Rybakowski, The Morse index, repeller-attractor pairs and the connection index for semiflows on noncompact spaces, J. Differential Equations 47 (1983) 66-98.
[22] K.P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer, Berlin, 1987.
[23] K.P. Rybakowski, Conley index continuation for singularly perturbed hyperbolic equations, Topological Methods Nonlinear Anal. 22 (2003) 203-244.
[24] K.P. Rybakowski, E. Zehnder, On a Morse equation in Conley's index theory for semiflows on metric spaces, Ergodic Theory Dynamical Systems 5 (1985) 123-143.


[^0]:    * Corresponding author.

    E-mail addresses: mdccarbi@icmc.usp.br (M.C. Carbinatto), krzysztof.rybakowski@mathematik.unirostock.de(K.P. Rybakowski).
    ${ }^{1}$ Partially supported by the Grants FAPESP-Brazil 03/02337-0, DAAD-Germany A/03/17829 and CNPqBrazil 302854/2002-9.

