Doubly Transitive Permutation Groups in Which the One-Point Stabilizer is Triply Transitive on a Set of Blocks

CHERYL E. PRAEGER

Department of Mathematics, University of Western Australia, Nedlands, Australia 6009

Communicated by Walter Feit

Received May 3, 1976

Suppose that G is a doubly transitive permutation group on a finite set Ω and that for α in Ω the stabilizer G_{α} has a set $\Sigma = \{B_1, \ldots, B_r\}$ of nontrivial blocks of imprimitivity in $\Omega - \{\alpha\}$, that is, $|B_i| > 1$ and $|\Sigma| > 1$. In two previous papers [5, 6] it was shown that apart from a few known groups, the setwise stabilizer of B_i in G_{α} acts faithfully on B_i if $G_{\alpha,\Sigma}$ is the alternating or symmetric group, one of the Mathieu groups, or a normal extension of $PSL(2, q)$ in their usual representations. The raises the question:

QUESTION. If $G_{\alpha,\Sigma}$ is multiply transitive, is it possible to characterize the groups G for which the setwise stablizer in G_{α} of the block B of Σ does not act faithfully on B?

The only groups I know of in which G_{α} is 2-transitive on Σ and for B in Σ, the stablizer of B is not faithful on B, are the following:

(i) $PSL(n, q) < G < PGL(n, q)$, for $n \geq 3$ in its natural representation. If $B \in \Sigma$ then $B \cup \{\alpha\}$ is a line and $PSL(n - 1, q) < G_{\alpha,\Sigma} < PGL(n - 1, q)$.

(ii) $PSU(3, q) < G < PSL(3, q)$ permuting the set of absolute points of the projective plane over a field of q^2 elements. If $B \in \Sigma$ then $B \cup \{\alpha\}$ is a non-absolute line, $|B| = q$, $|\Sigma| = q^2$, and $G_{\alpha,\Sigma}$ has a regular normal subgroup of order q^2.

(iii) $G = A_7$ acting on the 15 points of the projective geometry of dimension 3 over a field of two elements; $G_{\alpha} \simeq PSL(2, 7)$ acts 2-transitively on the set of lines containing α.

(iv) G has a regular normal subgroup.

If we drop the assumption that $G_{\alpha,\Sigma}$ is 2-transitive, then we have another family of examples.

(v) A group G of Ree type $R(q)$ is 2-transitive on $q^3 + 1$ points. For any two distinct points α, β, there is a unique nontrivial element g in $G_{\alpha,\beta}$ which
fixes at least three points. The set of points distinct from α which are fixed by g
is a block of imprimitivity for \(G_\alpha \) which is fixed pointwise by g.

The aim of this paper is to give an affirmative answer to the question in the
case where \(G_\alpha \) is 3-transitive on \(\Sigma \), but not faithful on \(\Sigma \). Different methods will
be needed to deal with the case \(G_\alpha \) faithful on \(\Sigma \). Throughout the paper we
assume the following hypothesis.

Hypothesis (\(\ast \)). (a) \(G \) is a doubly transitive permutation group on a set \(\Omega \) of \(n \)
points. For \(\alpha \) in \(\Omega \) the stabilizer \(G_\alpha \) has a set \(\Sigma = \{ B_1, \ldots, B_t \} \) of nontrivial blocks of
imprimitivity, where \(|\Sigma| > 1 \), \(|B_i| > 1 \), and \(n = 1 + tb \).

(b) We denote by \(K_i \) the subgroup of \(G_\alpha \) fixing \(B_i \) setwise, by \(K_i \) the subgroup
fixing \(B_i \) pointwise, and by \(H \) the subgroup fixing all blocks of \(\Sigma \) setwise.

(c) \(H \neq 1, K_i \neq 1 \).

The result of this paper, which is stated below, is a generalization of [5, Theorems 1 and 2; 6].

Theorem. Assume Hypothesis (\(\ast \)) and assume that \(G_\alpha \) is 3-transitive of degree
\(t \geq 3 \). Then \(\text{PGL}(2, q) \leq G_\alpha \leq \text{PGL}(2, q) \) in its natural representation where
\(q = t - 1 \) is a prime power. Moreover, either

(a) \(\text{PSL}(3, q) \leq G \leq \text{PGL}(3, q) \) in its natural representation, or

(b) \(\Omega \) with the translates under \(G \) of \(B_1 \cup \{ \alpha \} \) as lines is an affine translation
plane of order \(q \), and \(G \) contains the translation group.

An immediate corollary of this result which follows from [5] is:

Corollary. If Hypothesis (\(\ast \)) is true and if \(G_\alpha \) is 4 transitive, then \(G_\alpha \cong S_t \),
where \(t \) is 4 or 5, and either

(a) \(\text{PSL}(3, t - 1) \leq G \leq \text{PGL}(3, t - 1) \) in its natural representation, or

(b) \(t = 4 \), \(G \) has a regular elementary abelian normal subgroup of order 9,
and \(H \) is cyclic of order 2.

Notation. Most of the notation used follows the conventions of [1, 7].
If a group \(G \) has a permutation representation on a set \(\Sigma \), the constituent of \(G \)
on \(\Sigma \) is denoted by \(G^\Sigma \); the set of fixed points of \(G \) in \(\Sigma \) is denoted by \(\text{fix}_G \) \(\Sigma \) and
simply by \(\text{fix} G \) if the set \(\Sigma \) is clear from the context; and orbits of \(G \) containing
more than one point are called long \(G \)-orbits.

Definition. A block design consists of a set of \(v \) points and a set of \(b \) blocks
with a relation called incidence between points and blocks, such that any block is
incident with \(k \) points and any two points with \(\lambda \) blocks, where \(\lambda > 0 \) and
2 \leq k < v - 1. The number \(r \) of blocks incident with a given point is also constant. If \(k > 2 \) it is called a proper design. By easy counting arguments we have

\[vr = bk, \quad (v(\lambda - 1)) = bk(k - 1). \]

Also it is well known that \(b > v \), or equivalently \(r > k \).

Proof of the Theorem. Assume that Hypothesis \((\ast)\) is true and that \(G_{s}^{*} \) is 3-transitive of degree \(t > 3 \). It is easy to check that a group \(G \) satisfying \(PSL(mq) < G \leq PTL(m, q) \) in its natural representation for some \(m \geq 3 \) and prime power \(q \), satisfies Hypothesis \((\ast)\) where \(\{B_{i} \cup \{a\} | i = 1, \ldots, t\} \) is the set of lines containing \(\alpha \), and these \(B_{i} \) are the only nontrivial blocks for \(G_{s} \). Further, since \(PGL(m - 1, q) < G_{s} \leq PTL(m - 1, q) \) in its natural representation, then \(G_{s}^{*} \) is 3-transitive if and only if \(m = 3 \). Thus in this case the theorem is true. So we assume that \(G \) does not satisfy \(PSL(m, q) < G \leq PTL(m, q) \) for any \(m \geq 3 \). Then by \([6, Lemma 1.1]\), \(H \) is semiregular on \(\Omega - \{\alpha\} \) and \(G \) is a group of automorphisms of a block design with \(\lambda = 1 \), the blocks of which are the translates under \(G \) of the set \(B_{i} \cup \{\alpha\} \).

Proposition 1. If \(K_{1} \) has a normal subgroup which acts regularly on \(\Sigma - \{B_{1}\} \) then the theorem is true.

Proof. Assume that \(K_{1} \) has a normal subgroup which is regular on \(\Sigma - \{B_{1}\} \). Then by \([2, Theorem 1.1]\), the fact that \(G_{s}^{*} \) is 3-transitive, and \([7, 10.2 \text{ and } 11.3]\), either

(a) \(PGL(2, q) \leq G_{s}^{*} \leq PTL(2, q) \) in its natural representation where \(q = t - 1 \) is a prime power, or

(b) \(G_{s}^{*} \) has a regular elementary abelian normal subgroup of order \(t \), where \(t = 3 \) or \(t = 2^{a} \) for some integer \(a \geq 2 \) (since \(t \geq 3 \)).

In case (a) the theorem is true by \([6]\). If \(t = 3 \), the theorem is true by \([5, \text{ Theorem 1}]\), for \(G_{s}^{*} = S_{3} \simeq PSL(2, 2) \). So suppose that \(G_{s}^{*} \) has a regular normal subgroup which is elementary abelian of order \(t = 2^{a} \) for some \(a \geq 2 \). Then \(G_{a} \) has a normal subgroup \(N \) containing \(H \) such that \(N^{*} = N|H \) is elementary abelian and regular, and \(N^{*} \) is the unique minimal normal subgroup of \(G_{s}^{*} \), (by \([7, 11.5, 10.1]\)).

Let \(M = \langle K_{i} | i = 1, \ldots, t \rangle \). Since each \(K_{i} \) centralizes \(H \), (for \(H \) and \(K_{i} \) are normal subgroups of \(K_{1} \) with trivial intersection), then also \(M \) centralizes \(H \). If \(M \cap H \) is nontrivial, then it is an abelian normal subgroup of \(G_{a} \). On the other hand, if \(M \cap H \) is trivial, then \(M \) is isomorphic to \(M^{*} \), a nontrivial normal subgroup of \(G_{s}^{*} \). Hence \(M \) has a subgroup which is normal in \(G_{a} \), elementary abelian of order \(2^{a} \), and acts regularly on \(\Sigma \). Thus in either case \(G_{a} \) has a non-
trivial abelian normal subgroup, and since the degree \(n = 1 + 2^m b \) is odd, it follows from [4, Theorem B] that \(G \) is a normal extension of one of

(a) \(\text{PSL}(m, q) \) where \((q^m - 1)/(q - 1)\) is odd and \(m \geq 2 \),
(b) \(\text{PSU}(3, q) \),
(c) \(S_n(q) \), in their natural representations, or
(d) \(G \) has a regular normal subgroup.

We are assuming that \(G \) does not satisfy (a) if \(m \geq 3 \), and \(\text{PSL}(2, q) \) is 2-primitive and so cannot satisfy Hypothesis (*). By considering the possible parameters of a block design, it is easy to show that \(S_n(q) \) cannot act as a group of automorphisms of a block design with \(\lambda = 1 \). Also no normal extension of \(\text{PSU}(3, q) \) can satisfy Hypothesis (*) with \(G \) 3-transitive. Hence \(G \) has a regular normal subgroup, \(R \), say.

Consider the group \(NR \), where \(N \) is the normal subgroup of \(G \) containing \(H \) such that \(N^2 = N/H \) is elementary abelian and regular. Since \(H \) is semiregular on \(\Omega - \{a\} \) and \(N \) is regular on \(\Sigma \) it is easy to see that \(N \) is semiregular on \(\Omega - \{a\} \). Thus \(NR \) is a Frobenius group. By [1, 10.3.1], the Sylow 2-subgroups of \(N \) are cyclic or generalized quaternion, and since \(N/H \) is elementary abelian of order \(2^n \geq 4 \), it follows that \(2^n = 4 \). Thus \(G_\alpha \cong S_n \cong \text{PGL}(2, 3) \), and the theorem follows in this case from [5, Theorem 1] or [6]. This completes the proof of Proposition 1.

Thus we may assume that \(K_1 \) has no normal subgroup acting regularly on \(\Omega - \{B_1\} \).

Lemma 2. (a) \(K_1 \cap K_2 \) fixes the blocks \(B_1 \) and \(B_2 \) setwise and has nontrivial orbits of equal length in \(\Omega - \{B_1, B_2\} \).

(b) The centralizer \(C_\alpha(K_1) \) of \(K_1 \) acts as a Frobenius group on \(B_1 \cup \{a\} \) of degree \(1 + b = r^c \) for some prime \(r \) and positive integer \(c \). Moreover, \(C_\alpha(K_1) \) has a normal subgroup \(A \) which is elementary abelian of order \(r^c \) and acts regularly on \(B_1 \cup \{a\} \).

Proof. (a) Since \(K_1 \) is 2-transitive on \(\Omega - \{B_1\} \) and has no normal subgroup acting regularly on \(\Omega - \{B_1\} \) it follows from [7, 12.1] that \(K_1 \cap K_2 \) fixes only the blocks \(B_1 \) and \(B_2 \) setwise and has orbits of equal length in \(\Omega - \{B_1, B_2\} \).

(b) It is easy to show that \(K_1^{\alpha} \) has a trivial centralizer in \(G_\alpha \cong \text{G}(\Phi) \), (see [3]). It follows from [6, Lemma 1.4] that the centralizer \(C_\alpha(K_1) \) of \(K_1 \) acts as a Frobenius group on \(B_1 \cup \{a\} \) of degree \(1 + b = r^c \) for some prime \(r \) and positive integer \(c \), and \(C_\alpha(K_1) \) has a normal subgroup \(A \) such that \(A^{B_1 \cup \{a\}} \) is elementary abelian and regular. Moreover, since \(A_\alpha \) fixes \(B_1 \cup \{a\} \) pointwise, then \(A_\alpha \) is a subgroup of \(K_1 \) which centralizes \(K_1 \). Since \(K_1^{\alpha} \cong K_1 \) has a trivial centralizer, and since \(A_\alpha \cong A_\alpha \) centralizes \(K_1^{\alpha} \), it follows that \(A_\alpha \) is trivial. Thus \(A \) is elementary abelian of order \(r^c \).
LEMMA 3. (a) All long orbits of K_1 have length $b'(t-1)$, where b' is a divisor of $b = r^c - 1$, and consist of b' points of each block of $\Sigma - \{B_i\}$.

(b) The group A fixes some long K_1-orbit Γ setwise.

Proof. (a) We show that $K_1 \cap K_2$ is transitive on B_1, and then it follows that its normal subgroup $K_1 \cap K_2$ has orbits of equal length, say b', in B_1, for some b' dividing b. Then since K_1 is transitive on $\Sigma - \{B_i\}$, it follows that all long orbits of K_1 have length $b'(t-1)$ and contain b' points of each block of $\Sigma - \{B_i\}$.

Thus we need to show that $K_1 \cap K_2$ is transitive on B_1. Let β be a point of B_1. Since K_1 is transitive on B_1, then $(K_1 \cap K_2)$ contains β, and so $(K_1 \cap K_2)$ is transitive on $\Sigma - \{B_1\}$ and $\{B_2\}$. It follows that $(K_1 \cap K_2)$ has index b in K_1, that is, $K_1 \cap K_2$ is transitive on B_1.

(b) Since A centralizes K_1, it permutes the orbits of K_1 among themselves. Since A is an r group and since the number of long K_1-orbits, namely, b/b' is not divisible by r, we conclude that A must fix one of these orbits, say Γ, setwise.

LEMMA 4. If B_i and B_j are (not necessarily distinct) blocks of $\Sigma - \{B_i\}$ and if a is a nonidentity element of A, then $|B_i^a \cap B_j| \leq 1$.

Proof. Suppose to the contrary that for some $i \geq 2$, $j \geq 2$ and for some nonidentity element a of A, we have $|B_i^a \cap B_j| \geq 2$. Then $(B_i \cup \{a\})^a$ and $B_j \cup \{a\}$ are blocks of a design with $\lambda = 1$ which have at least two points in common, and hence $(B_i \cup \{a\})^a = B_j \cup \{a\}$. Thus a^a belongs to $B_j \cup \{a\}$, which is a contradiction, for a^a is a point of B_1 since A acts regularly on $B_1 \cup \{a\}$.

LEMMA 5. $b' \neq 1$.

Proof. Suppose that $b' = 1$ and let Γ be a long orbit of K_1 fixed setwise by A (by Lemma 3). By Lemma 2, $K_1 \cap K_2$ fixes only the blocks B_1 and B_2 of Σ setwise. Hence $K_1 \cap K_2$ fixes exactly one point of Γ, namely the point γ where $\Gamma \cap B_2 = \{\gamma\}$. Since A centralizes $K_1 \cap K_2$ then A fixes γ, and since K_1 is transitive on $\Sigma - \{R_i\}$ we conclude that A fixes Γ pointwise.

Since $b' = 1$, there is an orbit Γ'' of K_1 of length $t - 1$ distinct from Γ. Let A' be the setwise stabilizer in A of Γ''. The index of A' in A is at most the number of long K_2 orbits so that $|A : A'| \leq b < r^c = |A|$, that is, A' is nontrivial. Let a be a nonidentity element of A'. Then, as in the previous paragraph, we can show that fixes Γ'' pointwise. Thus $B_2^a \cap B_2$ contains $(\Gamma \cap B_2) \cup (\Gamma'' \cap B_2)$, a contradiction to Lemma 4. Hence $b' \neq 1$.

LEMMA 6. The group A is semiregular on Γ, and if γ is a point of Γ, then $\text{fix}_A(K_1)$, is a union of x orbits of A and hence contains $xm \gamma$ points for some $x \geq 1$.
Proof. The group A acts faithfully on Γ, for suppose that a nonidentity element a of A fixed Γ pointwise. Then $B_a \cap B_2 \subseteq \Gamma \cap B_2$, which contradicts Lemmas 4 and 5.

Then it follows from [3] that A is semiregular on Γ and $\text{fix}_r(K_1)_\gamma$ is a union of say x orbits of A for any $\gamma \in \Gamma$. Thus $|\text{fix}_r(K_1)_\gamma| = x\gamma^r$.

Lemma 7. (a) $t - 1$ is divisible by r^γ.

(b) There are xr^γ/m blocks of $\Sigma - \{B_1\}$ which contain a point of $\text{fix}_r(K_1)_\gamma$ where $\gamma \in \Gamma \cap B_2$ and each of these blocks contains exactly m points of $\text{fix}_r(K_1)_\gamma$, for some positive integer m dividing x.

Proof. (a) By [7, 3.6], the normalizer N of $(K_1)_\gamma$ in K_1 is transitive on $\text{fix}_r(K_1)_\gamma$ and hence $x\gamma^r$ divides $|N : (K_1)_\gamma|$ which divides $|K_1 : (K_1)_\gamma| = b'(t - 1)$. Then since b' divides $b = r^\gamma - 1$ it follows that r^γ divides $t - 1$.

(b) Now $\{\Gamma \cap B_j | j \geq 2\}$ is a set of blocks of imprimitivity for $(K_1)_\gamma$, and since N is transitive on $\text{fix}_r(K_1)_\gamma$, clearly N is transitive on

$$X = \{\Gamma \cap B_j | B_j \cap \text{fix}_r(K_1)_\gamma \neq \emptyset\}.$$

It follows that each $\Gamma \cap B_j$ in X contains the same number m of points of $\text{fix}_r(K_1)_\gamma$, and hence, that X has $|\text{fix}_r(K_1)_\gamma|/m = x\gamma^r/m$ members. Finally, $K_1 \cap K_2$ is transitive on $\Gamma \cap B_2$ and the stabilizer of the point γ of $\Gamma \cap B_2$ is $(K_1)_\gamma$. Moreover, $(K_1)_\gamma$ fixes exactly m points of $\Gamma \cap B_2$ as we have just shown, and so by [7, 3.6], the normalizer $N \cap K_2$ of $(K_1)_\gamma$ in $K_1 \cap K_2$ is transitive on $\text{fix}_{r \cap B_2}(K_1)_\gamma$. Hence m divides $|N \cap K_2 : (K_1)_\gamma|$ which divides

$$|(K_1 \cap K_2) : (K_1)_\gamma| = |\Gamma \cap B_2| = b'.$$

Thus m divides b', and since $x\gamma^r/m$ is an integer then m must divide x.

Lemma 8. (a) The orbits of $K_1 \cap K_2$ in $\Sigma - \{B_1, B_2\}$ all have length b'.

(b) For a point γ of $\Gamma \cap B_2$, $(K_1)_\gamma$ fixes my blocks of $\Sigma - \{B_1, B_2\}$ setwise, and each of these blocks contains a point of $\text{fix}_r(K_1)_\gamma$.

Proof. Let a be a nonidentity element of A. Then since $\Gamma \cap B_2$ is an orbit of $K_1 \cap K_2$ and since A centralizes $K_1 \cap K_2$, then $(\Gamma \cap B_2)^a$ is also an orbit of $K_1 \cap K_2$. By Lemma 4, $(\Gamma \cap B_2)^a$ consists of one point from each of b' blocks of Σ. Thus $(\Gamma \cap B_2)^a$ corresponds to an orbit Δ of $K_1 \cap K_2$ of length b' in $\Sigma - \{B_1, B_2\}$. Hence by Lemma 2, all orbits of $K_1 \cap K_2$ in $\Sigma - \{B_1, B_2\}$ have length b'.

Now by Lemma 7, $(K_1)_\gamma$ fixes m points of $\Gamma \cap B_2$ and permutes the remaining points nontrivially. Hence, since A centralizes $(K_1)_\gamma$, $(K_1)_\gamma$ fixes exactly m points.
of \((\Gamma \cap B_2)^a\) and permutes the remaining points nontrivially. It follows that there are exactly \(m\) blocks in the corresponding \((K_1 \cap K_2)\)-orbit \(\Delta\) in \(\Sigma\) which contain a point of \(\text{fix}_r(K_1)_r\), and the remaining blocks of \(\Delta\) are permuted nontrivially by \((K_1)_r\).

To complete the proof of Lemma 8 we show: if \(B_j\) is an arbitrary block of \(\Sigma - \{B_1, B_2\}\) which is fixed setwise by \((K_1)_r\), then

(a) the \((K_1 \cap K_2) - \text{orbit} \Delta'\) in \(\Sigma\) containing \(B_j\) contains exactly \(m\) blocks which contain a point of \(\text{fix}_r(K_1)_r\), and the remaining blocks of \(\Delta'\) are permuted nontrivially by \((K_1)_r\), and hence,

(b) \(B_j\) contains a point of \(\text{fix}_r(K_1)_r\). To show this, let \(B_i\) be a block of \(\Delta\) containing a point of \(\text{fix}_r(K_1)_r\) (where \(\Delta\) was defined above), and let \(B_j\) be an arbitrary block of \(\Sigma - \{B_1, B_2\}\) fixed setwise by \((K_1)_r\). Then \(B_i\) and \(B_j\) lie in orbits of \(K_1 \cap K_2\) in \(\Sigma\) of length \(b'\), and hence the groups \(K_1 \cap K_2 \cap K_i\) and \(K_1 \cap K_2 \cap K_j\) have index \(b'\) in \(K_1 \cap K_2\). Since \((K_1)_r\) fixes \(B_i\) and \(B_j\) setwise it is a subgroup of \(K_1 \cap K_2 \cap K_i\) and \(K_1 \cap K_2 \cap K_j\). Then since \((K_1)_r\) has index \(b'\) in \(K_1 \cap K_2\) it follows that \((K_1)_r = K_1 \cap K_2 \cap K_i = K_1 \cap K_2 \cap K_j\). Since \(K_1 \cap K_2\) is transitive on \(\Sigma - \{B_1, B_2\}\) there is an element \(g\) in \(K_1 \cap K_2\) such that \(B_i^g = B_j\). Hence \((K_1)_r^g = (K_1 \cap K_2 \cap K_i)^g = K_1 \cap K_2 \cap K_j = (K_1)_r\), that is, \(g\) normalizes \((K_1)_r\). It follows that the orbit of \(K_1 \cap K_2\) in \(\Sigma\) containing \(B_j\), namely \(\Delta^g\), contains exactly \(m\) blocks which contain a point of \(\text{fix}_r(K_1)_r\), and the remaining blocks are permuted nontrivially by \((K_1)_r\).

We now complete the proof of the theorem. By Lemmas 7 and 8 it follows that the number of blocks of \(\Sigma - \{B_i\}\) which contain a point of \(\text{fix}_r(K_1)_r\) is, on the one hand, \(x r^e/m\), and on the other, \(1 + my\). Hence \(1 + my = x r^e/m = O (\text{mod } r^e)\).

Consider the set \(X = \{K_1 \cap K_j \cap K_i | j > 2\}\). This is a conjugacy class of subgroups of \(K_1 \cap K_2\). Since \(K_1 \cap K_2\) is transitive on \(\Sigma - \{B_1, B_2\}\), then each group in \(X\) fixes the same number of blocks of \(\Sigma - \{B_1, B_2\}\) setwise. We showed in the proof of Lemma 8 that \((K_1)_r\) belongs to \(X\) and fixes exactly \(my\) blocks of \(\Sigma - \{B_1, B_2\}\) setwise. Hence \(|X| = (t - 2)/my\).

On the other hand, \(K_1 \cap K_2\) fixes \(B_2\) as a set and is transitive on it. Hence, since the group \((K_1)_r\), of \(X\) fixes points of \(B_2\), it follows that each group in \(X\) fixes the same number, say \(z\), of points of \(B_2\). Thus \(b = z |X|\), and so \(my = (t - 2)z/b\). Hence we have \(1 + my = 1 + (t - 2)z/b = 0 (\text{mod } r^e)\), and so \(b + (t - 2)z = 0 (\text{mod } r^e)\). By Lemma 7, \(t - 2 = -1 (\text{mod } r^e)\), and so \(b = z (\text{mod } r^e)\). However \(z \leq b < r^e\). Hence \(b = z\), and so \(my = t - 2\). This means that \((K_1)_r\) fixes all blocks of \(\Sigma\) setwise, and hence that \(K_1 \cap K_2\) acts semiregularly on \(\Sigma' - \{B_1, B_2\}\). Thus \(K_1\) acts on \(\Sigma - \{B_1\}\) as a Frobenius group. By [7, 5.1], \(K_1\) has a characteristic subgroup acting regularly on \(\Sigma - \{B_1\}\), a contradiction to our assumption that \(K_1\) has no normal subgroup acting regularly on \(\Sigma - \{B_1\}\). This completes the proof of the theorem.
References

4. M. O'Nan, Doubly transitive groups of odd degree whose one point stabiliser is local, to appear.
5. C. E. Praeger, Doubly transitive permutation groups which are not doubly primitive, J. Algebra 44 (1977), 389-395.