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• Big (BIG) nest-building mice are a spontaneous animal model of OCD.
• BIG male mice showed higher levels of compulsive-like behaviors than proestrus females.
• Compulsive-like strains showed less anxiety-like behavior than the non-compulsive-like strains on the elevated plus maze.
• Depression-like behavior was greater among males than proestrus females.
• Interplay of sex and strain (genetic background) affected the compulsive-, anxiety- and depression-like behaviors.
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There is currently a lack of understanding how genetic background and sex differences attribute to the heteroge-
neity of obsessive-compulsive disorder (OCD). An animal model of compulsive-like behaviors has been devel-
oped through bidirectional selection of house mice (Mus musculus) for high (big cotton nests; BIG mice) and
low levels (small nests; SMALLmice) of nest-building behavior. The BIGmale strains have predictive and face va-
lidity as a spontaneous animal model of OCD. Here, we evaluated compulsive-, anxiety-, cognitive-, and depres-
sion-like behaviors among male and proestrus female replicate strains each of BIG (BIG1, BIG2) and SMALL
(SML1, SML2) nest-builders, and randomly-bred Controls (C1, C2). BIG1 and BIG2males and females had higher
nesting scores when compared to SMALL and Control strains. Male BIG1 and BIG2 strains showedmore compul-
sive-like nesting than BIG1 and BIG2 proestrus females, whichwas not observed among the other strains. Nesting
scores were also different between BIG replicate male strains. A similar patternwas observed in the compulsive-
likemarble burying behavior with BIG strains burying moremarbles than SMALL and Control strains. Significant
replicate and sex differences were also observed inmarble burying among the BIG strains. The open field test re-
vealed replicate effects while the BIG strains showed less anxiety-like behavior in the elevated plus maze test
compared to the SMALL strains. For novel object recognition only the Control strains showed replicate and sex
differences. In the depression-like forced swim test proestrus females demonstrated less depression-like behav-
ior thanmales. BIG and SMALL nest-building strains had a higher corticosterone stress response than the Control
strains. Together these results indicate a strong interplay of genetic background and sex in influencing expression
of behaviors in our compulsive-likemousemodel. These results are in congruencewith the clinical heterogeneity
of OCD.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric
condition characterized by invasive and persistent thoughts
d Wildlife, University of Alaska
SA.

. This is an open access article under
(obsessions) and repetitive behaviors (compulsions) [4]. OCD has an es-
timated lifetime prevalence of 2.3% in the United States [97]. Themajor-
ity of patients suffering from OCD perform repetitive rituals to mitigate
uncomfortable feelings of anxiety [32]. Others engage in repetitive be-
haviors due to subjective sensations also called sensory phenomena
[79]. Obsessions can be associated with contamination, fear and sym-
metry, while compulsions include hand washing, checking or counting
[88]. Such excessive ritualistic behaviors become distressing and
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significantly interfere with daily functioning [4]. OCD exhibits a large
behavioral repertoirewith high rates of repetition andprovides an etho-
logical basis for studying compulsive-like behaviors in animalmodels of
OCD [11]. Though inappropriate for investigating the entire OCD spec-
trum because obsessions cannot readily be assessed, animal models
can provide deep insight into various forms of compulsivity [74].

Sex differences in OCD [14,29,63] is thought to contribute to the het-
erogeneity of OCD [59]. Age of onset [14], phenomenology [59] and co-
morbidity [69] are some of the gender related differences that have
been observed. Males usually have an earlier onset for most symptom
dimensions of OCD than females [23,72,82,83]. Clinical studies have in-
dicated that sexual, religious and symmetrical obsessions, and compul-
sive checking and ordering/arranging aremore frequently seen inmales
than females, while females tend to exhibit more obsessions for con-
tamination and compulsive cleaning than men [30,62,72,108].

In females, ovarian hormones may play a critical role in modulating
obsessions and compulsions [113]. Fluctuations in the female hormonal
cycle may contribute to increased risk of onset and exacerbation of OCD
symptoms at certain reproductive events, including premenstruum
phase, menstrual cycle, pregnancy, and postpartum [1,63,73,109,113].
Few rodent studies have established that the female sex hormone estro-
gen can modulate compulsive-like behaviors [33,37,58]. The proestrus
stage of the estrous cycle in female mice has higher circulating levels
of estrogen influencing anxiety-, cognitive- and depression-like behav-
iors [106,116] and, therefore, the comparison betweenmales and proes-
trus females for compulsive-like behaviorsmay provide additionalways
to gain important insights using animal models of OCD.

Additionally, inbred female mouse strains have shown significant
differences in expression of drug induced compulsive-like behavior
[27], indicating that strain comparisons can be valuable for understand-
ing expression of compulsivity. This is important considering the com-
pelling genetic basis of OCD from various human studies [25,51,52,56,
76,96,105], which coupled with the sex differences can provide crucial
clues about the complex interactions of these two elements in expres-
sion of compulsive and affective behaviors.

According to Maio et al. [74], comparing our compulsive-like mouse
strains is valuable for understanding the disorder. Compulsive-like be-
havior in our mice is defined as excessive and repetitive expression of
otherwise normal behaviors, i.e., nest-building and marble burying.
For example, nest-building in the compulsive-like strains (BIG1 and
BIG2) involves rapid and repeated movements of the front legs and
mouth to pull excessive amount of cotton through the cage top metal
bars over extended periods of time [50], which shows face validity
with repetitive behaviors in OCD [79]. This rapid, excessive and repeti-
tive nesting behavior is not observed in the Control and SMALL strains.
The BIG strains also exhibit predictive validity as a spontaneous non-in-
duced model of OCD-like behaviors through attenuation of these com-
pulsive-like behaviors with fluoxetine and clomipramine treatment,
which are first line treatments for OCD [50]. In addition, the tricyclic an-
tidepressant desipramine,which is not effective in treatingOCD, did not
change the compulsive-like behaviors in the compulsive-like mice [50].
These strainswere developed bybidirectional selection for high and low
levels of nest-building behavior [19,71] using a stock population, i.e.,
HS/Ibg outbred strain, thatwas derived from a cross among eight inbred
house mouse, Mus musculus, strains, i.e., A, AKR, BLB/c, C3H/2, C57BL,
DBA/2, Is/Bi, and RIII [71,77].

Bidirectional selection resulted in three levels of nest-building be-
havior (with two replicate strains within each level). The replicates
within each level of nest building were maintained as separate strains,
i.e., not interbred with the other replicate, but subjected to the same se-
lection regime. Using replicate strains is important tomake sure that re-
sponses to artificial selection are due to selection and not the result of
founder effects or random genetic drift when comparing the different
levels of selection, i.e., selection for building big nests or small nests,
or randomly bred [17,19]. The two BIG strains consistently display
high levels of nesting with a forty-fold difference in the amount of
cotton used when compared to the two SMALL strains which display
very low levels of nesting [19,71]. The two randomly-bred strains
serve as a selection Control and show intermediate levels of nesting
[19,71].

Compulsive-like nesting in our mice has a genetic factor with about
30% of the variation in behavioral expression among individuals due to
additive genetic factors and about 70% of the variation due to environ-
mental factors [19,71]. This estimate of heritability of nest building
falls within the range of heritability estimates of 0.36 [111], 0.37 [26],
0.23–0.58 [60], and similar estimates for different types of OCD [16]. In
addition, quantitative genetic analyses have revealed nesting behavior
to be a highly polygenic trait [19,71], which is consistent with OCD in
humans likely being influenced by many different genes [57,89,101].

Considering the heterogeneity and sex factors inOCDand thebehav-
ioral and genetic characteristics of our mouse model of OCD, we aimed
to investigate the effects of genetic background and sex on the compul-
sive-, anxiety-, cognitive- and depression-like behaviors for a better un-
derstanding of factors influencing compulsivity.

2. Methods

The University of Alaska Fairbanks Institutional Animal Care andUse
Committee approved the animal care and experimental procedures
(IACUC assurance number 497513).

2.1. Mice

2.1.1. Husbandry
Mice were housed in polypropylene cages (27 × 17 × 12 cm) with

wood shavings in a temperature (22 ± 1 °C) and humidity (60–80%)
controlled room of the Biological Research andDiagnostics (BiRD) Facil-
ity vivarium on a 12:12 h light-dark cycle. Pups were weaned at 19–
21 days of age and housed with same-sex and same-strain littermates
until the end of all experiments. Food (Purina Mills, Lab Diet Mouse
Diet #5015, St. Louis, MO) and water were available ad libitum.

2.1.2. Mouse strains
Randomly-bred Control strains (C1, C2), BIG strains selected to build

big nests (BIG1, BIG2) and SMALL strains selected to build small nests
(SML1, SML2) [17,18,19] were used. The BIG strains express higher
levels of compulsive-like behaviors, i.e., nest building and marble bury-
ing, when compared to the SMALL strains [50], while the Control strains
are intermediate [19,71]. Male and femalemice (Musmusculus) of these
six different mouse strains were used for the behavioral experiments
(C1 males n = 20; C1 females n = 21; C2 males n = 20; C2 females
n = 17; BIG1 males n = 21; BIG1 females n = 22; BIG2 males n =
20; BIG2 females n = 14; SML1 males n = 19; SML1 females n = 21;
SML2 males n = 19; SML2 females n = 20).

2.1.3. Estrous cycle
Female mice in proestrus were used for the study. The proestrus

stage was determined daily by both visual and vaginal cytology
methods [20]. All females from all the strains were visually inspected
daily. Vaginal cytologywas performed on those females that showed vi-
sual signs of proestrus. The females for which proestrus was confirmed
through cytology were subjected to behavioral testing the same day.
This procedure was conducted daily until desired sample sizes were
achieved for a specific test.When the females cycled to their next proes-
trus, whichwas typically on the 4th or the 5th day, they were subjected
to the next behavioral test in the schedule and this cycle was continued
until all behavioral tests were completed.

2.2. Experimental design

All mice were at least 60 days old at the start of the experiment. All
behavioral tests were done in the light phase of the light-dark cycle. All



105S. Mitra et al. / Physiology & Behavior 168 (2017) 103–111
males underwent behavioral tests once in every 5 days consisting of
nest building (on day 1), marble burying (on day 6), open field (on
day 11), elevated plus maze (on day 16), novel object recognition (on
day 21) and forced swim test (on day 26). For females, behavioral
tests were conducted every 4–5 days depending on their proestrus
stage. Males and females were tested on this schedule until desired
sample sizes were achieved. A gap of 4 days for males and 3–4 days
for females between each behavioral test minimized the behaviors in-
terfering with each other.

For nest-building, animals were housed individually in cages and,
therefore, following data collection after 24 h, they were returned to
home cages with their littermates and kept for 4 days to negate any iso-
lation effects that could influence performance in subsequent tests [55].
For marble burying, open field, elevated plus maze, and novel object
recognition the mice were singly housed just before testing. After test-
ing they were returned to their home cage with their littermates.
Upon reintroduction to their littermates, some fighting was observed
within the first hour, whichwas similar to fighting observed after a nor-
mal cage change, which should not have interferedwith the subsequent
behavioral assessment considering a 3–4 day gap between tests. Imme-
diately after the forced swim test, trunk blood was collected to deter-
mine stress-induced plasma corticosterone levels. An observer blind to
the conditions of experimental animals and the hypothesized outcome
of the study collected all data.
2.3. Measuring compulsive-like behavior

2.3.1. Nest-building test
Nest-building behavior was used as a measure of the compulsive-

like phenotype of the mice [50]. Male and female mice of all the strains
were singly housed and provided with a pre-weighed cotton roll in the
cage-top food hopper. After 24 h, the cotton roll was removed and
weighed [17,18,19,71]. The total nesting score was defined as the
amount of cotton used over the 24-h period. Generally, all the mice in-
corporated the cotton into their nest. The more cotton was used, the
more elaborate the nest was, which progressed from cotton on the bot-
tom of the nest, to a bowl nest, and finally to a dome nest.
2.3.2. Marble burying test
Compulsive-like behavior was also assessed through the marble

burying test [2,7,31,50]. Mice were placed in a standard housing cage
with 5 cm deep clean bedding and 9 glass marbles arranged in two
rows. Testing was performed in the presence of white noise. The total
number of marbles 2/3 buried was quantified. The current protocol
was modified from existing protocols in our lab [50] and other studies
[24,31,107]. The mouse strains were found to replicate the 20-minute
protocol with 20 marbles in a 10-minute trial with 9 marbles. Our
group has also published a study with rats where 9 marbles for
10 min provided conclusive findings [70].
2.4. Measuring anxiety-like behaviors

2.4.1. Open field test
Open field behavior was used to assess anxiety-like behavior of the

mice [92]. BIG, SMALL and Control male and female mice were
transported in their home cages, singly housed and placed on a rack out-
side the testing room just prior to testing. The open field apparatus
consisted of an open field arena (40 × 40 × 30 cm) with 16 10 × 10
cmsquaresmarked on its floor. For testing,micewere placed in the cen-
tral 4 squares of thefield and allowed to explore the arena for 5min. En-
tries into the central (20 × 20 cm) and peripheral squares were
recorded [40] by the ANYMaze video-tracking program (Stoelting Co.,
IL, USA). The apparatus was cleaned before each test.
2.4.2. Elevated plus maze
Assessment of anxiety-like behavior was also determined with the

elevated plus maze test [114]. The plus maze consisted of two open
arms (5 × 40 cm) and two closed arms (5 × 40 × 20 cm) at right angles
to each other. Each mouse was placed in the central square facing an
open arm, and was allowed to explore the maze for 5 min. The time
spent on the open arms was determined [115] by the ANYMaze video
tracking program (Stoelting Co., IL, USA). An entry was defined as all
four paws being on the arm. The maze was cleaned before each test.

2.5. Measuring novel object recognition behavior

The novel object recognition test was performed to measure object
recognition memory [8]. During day 1, mice were habituated to the
open field arena (40 × 40 × 30 cm) for 3 min. Twenty-four hours later
on day 2, the time spent on investigating two identical objects (plastic
toys) within a 5 cm distance in the open field arena was recorded for
3 min with the ANYMaze video tracking program (Stoelting.co). Mice
were then taken out of the arena and returned to their home cages for
4 h. After 4 h one of the objects was replaced with a novel object of dif-
ferent shape and size and animals were then reintroduced into the
arena and allowed to explore the objects for 3 min. Time spent explor-
ing the familiar and novel objects were recorded. The preference of
one object over another was assessed through the Recognition Index
(RI) which is the time spent on the novel object relative to the time
spent on both novel and familiar objects: [RI = TN/(TN + TF)] where
TN is time spent on the novel object and TF is time spent on the familiar
object) [38,67].

2.6. Measuring depression-like behavior

Time spent immobile in the forced swim test was used as a measure
of depression-like behavior [41,90,91], where immobility is defined as
the absence of no active behaviors like swimming, jumping or diving
[12,41,91]. Mice were introduced in a glass cylinder, 20.5 cm in diame-
ter and 21.5 cm in depth, which was filled with 18 cm of water main-
tained at 25–27 °C for 10 min [44].

2.7. Corticosterone ELISA

Mice were euthanized after the forced swim test through cervical
dislocation to measure stress induced corticosterone levels. Trunk
blood was collected randomly from each strain and sex (C1 males
n = 4; C1 females n = 5; C2 males n = 6; C2 females n = 6; BIG1
males n = 4; BIG1 females n = 4; BIG2 males n = 7; BIG2 females
n = 5; SML1 males n = 5; SML1 females n = 5; SML2 males n = 6;
SML2 females n = 6) in chilled heparinized tubes and stored at
−80 °C. After thawing the blood was centrifuged at 1000 ×g for
20 min. The plasma was extracted and placed in fresh tubes and stored
at −80 °C. The corticosterone levels were determined using a cortico-
sterone ELISA kit from Cayman Chemicals (Catalogue ID: 500,655) as
per the manufacturer's instructions and as previously described [42].
The detection limit (80% B/B0) of the assay is approximately 80 pg/mL
(Cayman) with inter- and intra-assay coefficient of variation of 2.2%
and 8.9%, respectively.

2.8. Statistical analyses

All measurement values are expressed in mean ± standard error of
themean (SEM). Statistical Analysis System (SAS Version 9.4, Cary, NC)
software was used for statistical analyses. All behavioral and biochemi-
cal measures were tested in a general linear model (GLM) analysis of
variance (ANOVA) for effects of strain (BIG, SMALL, Control), sex (fe-
male, males), replicate (1, 2) nestedwithin strain, and strain x sex inter-
action. If significant effects were found, appropriate post hoc pair-wise
comparisons were conducted using the Tukey's Studentized Range
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test. If the replicate effect was significant, the strain effect was tested
over the replicate effect. If the replicate effect was not significant, the
strain effect was tested over the error term. The total nesting score
was square root transformed to obtain a more normal distribution [17,
18,19], while the data are presented as non-transformed nesting scores.
Significant correlations between behaviors within strains were deter-
mined through linear regression.

3. Results

3.1. Behavioral data

3.1.1. Strain, replicate and sex differences in nest building
Significant strain (F2,3 = 175.41, p b 0.001), replicate (F3,226 = 3.71,

p b 0.02) and sex (F1,226 = 15.61, p b 0.0001) effects were observed for
compulsive-like nest building. Both male and female big nest builders
(BIG1 and BIG2) used more cotton to build a nest than the Control
mice (C1 and C2) and the SMALL mice (SML1 and SML2), and the Con-
trol mice built bigger nests than the SMALLmice. Most SML2male mice
did not use any cotton. The replicate effect was due to significant differ-
ences between the BIG1 and BIG2males and C1 and C2 females. Sex dif-
ferenceswere attributed to BIG1 andBIG2males usingmore cotton than
proestrus females for nesting (Fig. 1). The significant interaction be-
tween strain and sex (F2,226 = 16.68, p b 0.0001) was due to females
and males not being different in total nesting scores in the C1 and C2,
and SML1 and SML2 strains, while the BIG strains showed large
differences.

3.1.2. Replicate and sex differences in marble burying
For compulsive-like marble burying, the strain differences were

marginally significant (F2,3 = 9.02, p b 0.054), predominantly due to
the significant replicate effect (F3,226 = 10.21, p b 0.0001), although
the general trend of BIG mice burying more marbles than SMALL mice
with Control mice having intermediate values was in line with previ-
ously found significant strain differences [53]. The replicate effect was
predominantly due to C1 females burying more marbles than C2 fe-
males. The significant sex effect (F1,226 = 11.03, p b 0.002) resulted
from C2 and BIG1 males burying more marbles than their female coun-
terparts (Fig. 2). The significant sex by strain interaction effect (F2,226 =
4.07, p b 0.02) was due to the SMALL strains not showing sex or repli-
cate effects while the other strains did.
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Fig. 1.Nest-building behavior:Mean (±SEM) total nesting scores ofmale and female BIG,
SMALL andControl replicate strains. BIG1 and BIG2males had higher nesting score than C1
(t = 15.28 p b 0.001 and t = 12.95 p b 0.001), C2 (t = 17.20 p b 0.001 and t = 14.86
p b 0.001), SML1 (t = 20.47 p b 0.001 and t = 18.16 p b 0.001) and SML2 (t = 22.72
p b 0.001 and t = 20.42 p b 0.001) males. BIG1 males had higher nesting score than
BIG2 males (t = 2.365 p b 0.05). BIG1 and BIG2 females had higher nesting score than
C1 (t = 9.564 p b 0.001 and t = 9.364 p b 0.001), C2 (t = 11.81 p b 0.001 and t =
11.43 p b 0.001), SML1 (t = 15.19 p b 0.001 and t = 14.34 p b 0.001) and SML2 (t =
14.20 p b 0.001 and t = 13.49 p b 0.001) females. BIG1 and BIG2 males had higher
nesting score than BIG1 and BIG2 females (t = 6.682 p b 0.001 and t = 2.886 p b 0.05).
3.1.3. Replicate differences in open field behavior
There were no significant strain (F2,3 = 1.16, p N 0.40), sex (F1,226 =

1.73, p N 0.15) and strain by sex interaction (F2,226 = 2.54, p= 0.08) ef-
fects on anxiety-like behavior in the open field, as measured by the
number of central entries. Significant replicate effects (F3,226 = 17.87,
p b 0.0001) were due to female and male C2 mice making more central
entries than C1mice. Replicate effects were also due to female andmale
SML1 mice making more central entries than SML2 mice (Fig. 3).

3.1.4. Strain differences in elevated plus maze behavior
In the elevated plusmaze test, anxiety-like behavior, asmeasured by

the time spent on the open arms, was significantly influenced by strain
(F2,226 = 22.11, p b 0.0001) without a significant replicate effect
(F3,226 = 1.11, p N 0.30). The strain differences were due to BIG2
males spending more time on the open arms than C2, SML1 and SML2
males and the BIG1 and C1 males spending more time on the open
arms than the SML2 males. For females, the C1, C2, SML1 and SML2
strains spent less time on open arms than the BIG1 and BIG2 females.
No significant sex (F1,226 = 0.75, p N 0.30) and strain by sex interaction
(F2,226 = 0.74, p N 0.40) effects were found (Fig. 4).

3.1.5. Sex and replicate differences in novel-object recognition memory
No significant strain (F2,3= 5.33, p N 0.09) and strain by sex interac-

tion (F2,226 = 2.80, p N 0.05) effects were found for novel object recog-
nition. The significant effects of sex (F1,226 = 6.87, p b 0.01) on novel
object recognition was mostly due to female C1 mice showing better
performance than their male counterparts (Fig. 5). A significant repli-
cate effect was found (F3,226= 3.44, p b 0.01), whichwas predominant-
ly due to differences between C1 and C2 males.

3.1.6. Sex and replicate differences in the forced swim test
In the forced swim test, depression-like behavior, as measured by

duration of immobility, revealed no significant strain (F2,3 = 1.78,
p N 0.25) and strain by sex interaction (F2,226 = 1.82, p N 0.15) effects.
The significant sex (F1,226 = 5.67, p b 0.05) effect was due to proestrus
females demonstrating less depression-like immobility behavior than
did males, especially SML1, BIG1, C1, but not SML2 strains (Fig. 6). The
significant replicate effect (F3,226 = 8.64, p b 0.0001) was due to differ-
ences between the SML1 and SML2 males and the C1 and C2 females.

3.2. Strain differences in corticosterone plasma levels

Plasma corticosterone levels were significantly influenced by strain
(F2,52 = 12.17, p b 0.0001) without a replicate effect (F3,52 = 2.53,
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Fig. 2. Marble burying behavior: Mean (±SEM) number of marbles buried in male and
female BIG, SMALL and Control replicate strains. Replicate effect was due to C1 females
burying more marbles than C2 females (t = 5.850 p b 0.001). BIG1 and C2 males buried
more marbles than BIG1 (t = 3.132 p b 0.05) and C2 (t = 4.201 p b 0.001) females,
contributing to the sex differences and strain by sex interactions.
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p N 0.05). The BIG and SMALL nest-building strains generally mounted a
higher corticosterone response to forced swim followed by euthanasia.
Corticosterone levels in male BIG1 and SML1 strains were significantly
higher than the C2 strain (Fig. 7). Also, BIG1 males had higher cortico-
sterone levels than C1males. In females, both the BIG and SMALL strains
had higher corticosterone levels when compared to the Control strains.
No significant sex (F3,52 = 3.68, p N 0.05) and strain by sex interaction
(F2,52 = 1.54, p N 0.20) effects were observed.

4. Discussion

In this study we report for the first time that females of both the BIG
strains displayed face validity as a non-induced compulsive-like model
by using more cotton for nest building and buryingmore marbles com-
pared to the females of the SMALL strains. For nest-building behavior,
the female Control strains were intermediate but closer to the SMALL
strains, while for marble burying one of the Control strains was similar
to the BIG strains and the other Control strain was similar to the
SMALL strains. BIG1 and BIG2 females had less compulsive-like nesting
(48% and 28%, respectively), when compared to BIG1 and BIG2 males
establishing a sex difference, which was specific to the compulsive-
like mice because the SMALL and Control strains did not show differ-
ences between males and females. We hypothesize that this difference
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Fig. 4. Elevated plus maze behavior: Mean (±SEM) time spent on open arms of male and
female BIG, SMALL and Control replicate strains. Significant strain differences were
observed in time spent on open arms between male BIG2 with C2 (t = 3.881,
p b 0.001), SML1 (t = 3.807, p b 0.001) and SML2 strains (t = 4.899, p b 0.001). The C1,
C2, SML1 and SML2 females spent less time on open arms when compared to BIG1
females (t = 3.836, p b 0.001; t = 2.627, p b 0.05; t = 4.041, p b 0.001; t = 3.923,
p b 0.001, respectively). The C1, SML1 and SML2 females spent less time on open arms
when compared to BIG2 females (t = 2.904, p b 0.01; t = 3.085, p b 0.01; t = 2.994,
p b 0.01, respectively).
was due to using proestrus females in this study with higher estrogen
levels. For marble burying a similar sex difference was also observed
for the BIG1 strain, but not the BIG2 strain although the trend was in
the same direction.

Prior studies have shown that compulsive-like behaviors were en-
hanced in the absence of estrogen, such as estrogen-deficient male
mice that showed development of compulsive-like wheel running and
grooming behavior. These behaviors were considerably reduced with
estrogen replacement [58]. Estrogen administration in ovariectomized
rats with 8-OH-DPAT induced compulsive-like traits caused significant
reduction in the compulsive-like behavior [33]. Females in proestrus
have high physiological circulating estrogen levels [22,99], but whether
estrogen played a direct role in reducing compulsive-like behaviors in
proestrus female compared to male compulsive-like mice remains to
be elucidated.

Cohort based clinical studies have found that overall males have
higher vulnerability to obsessions and compulsions when compared to
females [14,53]. Although obsessions are difficult to model in animals,
the severity of compulsions can be a suitable measure of it [34]. There-
fore, the higher levels of compulsive-like behaviors in BIG males com-
pared to BIG females may further add face validity to the mouse
model for understanding sex differences that attribute to the complex-
ity of OCD.

Open field and elevated plusmaze testswere used to assess anxiety-
like behavior inmales and females of BIG, SMALL and Control strains. No
significant strain effects were found for the number of central entries in
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Fig. 6. Forced swim test: Mean (±SEM) immobility time of male and female BIG, SMALL
and Control replicate strains. SML1 males had higher immobility times than SML2 males
(t = 5.796, p b 0.001) while C2 females had higher immobility times than C1 females
(t = 4.229, p b 0.001). BIG1, C1 and SML1 males had higher immobility times when
compared to BIG1 (t = 3.063, p b 0.05), C1 (t = 3.778, p b 0.01) and SML1 (t = 3.083,
p b 0.01) females. In the SML2 strain, females had higher immobility time than the
males (t = 3.827, p b 0.01).
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Fig. 7. Plasma corticosterone levels: Mean (±SEM) corticosterone levels as a measure of
HPA axis stress response of male and female BIG, SMALL and Control replicate strains.
Levels in male BIG1 and SML1 strains were significantly higher than the Control C2
strain (t = 3.773, p b 0.001 and t = 4.385, p b 0.001, respectively). BIG1 (t = 2.455,
p b 0.05) and SML1 (t = 2.916, p b 0.05) males had higher corticosterone levels than C1
males. Female BIG1, BIG2, SML1 and SML2 also had higher corticosterone levels than
female C1 (t = 3.90, p b 0.001; t = 3.73, p b 0.001; t = 2.91, p b 0.05 and t = 4.91,
p b 0.001, respectively) and C2 (t = 4.95, p b 0.001; t = 4.85, p b 0.001; t = 3.99,
p b 0.001 and t = 5.30, p b 0.001, respectively).
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the open field, which indicates that this measure of anxiety-like be-
havior did not correlate with the level of compulsive-like behavior.
However, significant strain differences were observed in elevated
plus maze tests for both males and females. Generally the BIG
strains showed less anxiety-like behavior in the elevated plus
maze test when compared to the SMALL strains, which is consistent
with our previous findings [50], and the females showed this gener-
al pattern most clearly. The responses of the six strains in the open
field and elevated plus maze varied, which may be due to these
tests measuring different aspects of emotionality associated with
anxiety [6,93].

Although BIGmice overall were less anxious than the SMALLmice in
the elevated plus maze, within each BIG strain the correlations were
generally opposite. Elevated plus maze exploration had a negative cor-
relation with levels of compulsive-like nesting (r = −0.708,
p b 0.005) and marble burying (r = −0.562, p b 0.05) behavior in
BIG2 females indicating that an increase in compulsive-like behavior
was associated with more anxiety (less exploration of the open arms).
A negative correlation was also found between marble burying (but
not nesting) with open arm exploration in BIG1 males (r = −0.817,
p b 0.0001). This result could be due to a changing genetic correlation
structure as selection progressed, similar to what we found in these
mice for the relationship between food consumption and nest building
previously [19]. Alternatively, genetic drift and founder effects [17,19]
might be responsible for the correlations observed in just the BIG2 fe-
males and the BIG1 males.

The association of OCDwith general anxiety is deemed controversial
[103]. Studies have shown that the ego-dystonic and intrusive nature of
obsessions differ largely from general anxiety [64,65]. There is also large
heterogeneity and variability of anxiety in OCD, though general anxiety
is a common comorbid psychiatric condition associated with the disor-
der [5,84]. This makes it an ambiguous indicator for the disorder [85].
General anxiety and panic disorders have a late onset when compared
to OCD, which has a very early onset [95]. In addition, neurocircuitry
models proposed for anxiety and OCD differ. While anxiety and panic
disorders have been linked to dysregulation of amygdala-ventromedial
prefrontal cortex-hippocampus circuitry [98], OCD is thought to occur
due to abnormal fronto-striatal circuitry [36,49,88,94]. Consequently,
findings from the current study will allow the BIG2 female and BIG1
male strains to be used for studying association between various
forms of compulsivity and anxiety. The BIG1 females and BIG2 males
on the other hand can provide understanding of various forms of com-
pulsivity and how they vary based on sex and genetic background.
In the depression-like forced swim test, no significant relationship
was found between the level of compulsive-like behavior and immobil-
ity times as the strain effectwas not significant. However, significant sex
differences were observed with the females generally showing less de-
pression-like behavior than males. Rodent studies have shown sex and
strain differences in depression-like behavior in the forced swim task
[13,102]. Proestrus female mice and rats with higher circulating estro-
gen have been found to be less immobile in forced swim task when
compared to the male counterparts [43,44,47], which is similar to our
findings. Depression is a common comorbidity associated with OCD [5,
87,104], but has been found to vary considerably among studies [3].
Human studies have shown that anxiety and depressions are influenced
by factors like race/ethnicity and gender differences [78]. Hence, an ef-
fect of genetic background coupled with sex differences could influence
the comorbid depression disorders in OCD and present a complex set of
interactions, also reflected in our six mouse strains with different com-
pulsive-like phenotypes.

The novel object recognition test revealed no significant strain ef-
fects, although the Control strains tended to outperform the BIG and
SMALL strains. Females significantly outperformed the males, mostly
due to the Control strains and less so due to the SMALL strains. The
novel object recognition task is useful for studying working memory
[38,46,100]. Several clinical studies have reported deficits in working
memory among OCD patients [75,81,110], while others have reported
no significant difference [85,86]. Our findings in the mice may be due
to the fact that differences inworkingmemory capacity amongOCD pa-
tients are linked to intrusive thoughts or obsessions [15], which simply
cannot be assessed in animals. Alternatively, novel object recognition
memory may not be equivalent to the working memory deficits mea-
sured in OCD patients.

The female Control mice had significantly lower plasma cortico-
sterone levels than the BIG or SMALL strain females. This general pat-
tern was also observed in the males, but to a lesser degree. Previous
studies have shown that female rodents secrete higher levels of cor-
ticosterone than males [10,21,66], which the BIG1, BIG2, and SML2
mice tended to show as well, although the overall sex effect was
not significant. Additionally, in proestrus, corticosterone levels in re-
sponse to stress are higher [9,21,35,112]. Coping with stress is pro-
moted by the hypothalamic-pituitary-adrenal (HPA) axis [28,106]
and corticosterone is a primary end point of HPA axis activation in
mice [54]. OCD is known to be stress responsive since symptoms
not only increase during periods of stress but stressful events can
also precede the onset of obsessive-compulsive symptoms [80].
Our results show that selection to behavioral extremes, both in the
high and low direction of nesting, resulted in enhanced activation
of the HPA axis due to stress imparted by the forced swim test. OCD
patients have higher baseline urine [45] and blood [61] cortisol levels
than healthy matched controls, which can be compared to the higher
stress-induced corticosterone levels in the BIG strains compared to
the Control strains.

Significant replicate effects nested within strain were found for nest
building, marble burying, open field behavior, novel object recognition
memory, and the forced swim test. These replicate effects were most
likely due to differences in genetic background as a result of random ge-
netic drift and founder effects within each strain [17,19]. Of special in-
terest are the replicate effects between the BIG strains as they
represent the compulsive-like phenotype and may correspond to sub-
types of compulsive-like phenotypes as seen in human OCD patients
[39,48,68]. The male BIG1 strain nested more than the BIG2 strain,
while the BIG2 strain showed more anxiety-like behavior in the elevat-
ed plus maze than the BIG1 strain. However, the females were not dif-
ferent from each other for either trait indicating a potential sex by
genotype interaction. Further, sex differences in only the BIG1 but not
the BIG2 strains in marble burying add heterogeneity based on specific
compulsive-like traits that might significantly vary depending on the
sex and genotype.
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5. Conclusion

In the current study, we confirmed that females of the compulsive-
like BIG strains also have face validity as amousemodel of OCD, enhanc-
ing our earlier findings in males [50]. Proestrus females also showed
lower levels of compulsive-like behaviors than males, which suggest
that physiological changes in females related to the estrous cycle
might influence compulsive-like behavioral expression. A differential
response was observed in anxiety-like behaviors with replicate effects
in the open field and strain differences in the elevated plus maze. Sex
differences were seen for depression-like behavior with an elevated
HPA axis response in females compared to males. Overall, our mouse
strains can be used to better understand how genetic and sex factors
and behavioral correlates contribute to the compulsive-like phenotype.
Replicate effects in compulsive-like expression also indicate symptom
heterogeneity that is strongly associated with OCDmaking it a complex
neuropsychiatric disorder. Future studies will aim at investigating sex
and strain differences in first line therapy responses and the neurobio-
logical mechanisms in the mouse model that could broaden the under-
standing of heterogeneity and drug unresponsiveness in certain OCD
subtypes when compared to others.
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