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Background: Skeletal muscle is important to determine physical activity and exercise capacity in cardiovascular
disease. This study aims to investigate the relationship between skeletal muscle volumemeasured by bioelectri-
cal impedance analysis and ventilation indices assessed by cardiopulmonary exercise test in patients with
myocardial infarction.
Methods: A total of 60 patients (57 men; 59 ± 9 years) who underwent percutaneous coronary intervention for
ST-elevation myocardial infarction were enrolled into this study. All patients performed cardiac rehabilitation
and then achieved physical activity of daily life. No patient was complicated by diabetes mellitus. In symptom-
limited cardiopulmonary exercise test, minute ventilation ( _VE), oxygen consumption ( _VO2), and carbon dioxide
production ( _VCO2) were continuously obtained. A volume of skeletal muscle measured by bioelectrical imped-
ance analysis was normalized for height (skeletal muscle index).
Results: The skeletal muscle index showed a significant inverse correlation with peak _VE/ _VO2 (p = 0.02,
r =−0.39) and peak _VE/ _VCO2 (p= 0.02, r =−0.30). In addition, the skeletal muscle index inversely correlated
with _VE/ _VCO2 slope (p = 0.02, r = −0.30). On the other hand, the skeletal muscle index did not significantly
correlate with peak _VO2 (p= 0.56, r = 0.08) and peak _VCO2 (p = 0.99, r = 0.001). Besides, the skeletal muscle
index did not significantly correlate with Δ _VO2/Δwork rate slope (p = 0.60, r = 0.07).
Conclusions: The increase in skeletalmuscle indexwas associatedwith the amelioration of ventilatory efficacy to ex-
ercise at the peak level. Furthermore, the increase in skeletal muscle index may account for favorable prognosis.
Thesefindings could strengthen the role of skeletalmuscle in exercise capacity of patientswithmyocardial infarction.

© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Impaired capacity of physical function is associated with morbidity
and mortality in cardiovascular disease [1,2]. Exercise capacity was an
independent predictor of mortality in thrombolysed patients for acute
myocardial infarction [3]. In heart failure, the limited exercise capacity
was determined by peripheral hemodynamics rather than central he-
modynamics [4,5]. In this regard, skeletal muscle played an important
role in determining anaerobic metabolism during exercise in patients
with chronic heart failure [6,7]. Previous studies showed that decreased
blood flow to the skeletal muscle [8] and alteredmetabolism in skeletal
muscle [9,10] were closely associated with exercise intolerance.

Bioelectrical impedance analysis (BIA) allows the determination of
body compositions [11]. The use of BIA has been widespread in clinical
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practice [12].With the technical progress of BIA, it is feasible tomeasure
skeletal muscle volume with the convenient method [13,14]. However,
whether skeletal muscle volumemeasured by this simple method is as-
sociated with exercise capacity is unknown. Cardiopulmonary exercise
testing (CPET) is a remarkably versatile tool that can assess exercise
capacity, which quantitatively measures the consumption of oxygen
and the production of carbon dioxide [15]. Besides, CPET precisely pro-
vides detailed information on ventilatory response to exercise and prog-
nosis in patients with cardiovascular disease [16,17].

Therefore, this study aims to investigate the relationship between
skeletal muscle volume measured by BIA and ventilation indices
assessed by CPET in patients with myocardial infarction.

2. Methods

2.1. Study population

This study enrolled patients who underwent percutaneous coronary
intervention for ST-elevation myocardial infarction in the Hospital of
e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Shiga University of Medical Science. Patients with diabetes mellitus
were excluded from this study. All patients enrolled in this study per-
formed cardiac rehabilitation before performing progressively increas-
ing, symptom-limited CPET. Patients' physical activities were in New
York Heart Association (NYHA) functional class II or III, when CPET
was performed. Each patient's drug therapy was optimized before the
entry into this study. Patients did not have pulmonary rale and were
clinically stable before the study. Patients with severe concomitant
extracardiac disease limiting exercise performance were excluded
from this study. The study protocol conforms to the ethical guidelines
of the 1975 Declaration of Helsinki as reflected in a priori approval by
the institution's human research committee and informed consent
was obtained from all patients enrolled in this study.
2.1.1. Body composition measurement
Body composition was assessed using 8-electrode segmental bio-

electrical impedance analysis (X-SCAN PLUS, Tanita Co., Tokyo, Japan)
in a standing posture before exercise. The total volume of skeletal mus-
cle and the skeletal muscle volume in each upper and lower limb was
also measured under a fasting condition. Body weight and height were
simultaneously measured, providing skeletal muscle index (the weight
in kilograms divided by the square of the height in meters).
Table 1
Medication use.

Drugs No. of patients

Angiotensin-converting enzyme inhibitor 37 (62)
Angiotensin receptor blocker 18 (30)
Calcium antagonist 3 (5)
β blocker 39 (65)
Loop diuretic 10 (17)
Aldosterone receptor antagonist 26 (43)
Nitrate 10 (17)
Statin 46 (77)
Antiplatelet agent 53 (88)

Numbers are presented as N (%).
2.2. CPET procedures and data collection

All patients underwent a familiarization bicycle exercise test before
performing CPET. Patients were instructed to exercise maximally to
symptomatic end points using an isokinetic ergometer (AEROBIKE
75XLII, Minato Medical Science Co. Ltd., Osaka, Japan) under medica-
tions. A mask was placed covering the nose and the mouth, the patient
breathed through a non-rebreathing valve. Air was delivered to the O2

and CO2 analyzer (AEROMONITOR 300S, Minato Medical Science Co.
Ltd., Osaka, Japan). Breath-by-breath gas exchange measurement was
performed, permitting continuous measurements of ventilation ( _VE),
oxygen uptake ( _VO2), and carbon dioxide production ( _VCO2) on-line.
The instrument was calibrated using reference gases before every test.
During the test, a standard 12-lead ECG (CASE, GE Healthcare, Wauwa-
tosa, WI, Wisconsin, and United States) was interfaced and heart
rhythm was monitored continuously throughout the exercise test.
Blood pressure was measured using a standard cuff sphygmomanome-
ter every 1min. After stationarywarm-upexercisewith an equivalent of
15 W for 3 min, a ramp protocol with incremental steps equivalent of
20W/min was used at a rate of approximately 50 rotation/min. All sub-
jects performed an active cool-down, at the initial workload of the exer-
cise protocol, for at least 3min after the cessation of ramping exercise. A
modified Borg scale was used to facilitate communication with the
patient with regard to symptoms. From the ventilatory data, minute
ventilation ( _VE), respiratory exchange ratio ( _VCO2/ _VO2), and ventilatory
equivalents for O2 and CO2 ( _VE/ _VO2, _VE/ _VCO2) were calculated. Peak
oxygen consumption (peak _VO2) was expressed as the highest attained
_VO2 during the final 30 s of ramping exercise. Anaerobic threshold was
measured with the _V-slope analysis from the plot of _VCO2 versus _VO2 on
equal scales. The anaerobic threshold value was also confirmed by ven-
tilatory equivalents (increase of _VE/ _VO2 with a constant _VE/ _VCO2) and
end-tidal pressure (increase of end-tidal _VO2 with constant end-tidal _V
CO2). The _VO2/work rate relationship was evaluated throughout the
entire exercise, during the ramping period, after elimination of the in-
crease in work rate during the first 120 s to account for the time con-
stant for the _VO2 response to the work rate increase. The _VE versus _V
CO2 slope was calculated by linear regression, excluding the nonlinear
part of the data after the onset of ventilatory compensation formetabol-
ic acidosis. Exercise tests were supervised by an expert team consisting
of physiotherapists and physicianswhowere unaware of results of body
composition and echocardiography.
2.3. Echocardiographic assessment

Echocardiography was performed using a 2.5-MHz transducer and
connected to computerized hemodynamic instruments. Examinations
were performed with the head of the examining table elevated about
30° in a partial decubitus position. Biplane left ventricular end-diastolic
and end-systolic volumes were measured using modified Simpson's
rule from paired apical 4-chamber and apical 2-chamber echocardio-
graphic images. Left ventricular ejection fraction (LVEF) was obtained
from the orthogonal apical views as a parameter of left ventricular sys-
tolic function. The parasternal acoustic window was used to record at
least 3 consecutive beats of 2-dimensional and M-mode recordings of
the left ventricular internal diameter and wall thicknesses just below
the tips of the anterior mitral valve leaflets in both the long- and short-
axis views. Pulsed-wave Doppler sample volume was placed at the
center of the mitral annulus from an apical view to record the early
phase of diastolic transmitral blood flow (E). Left ventricular myocardial
velocitieswere evaluated by tissueDoppler imaging. Pulsed tissueDopp-
ler imaging was performed in an apical view to acquire the peak early
diastolic mitral annular velocity (e′). To avoid the influence of regional
function on the velocity, tissue Doppler signals were recorded at 2
sites: the septal and the lateral sides of the mitral annulus. The ratio of
E to e′ (E/e′) was calculated at the both sites, and then the average E/e′
of these was used for representing left ventricular diastolic function.
The measurements were composed by the average of ≥3 consecutive
cardiac cycles. Heart rate was simultaneously recorded.

2.4. Statistical analysis

Continuous variables are expressed as mean ± standard deviation
(SD) and categorical data are presented as numbers (percentages). A
linear regression analysis was applied to determine correlation between
skeletalmuscle index and ventilation indicesmeasured. A p value b0.05
was considered significant.

3. Results

The study consisted of 60 consecutive patients (57 men; mean age,
59 ± 9 years). The underlying disease was hypertension in 20 patients
and dyslipidemia including familial hypercholesterolemia in 18 patients.
All patients had a history of smoking. Table 1 lists medication use.
Table 2 shows measurements of body composition, echocardiography,
and CPET. Skeletal muscle volume averaged 23.4 ± 4.4 kg, and skeletal
muscle index averaged 8.3 ± 1.5 kg/m2. Echocardiographic analysis
showed that left ventricular ejection fraction averaged 53.7 ± 9.3%, and
E/e′ averaged 10.1 ± 3.5. All patients performed CPET safely and without
any complications. Exercise duration excluding warm-up period was
294.4±69.9 s. The anaerobic thresholdwasmeasurable and themaximal
work was attained in all patients tested. The limiting symptom was leg
fatigue in all patients enrolled. The maximum load of ramping exercise
averaged 110.3 ± 23.1 W.



Table 2
Measures of body composition, echocardiography, and cardiopulmonary exercise
testing.

Body composition
Height (cm) 167.4 ± 6.3
Weight (kg) 65.4 ± 9.4
BMI (kg/m2) 23.3 ± 2.7
Skeletal muscle (kg) 23.4 ± 4.4
Skeletal muscle index (kg/m2) 8.3 ± 1.5

Echocardiography
LV end-diastolic diameter (mm) 51.8 ± 5.8
LV end-systolic diameter (mm) 36.5 ± 6.7
LV ejection fraction (%) 53.7 ± 9.3
E/e′ 10.1 ± 3.5

Cardiopulmonary exercise testing
Peak heart rate (beats/min) 124.4 ± 21.6
Peak work rate (W) 110.3 ± 23.1

Peak _VE (mL/kg/min) 716.6 ± 157.9

Peak _VO2 (mL/kg/min) 17.6 ± 3.9

Peak _VCO2 (mL/kg/min) 21.7 ± 5.0

Peak RER 1.2 ± 0.2
Peak Mets 5.0 ± 1.2

Peak _VE/ _VO2 (/kg) 0.7 ± 0.2

Peak _VE/ _VCO2 (/kg) 0.5 ± 0.2
_VE/ _VCO2 slope 27.8 ± 5.2

Δ _VO2/Δwork rate slope 7.4 ± 1.2

Values are mean ± SD. BMI = body mass index; V/S ratio = visceral to subcutaneous
fat ratio; LV= left ventricle; E=earlymitral inflowvelocity; e′=early diastolicmitral

annulusmotion velocity; _VO2=minute oxygen uptake; _VE=minute ventilation; _VCO2

= minute carbon dioxide production; respiratory exchange ratio = RER; metabolic
equivalents =Mets.

Fig. 2. Relation between skeletal muscle index and _VE/ _VCO2 slope.
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3.1. Skeletal muscle and CPET parameters

Fig. 1 shows a relation between skeletal muscle index and CPET pa-
rameters regarding ventilatory efficacy to exercise. There were signifi-
cantly inverse correlations between skeletal muscle index and peak _V
E/ _VO2 (r = −0.39, p = 0.002; Fig. 1A) and between skeletal muscle
index and peak _VE/ _VCO2 (r=−0.30, p=0.02; Fig. 1B). Skeletal muscle
index showed a significant inverse correlation with _VE= _VCO2 slope (r=
0.30, p = 0.02; Fig. 2). However, no significant correlations were found
between skeletal muscle index and peak _VE (r = 0.23, p = 0.08), be-
tween skeletal muscle index and peak _VO2 (r = 0.08, p = 0.56), be-
tween skeletal muscle index and peak _VCO2 (r = 0.001, p = 0.99),
and between skeletal muscle index and Δ _VO2/Δwork rate slope (r =
0.07, p = 0.60).

4. Discussion

Exercise is of value in primary, secondary, and tertiary prevention in
cardiovascular diseases. CPET is a remarkably versatile tool that pro-
vides valuable diagnostic and prognostic information regarding patients
with cardiovascular diseases [16,18]. In CPET, peak _VO2 (the highest rate
of oxygen uptake) and _VE/ _VCO2 slope (the rate of increase in ventilation
per unit increase in carbon dioxide production) are widely accepted as
useful prognostic markers [19,20]. Skeletal muscle plays an important
Fig. 1. Relation between skeletal muscle index and peak _VE/ _VO2 (
role in determining exercise capacity. In this study, we compared skele-
tal muscle indexwith various ventilation indices obtained from CPET in
patients withmyocardial infarction. Themajor findings of this study are
as follows: 1) skeletal muscle index was associated with the ameliora-
tion of ventilatory efficacy at the peak level and 2) the inverse correla-
tion between skeletal muscle index and _VE/ _VCO2 slope suggests that
skeletal muscle index may be attributed to better prognosis.

It is undoubtedly necessary to perform cardiac rehabilitation in pa-
tients with cardiovascular disease. It is therefore essential to evaluate
exercise capacity for those patients. Skeletal muscle is one of the impor-
tant determinants of exercise capacity [5]. Previous studies have shown
fundamental mechanisms underlying exercise capacity in association
with skeletal muscle. Harrington et al. reported that muscular atrophy
in the lower limbs was a major determinant of exercise capacity [21].
Sullivan et al. reported that a decrease in type I fibers and an increase
in type IIb fibers of skeletal muscle were observed in heart failure [22]
and reduced aerobic enzyme activity in skeletal muscle was associated
with exercise intolerance in heart failure [6]. In addition, an intrinsic
muscle abnormality is considered to be responsible for exercise capaci-
ty. Impaired skeletal muscle function resulted in ergoreflex activation,
leading to increased ventilation [23], and depleted peripheral muscle
mass was associated with ergoreflex overactivity and exercise limita-
tion in heart failure [24]. Recently, Dhakal et al. demonstrated that utili-
zation of oxygen in skeletal muscle determined exercise capacity in
heart failure with preserved ejection fraction [25]. Consistent with the
previous reports, the present study showed that an increase in skeletal
muscle index ameliorated ventilatory efficacy at peak exercise level in
patients with myocardial infarction. This is because skeletal muscle
index may reflect alteration of histology, metabolism, ergoreflex, and
oxygen consumption in this disorder. The novelty of the present study
is that simply measured skeletal muscle by BIA is attributed to exercise
capacity in terms of ventilatory efficacy.

CPET provides valuable parameters: 1) peak _VO2 reflectingmaximal
cardiac output during exercise, 2) _VE/ _VCO2 slope reflecting cardio-
ventilatory function during exercise, 3) Δ _VO2/Δwork rate reflecting
A) and between skeletal muscle index and peak _VE/ _VCO2 (B).
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the rate of the increase in cardiac output during incremental exercise,
and 4) anaerobic threshold reflecting exercise intensity at which lactic
acidosis occurs. _VE increases as a function of hyperbolic state. Above
the level of anaerobic threshold, lactic acidosis stimulates ventilation
further, thus leading to an increase in tidal volume to eliminate the
excessive production of CO2. Such ventilatory drive progressively in-
creases _VE/ _VO2 and _VE/ _VCO2, both of which indicate ventilatory equiv-
alent to O2 uptake and CO2 excretion, respectively. The ventilatory
equivalent markers are reflected by several factors such as lactic acido-
sis, hyperventilation, and chemosensitivity. In addition, increased _VE/ _V
CO2 during exercise was related to an increase in ventilation–perfusion
mismatch due to increased dead space ventilation in heat failure [26].
This study demonstrated inverse relation between skeletal muscle
index and peak _VE/ _VO2 and between skeletal muscle index and peak _V
E/ _VCO2, indicating that skeletal muscle was associated with the amelio-
ration of ventilatory efficacy at the peak exercise level.

The steep slope of _VE/ _VCO2 slope is associated with multiple factors
such as reduced cardiac output during exercise, increased pulmonary
artery and capillary wedge pressures, increased dead space/tidal
volume ratio, and augmented chemoreceptor sensitivity. Thus, the in-
creased _VE/ _VCO2 slope is due to both ventilation–perfusion mismatch
arising from hemodynamic dysfunction and the altered control of
ventilation. Our study also demonstrated inverse relation between
skeletal muscle index and _VE/ _VCO2 slope, implying that skeletal muscle
may gain support of improvement of prognosis inmyocardial infarction.
Although both peak _VO2 and _VE/ _VCO2 slope are related to cardiovascular
prognosis, _VE/ _VCO2 slope is a better predictor of clinical outcomes than
peak _VO2 [19,20,27]. This is because peak _VO2 may not accurately reach
to a plateau level and is also affected by the motivation of patients. Our
study showed that skeletal muscle index was associated with _VE/ _VCO2

slope but not with peak _VO2, indicating that skeletal muscle index
may be associated with ventilatory efficacy to exercise but not with
exercise capacity.

There are several limitations in this study. First, we measured
skeletal muscle quantitatively, but did not perform qualitative analysis
of skeletal muscle such as muscle power. Because the primary aim of
this study is to determine whether or not skeletal muscle measured
by BAI is clinically useful, we focused on the quantitative analysis of
skeletal muscle. Second, _VE/ _VO2 and _VE/ _VCO2 were standardized by
body weight in this study, because other ventilation indices were stan-
dardized in CPET.

Skeletal muscle is one of the pathophysiological links with exercise
capacity in cardiovascular disease. Despite this crucial association, the
detailedmechanisms are yet to be determined. Our study demonstrated
that skeletal muscle index inversely correlated with ventilatory efficacy
at peak exercise level. In addition, skeletal muscle index negatively cor-
related with the best prognostic marker (i.e., _VE/ _VCO2 slope) obtained
from CPET. These findings can explain that skeletal muscle is intimately
associated with ventilatory response to exercise. However, further
studies are needed to elucidate the fundamental pathophysiological
mechanisms onwhich the role of skeletal muscle in ventilatory efficacy
is based. In addition, it is necessary to study whether the increase in
skeletal muscle improves the prognosis in the population of the present
study.
Conflict of interest

The authors report no relationships that could be construed as a
conflict of interest.
Acknowledgment

Thisworkwas supported in part by the Smoking Research Foundation
grant (No. 1779).
References

[1] V. Bittner, D.H. Weiner, S. Yusuf, W.J. Rogers, K.M. McIntyre, S.I. Bangdiwala, M.W.
Kronenberg, J.B. Kostis, R.M. Kohn, M. Guillotte, et al., Prediction of mortality and
morbidity with a 6-minute walk test in patients with left ventricular dysfunction.
Solvd investigators, JAMA 270 (1993) 1702–1707.

[2] J.F. McNeer, J.R. Margolis, K.L. Lee, J.A. Kisslo, R.H. Peter, Y. Kong, V.S. Behar, A.G.
Wallace, C.B. McCants, R.A. Rosati, The role of the exercise test in the evaluation of
patients for ischemic heart disease, Circulation 57 (1978) 64–70.

[3] A. Villella, A.P. Maggioni, M. Villella, A. Giordano, F.M. Turazza, E. Santoro, M.G.
Franzosi, Prognostic significance of maximal exercise testing after myocardial
infarction treated with thrombolytic agents: the gissi-2 data-base. Gruppo
italiano per lo studio della sopravvivenza nell'infarto, Lancet 346 (1995)
523–529.

[4] A.L. Clark, P.A. Poole-Wilson, A.J. Coats, Exercise limitation in chronic heart failure:
central role of the periphery, J. Am. Coll. Cardiol. 28 (1996) 1092–1102.

[5] J. Downing, G.J. Balady, The role of exercise training in heart failure, J. Am. Coll.
Cardiol. 58 (2011) 561–569.

[6] M.J. Sullivan, H.J. Green, F.R. Cobb, Altered skeletal muscle metabolic response to
exercise in chronic heart failure. Relation to skeletal muscle aerobic enzyme activity,
Circulation 84 (1991) 1597–1607.

[7] D.M. Mancini, G. Walter, N. Reichek, R. Lenkinski, K.K. McCully, J.L. Mullen, J.R.
Wilson, Contribution of skeletal muscle atrophy to exercise intolerance and altered
muscle metabolism in heart failure, Circulation 85 (1992) 1364–1373.

[8] J.R. Wilson, J.L. Martin, D. Schwartz, N. Ferraro, Exercise intolerance in patients with
chronic heart failure: role of impaired nutritive flow to skeletal muscle, Circulation
69 (1984) 1079–1087.

[9] D.H. Wiener, L.I. Fink, J. Maris, R.A. Jones, B. Chance, J.R. Wilson, Abnormal skeletal
muscle bioenergetics during exercise in patients with heart failure: role of reduced
muscle blood flow, Circulation 73 (1986) 1127–1136.

[10] B. Massie, M. Conway, R. Yonge, S. Frostick, J. Ledingham, P. Sleight, G.
Radda, B. Rajagopalan, Skeletal muscle metabolism in patients with conges-
tive heart failure: relation to clinical severity and blood flow, Circulation 76 (1987)
1009–1019.

[11] U.G. Kyle, I. Bosaeus, A.D. De Lorenzo, P. Deurenberg, M. Elia, J.M. Gomez,
B.L. Heitmann, L. Kent-Smith, J.C. Melchior, M. Pirlich, H. Scharfetter, A.M.
Schols, C. Pichard, Composition of the EWG. Bioelectrical impedance
analysis—part I: review of principles and methods, Clin. Nutr. 23 (2004)
1226–1243.

[12] U.G. Kyle, I. Bosaeus, A.D. De Lorenzo, P. Deurenberg, M. Elia, J. Manuel Gómez, B.
Lilienthal Heitmann, L. Kent-Smith, J.C. Melchior, M. Pirlich, H. Scharfetter, A. MWJ
Schols, C. Pichard, Bioelectrical impedance analysis—part II: utilization in clinical
practice, Clin. Nutr. 23 (2004) 1430–1453.

[13] S.B. Heymsfield, Z. Wang, M. Visser, D. Gallagher, R.N. Pierson Jr., Techniques used in
the measurement of body composition: an overviewwith emphasis on bioelectrical
impedance analysis, Am. J. Clin. Nutr. 64 (1996) 478S–484S.

[14] I. Janssen, S.B. Heymsfield, R.N. Baumgartner, R. Ross, Estimation of skeletal
muscle mass by bioelectrical impedance analysis, J. Appl. Physiol. 89 (2000)
465–471.

[15] R. Arena, J. Myers, M.A. Williams, M. Gulati, P. Kligfield, G.J. Balady, E. Collins, G.
Fletcher, American Heart Association Committee on Exercise R, Prevention of the
Council on Clinical C, American Heart Association Council on Cardiovascular N. As-
sessment of functional capacity in clinical and research settings: a scientific state-
ment from the American Heart Association Committee on Exercise, Rehabilitation,
and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular
Nursing, Circulation 116 (2007) 329–343.

[16] G.J. Balady, R. Arena, K. Sietsema, J. Myers, L. Coke, G.F. Fletcher, D. Forman, B.
Franklin, M. Guazzi, M. Gulati, S.J. Keteyian, C.J. Lavie, R. Macko, D. Mancini, R.V.
Milani, American Heart Association Exercise CR, Prevention Committee of the
Council on Clinical C, Council on E, Prevention, Council on Peripheral Vascular D,
Interdisciplinary Council on Quality of C, Outcomes R, Clinician's guide to cardiopul-
monary exercise testing in adults: a scientific statement from the American Heart
Association, Circulation 122 (2010) 191–225.

[17] M. Guazzi, V. Adams, V. Conraads, M. Halle, A. Mezzani, L. Vanhees, R. Arena, G.F.
Fletcher, D.E. Forman, D.W. Kitzman, C.J. Lavie, J. Myers, European Association
for Cardiovascular P, Rehabilitation, American Heart A, EACPR/AHA Scientific
Statement. Clinical recommendations for cardiopulmonary exercise testing
data assessment in specific patient populations, Circulation 126 (2012)
2261–2274.

[18] R.V. Milani, C.J. Lavie, M.R. Mehra, Cardiopulmonary exercise testing: how do we
differentiate the cause of dyspnea? Circulation 110 (2004) e27–e31.

[19] T.P. Chua, P. Ponikowski, D. Harrington, S.D. Anker, K. Webb-Peploe, A.L. Clark, P.A.
Poole-Wilson, A.J. Coats, Clinical correlates and prognostic significance of the
ventilatory response to exercise in chronic heart failure, J. Am. Coll. Cardiol. 29
(1997) 1585–1590.

[20] D.P. Francis, W. Shamim, L.C. Davies, M.F. Piepoli, P. Ponikowski, S.D. Anker, A.J.
Coats, Cardiopulmonary exercise testing for prognosis in chronic heart failure: con-
tinuous and independent prognostic value from VE/VCO(2)slope and peak VO(2),
Eur. Heart J. 21 (2000) 154–161.

[21] D. Harrington, S.D. Anker, T.P. Chua, K.M. Webb-Peploe, P.P. Ponikowski, P.A. Poole-
Wilson, A.J. Coats, Skeletal muscle function and its relation to exercise tolerance in
chronic heart failure, J. Am. Coll. Cardiol. 30 (1997) 1758–1764.

[22] M.J. Sullivan, H.J. Green, F.R. Cobb, Skeletal muscle biochemistry and histology in
ambulatory patients with long-term heart failure, Circulation 81 (1990) 518–527.

[23] R.C. Morgan Jr., The national medical association—an advocate for a smoke-free
environment, J. Natl. Med. Assoc. 88 (1996) 766–767.

http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0005
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0005
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0005
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0005
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0010
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0010
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0010
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0015
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0015
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0015
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0015
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0015
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0020
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0020
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0025
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0025
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0030
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0030
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0030
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0035
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0035
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0035
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0040
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0040
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0040
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0045
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0045
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0045
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0050
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0050
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0050
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0050
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0055
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0055
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0055
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0055
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0055
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0060
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0060
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0060
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0060
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0065
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0065
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0065
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0070
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0070
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0070
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0075
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0080
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0085
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0085
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0085
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0085
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0085
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0085
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0090
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0090
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0095
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0095
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0095
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0095
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0100
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0100
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0100
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0100
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0105
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0105
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0105
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0110
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0110
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0115
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0115


18 H. Hayashi et al. / IJC Metabolic & Endocrine 12 (2016) 14–18
[24] M.F. Piepoli, A. Kaczmarek, D.P. Francis, L.C. Davies, M. Rauchhaus, E.A. Jankowska,
S.D. Anker, A. Capucci, W. Banasiak, P. Ponikowski, Reduced peripheral skeletal
muscle mass and abnormal reflex physiology in chronic heart failure, Circulation
114 (2006) 126–134.

[25] B.P. Dhakal, R. Malhotra, R.M. Murphy, P.P. Pappagianopoulos, A.L. Baggish, R.B.
Weiner, N.E. Houstis, A.S. Eisman, S.S. Hough, G.D. Lewis, Mechanisms of exercise
intolerance in heart failure with preserved ejection fraction: the role of abnormal
peripheral oxygen extraction, Circ. Heart Fail. 8 (2015) 286–294.
[26] A.L. Clark, P.A. Poole-Wilson, A.J. Coats, Relation between ventilation and carbon
dioxide production in patients with chronic heart failure, J. Am. Coll. Cardiol. 20
(1992) 1326–1332.

[27] D.E. Forman, M. Guazzi, J. Myers, P. Chase, D. Bensimhon, L.P. Cahalin, M.A. Peberdy,
E. Ashley, E. West, K.M. Daniels, R. Arena, Ventilatory power: a novel index that
enhances prognostic assessment of patients with heart failure, Circ. Heart Fail. 5
(2012) 621–626.

http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0120
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0120
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0120
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0120
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0125
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0125
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0125
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0125
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0130
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0130
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0130
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0135
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0135
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0135
http://refhub.elsevier.com/S2214-7624(16)30007-X/rf0135

	The relationship between skeletal muscle and ventilatory response to exercise in myocardial infarction
	1. Introduction
	2. Methods
	2.1. Study population
	2.1.1. Body composition measurement

	2.2. CPET procedures and data collection
	2.3. Echocardiographic assessment
	2.4. Statistical analysis

	3. Results
	3.1. Skeletal muscle and CPET parameters

	4. Discussion
	Conflict of interest
	Acknowledgment
	References


