Objective. The complete agenesis of the carpal and tarsal bones has been described but agenesis of a single navicular bone has not. We report a case of unilateral agenesis of a navicular bone.

Case report. The patient was a 5-year-old boy with a history of right clubfoot for which he had been treated in Italy. He had had successive Ponseti plasters followed by a splint. The deformity improved partially leading the family to consult our physical medicine unit for complement management. The physical examination revealed a right forefoot deformity associating 30° varus, 20° supination and 15° equinus. The Pirani score was 4/6 and the Dimmeglio score 16/20. The ap and lateral plain x-rays of both feet revealed agenesis of the navicular bone on the right foot. The left navicular bone was present.

Discussion – conclusion. The navicular bone ossifies during the fourth year of life. The non-visualization of the navicular bone at the age of 5 years as our patient is in favour of agenesis especially since the contralateral navicular bone was readily visible on the standard x-ray. The association of an agenesis of the navicular bone and clubfoot distortion has never been described to date. Agenesis of the navicular bone could be the reason underlying the partial improvement of our patient’s distortion.

[Further reading](http://dx.doi.org/10.1016/j.rehab.2012.07.622)

Neurological presentation of Wilson’s disease in childhood:

Disabling pathology

D. Cherqaoui, Y. El Azbari, Y. Abdelfettah, F. El Midmani, A. El Fatimi

CHU Ibnou Rochd, rue des Hôpitaux, 2300 Casablanca, Morocco

E-mail address: cherqaoui-dania@hotmail.fr.

Keywords: Wilson’s disease; Neuro-orthopedic complications

Introduction. Wilson’s disease, autosomal recessive genetic disease, causes tissue accumulation of copper in the liver initially progressing to cirrhosis and in the central nervous system responsible for neurological complications. The diagnosis is both clinical and molecular biological.

Objective. We report a case of Wilson’s disease with which we’ll discuss the management of neuro-orthopedic complications of this disease.

Observation. M.Y. child aged 10 to consult with walking problems and slow gestures with speech. Born to consanguineous parents with a good psychomotor development. He had generalized dystonia, dystarthis and impaired deglutition. Une Wilson’s disease was suspected, confirmed on liver biopsy; normal cuprurie delayed the diagnosis.

Discussion. The revelation neurological forms of Wilson’s disease represent approximately 35% of cases. We must therefore think of Wilson’s disease before any neurological or psychiatric signs in children or adolescents and achieve a balance. The heterogeneity of clinical signs often causes misdiagnosis and explains the mean time to diagnosis of 6 to 36 months, which influences the prognosis pejoratively. Various chelators are available to reduce the morbidity and mortality of Kawasaki disease. Rehabilitation is an important part of the care that must be started early before the installation of neuro-orthopedic complications, hence the importance of a multidisciplinary management of these patients.

[Further reading](http://dx.doi.org/10.1016/j.rehab.2012.07.624)

Cerebral palsy: The relationship between prematurity and neurovisual disorders, about 57 cases

M. Ardati, F. Lefebre, P. Thoumie, Y. Mohammad

IEM Madeleine-Fockenberghé, ARIMC, Île de France, 2, avenue Robert-Schuman, 95500 Gonesse, France

*Corresponding author.

E-mail address: mostafaardati@hotmail.com.

Objective. This work aims to find a significant correlations between the type of prematurity on the one hand and the neurovisual disorders in children with cerebral palsy on the other hand.

Methods and materials. Population: 57 subjects with cerebral palsy aged 7–18 years, 21 tetrariplegics, 7 diplegics, 16 hemiplegics and 13 cerebellar syndromes, they have been divided into 4 groups extremely premature infants born at moderately premature infants from 31 to 34 weeks Mild premature infants from 34 to 36 weeks full term infants after 36 weeks.

Evaluation. All of them have been studied by a visual assessment to form a complete classification of visual impairment consisting of the three components: sensory, motor and functional.

Statistical analysis. The Data was analyzed with the software “Statistica”.

Multivariavles exploratory techniques and then, the correspondence analysis.

Results. It has been found three significant correlations.

Discussion. This work identifies a very critical period between 31 and 34 weeks of gestation.

[Further reading](http://dx.doi.org/10.1016/j.rehab.2012.07.624)

Does the respite stay in a paediatric department of PRM meet a patient need?

A. Javarel, P. Frappe, C. Mietton, B. Bayle, C. Bois, V. Gautheron

*Service de MPR pédiatrique, CHU de St-Étienne, 42055 St-Étienne cedex 02, France

*Département de médecine générale, faculté de médecine Jacques-Lisfranc, St-Étienne, France

*Corresponding author.

E-mail address: javarel.amandine@wanadoo.fr.

Keywords: Respite; Children with multiple disabilities; PMR

Introduction. Respite stay, or a brief period of in-hospital rest, appears to meet a specific and real need for young patients with multiple disabilities and their families. The paediatric department of physical medicine and rehabilitation at...