>

View metadata, citation and similar papers at core.ac.uk broughttoyouby 4. CORE

provided by Elsevier - Publisher Connector

JOURNAL OF ALGEBRA 3, 261-276 (1966)

Attainability of Systems of Identities on Semigroups

Takayvuk1 TaAMURA
University of California, Davis, California
Communicated by D. Rees
Received November 6, 1964

1. INTRODUCTION

A decomposition 4 of a semigroup S is the partition of all elements
of .S due to a congruence relation &, that is, 4:S = {J . S, where
S, VS = [, « # B, S'== S/é. Let £ and &, be two congruences corres-
ponding to the decompositions 4, and 4,, respectively. As usual we say
4, is greater than 4, if and only if ¢ C &, . Consider all congruences ¢ on S
such that S/¢ satisfies a given condition 7. Then we say that S/€ is of given
type 7, 4 is a 7 -decomposition, and p is a 7 -congruence. Throughout this
paper .7 means a system of identities, which will be strictly defined later,
something like {¥* = », y& = za}. As is well known, for any .7, there is the
smallest .7 -congruence on any semigroup S, equivalently, the greatest 7 -de-
composition of S [/, 4,8, 9, 10, 12]. If there is a .7 -congruence € on S such
that + C £ C o where ¢ is the equality relation and o is the universal relation
[p. 13, /], then S is called 7 -decomposable; otherwise S is 7 -indecompo-
sable. In the greatest semilattice-decomposition of any semigroup, each
congruence class is semilattice-indecomposable [7, 9, 77]. On the other hand,
in the case of the greatest idempotent-decomposition or commutative-
decomposition, a congruence class which is a subsemigroup is not necessarily
indecomposable with respect to the type. The following question arises:
Under what condition on .7 does the same situation occur for any semigroup
S as in the case of the greatest semilattice-decomposition ? This paper proves
that the question is confirmative if and only if .7 is equivalent to semilattice
{x2 = &, xy == vx} except for two trivial cases.

2. PRELIMINARIES
A word, f(x;, -+, x,) or simply f, is a finite sequence of letters x, , -, x,

in which same letters may be used repeatedly. Throughout this paper, x, y, 2,
x;, 3, -+ denote letters, and f, g, h, k, w --- denote words. A sequence of 7
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identical letters, xx --- x, is symbolized as x*, # > 1, where » is called the
exponent of x. Generally f has the form

f(xl s "% xn) = ;ﬂ}’c?l o ’Cz,,, ,

x;, being one of &, 1 < 7 < n. A pair (f,g) of arbitrary words is called an
identity. The equality of pairs is defined to be (f, g) -= (k, &) if and only if
there is a one-to-one mapping v, —> &, between letters xy, -, &, used In
(f,g) and &', -+, x," in (A4, k) such that either A s obtined from f, and &
from g, or A from g, and k& from f by replacing x; by v/, Hereafter we shall
denote an identity by f == g instead of ( f, g). To avoid contusion, the cquality
expressing definition is written as ~=, that is, /- &y means that a word f
1s defined to be a%y.

Let T be the family of all systems .7 of identities such that each element
J of T is composed of finite or infinite number of identities, and .7 con-
tains x = . (‘ontaining x = x 1s for theoretical convenicnee; and we will
not explicitly write & == x in cxpressing .7, except the case of .77 consisting
of v = x alone. Let .7 = {T;Ae A}, .7 AT XN e’y where T,
fi=g and T, is f;- =g, . The equality .7 =7 is defined as follows:
There is a one-to-one mapping A — A" between /1 and /1" such that f, = g,
is equal to f,- = ¢, . A system 7 is associated with a statement that each
f. = g, of 7 identically holds when all letters are replaced by elements of .S,

Then we say that .S satisfies .7

or S is of type .7, and a congruence £ is a
J -congruence if S/¢ satisfies f As was stated, for any .7 and for any semi-
group S, there is the smallest .7 -congruence on S. The greatest .7 -homo-
morphic image of .S is denoted by S/7". Also we can say that given .7, there
are semigroups satisfying 7. These semigroups mayv happen to be one-
element semigroups. The two quasiorderings p and ¢ on T arc defined as
follows:

() Jp& if and only if & is a subsystem of 7.
We also use the symbols union U, intersection M, as usual. .7 p.%" if and
only if 7 U .¥ = equnalenth NG = Y

(2) J o if and only if .7 implies ., that is, a semigroup satisfies .,
whenever it satisfles 7.
In other words, 7 ¢ if and only if ¥ is obtained from .7 by a combination
of a finite number of the following procedures besides those defining the
equality. Let f; , f and g be words.

(3) (f1f2)fs 1s replaced by fi( £, fa) and vice versa.

@) f=gg=himplyf=h

(5) f =g implies fh = gh and hf = hg where & is any word.
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(6) The letters , involved in f = g are replaced by words h(y; , - yi{),
that is, from f(x; , -, x,) = g(x,, =, x,) we have

F(hy s ooy ) = glhy , o2, By).

As a special case of (6) there exists:

(6" For any partition 4 of the set {x;, -+, x,} of all letters in f == g,
all the letters in a same equivalent class are replaced by one letter, and those
in distinct classes are replaced by distinct letters. We call it the procedure by
a partition 4. Also we can say

(7) Jo if and only if S| satisfies & for any semigroup S.

Let ¢ denote the cquivalence derived from o in such a way that .76.7 if
and only if 7 0. and .¥6.7 . Clearly p C o and 6 C 0. When #6.% we say .7
and ¥ are equivalent. We easily have

Lemma 1. If Jo6¥, then T6T U S). If To¥,, ackH, then
(U= 7)) o(Upes %)

Generally let 9 be a binary relation on a set /7 and ¢ an equivalence on K
which need not be included in . Then a relation 5/ on the set E/¢ is defined
as follows: Let a* denote the equivalence class containing a € E. For a¥,
b*ec )¢, a*n/é b* if and only if there are a; €a*, b, €b* such that
amby .

We denote /6 by o*, T/6 by T¥ and theset unionof p and 6 by p U &,

the transitive closure of p U 4 by p U 6.

THEOREM 1.

and T* is a complete lattice with respect to o*.

Proof. Since pCo and 6Co, we get p UG Co and hence
(0 U 6)/6 C 0/6 = o*. Suppose 7 *o*.#*, By the definition there are 7; €. 7 *
and ¥ €. ¥* such that Z0.%,. By Lemmal, Z76(7, U %) and
(F1 U H)pH, . This means that T *p/¢ . 9* Therefore we have
o*Cp/6 C(p U 6)6C(pyUéb)é. Thus we have proved all the equalities
in this theorem. Certainly o* is a partially ordering since o is a quasiordering.
Let {7 *} be any subset of T*. Then, by Lemma 1, we can easily show that
(U, 7,)* is the greatest lower bound of {7_*}. Since T* contains the greatest
and smallest elements it is complete lattice.

Remark. Since each J_ contains x = x, the intersection 1s not empty.

-3
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When .7 p.", we say that .%'* is greater than .7 * with respect to ¢*. The
greatest lower bound of {7_*} is denoted by A\ .7 *.

COROLLARY 1.

The smallest 7 - and . -congruences on a same semigroup S are denoted
by P and Py respectively. Another quasiordering = on T is defined as
follows:

(8) I =Y ifandonlyifp , © p, onany semigroup.
s 7 -

LEMMA 2. o = 7 and hence & = 7.

Proof. Clearly o (. . Wc may show 7 € a. Suppose J 7% and let .5 be
any semigroup satisfying .7 . Consider the smallest .7 - and .#"-congruences
on 5. Then Fp Cp,onS. ‘ﬁmcc P, we have p, = con S. In other
words S satisfies (/ lhucfou .

Let .7 be a system of identities, & be the family of semigroups. A semi-
group .S which belongs to € is called a semigroup of type €.

DEFINITION. 7 is universality on all semigroups of type © if and only if T
tmplies {x v} under the condition that all the letters ave regarded as elements
of S € C..7 is equality on all semigroups of type S if and only if T is equivalent to
{x - x} under the same condition. In particulay, if S is characterized by a
system & of identities, then 7~ Is universality on all semigroups of type 3 if and
only if (7O S o{x — y}, equivalently, (7 U F)6{x = v}; T s equality on all
semigroups of type S if and only zf( 7 W e = x}. Also T is universality on
all semigroups if and only if 7 ol{x = v}, equivalently T 6{x = y}; .7 is equality
on all semigroups if and only if Té{x == x}. We say that 7 is universal on a
semigroup S if and only if S is .7 -indecomposable.

DeriNiTION. Let &g be the smallest F -congruence on any semigroup S
belonging 1o S. .7 is called attainable on all semigroups of S (or simply “on &)
if, for each S € €, the following condz'tion iv satisfied: If a congruence class
of S modulo £ is a subsemigroup, then it is T -indecomposable. In particular if
@ is the family of all semigroups (without restriction) and if 7 is attainable on
&, 7 is called attainable (on all semigroups). If 7 is attainable on S and if &
consists of a semigroup S alone, we say that I is attainable on S.

As the trivial cases, if 7 is universality or equality, then .7 is attainable.
We shall call .7 trivial if and only if .7 is either universality or equality.

The following lemma is very fundamental:
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Lemma 3. If 7 is universal on a semigroup S then 7 is universal on any
homomorphic image of S.
The following lemma is an immediate consequence from Lemma 2.

LevMa 4. Let 7,6.7,. Then .7 | is attainable on semigroups of type S
if and only if 7, is attainable on the semigroups of type F.

Let @ be a word and let E(w) denote the set of all letters which appear in
2. The sum of all exponents of the same letter x is called the total exponent
of x in =, for example, if @ == x®yzw, that of x is 3. The sum of the total
exponents of all letters in e is called the length of w, denoted by |j= | .

Let T be an identity f==g and let FE(f) U E(g) = {%,, -, x,;. The
total exponents of x; in f and g are denoted by s; and ¢, , respectively (¢ = 1,
com), sy 22 0, 1, 205 in detail, s; 52 0 and £, =0 if and only if x; s in f
but not in g; but s; and ¢, are not simultaneously zero. If s, = ¢, (t = 1, -+, m)
then f — g is called equiexponential; otherwise heteroexponential.

For a given identity f g, the sequences {F;i=0,1,2--} and
{G;;1 =0, 1,2 -} of sets are associated with f and g, respectively as follows.
For each nonnegative integer 7,

F; ={x e E(f) v E(g); the total exponent of x in f is 7}
G; = {x e E(f) U E(g); the total exponent of x in g is £}.

F; and G; may happen to be empty. Clearly there is a positive integer ¢; such
that

F, =G, =1], forall 7 >4
and

U= o= v o

An identity f = g is equiexponential if and only if F; = G, for all non-
negative integers 7.

3. ON COMMUTATIVE SEMIGROUPS

»

Let 7 be the semigroup of all positive integers with usual addition. Any
congruence ¢ on [ different from the equality relation is uniquely determined
by its homomorphic image, a finite cyclic semigroup, and hence by the
index a and the period 7 [[]; £ is denoted by ¢ (a, 7), where a is still called
the index of £ and 7 the period of £. For convenience let &(oo, 7) = &(a, o)
for all », a, and denote it by &(co), corresponding to the equality relation.
The universal relation on I is £(1, 1). The complete lattice L of all congruences
on [ consists of all £&(a, r) and &(o0). The following lemma is easily obtained.
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LemMA S, The join and meet of a subset of = {£(a, ,r)); A € A} are given
as follows :

join &4, 7), where d = Min. {a,; A e /13, F=ged. {ryied,

meet £(a, 1), where a == Max.{a,; A € A}, r=lem. {r;re A}

We consider now the smallest 7-congruence on I. If 7" is equiexponential,
the congruence is the equality relation.

LevMMA 6. Let T be a heteroexponential identity f = g. The smallest
T-congruence on I is given by &(a, , r,), where

2 = (Min {|[ £ ]I, g1} i  ifl#E g
OIS gty = Min{i = 0;F, £ Gy}, if  lfl=1lg!

ro =gcd {5, — 3 1 <i < mb

Proof. The proof of a4, is given below in the case where [[fll = ¢,
while the remaining part is easily obtained by recalling the method of con-
struction of the smallest congruence [/0]. By the definition of 7,, we may
assume there is a letter x; € F; but x; ¢ G;, such that s; = i, . Then i, < ¢,
by the minimality of #,. This shows that |f| 4+ s; <[ g | + ¢, where
1 f1] + s; is the value of f obtained by replacing x, by 2 and all the other by |
under addition. Immediately we have

ag =l fil +s;.

Let 7 be a system of identities: .7 = {I';; A € A}, where T, is f, == g,;
and let E(f) U E(g,) = {1, "', x,\m/\}; and let s,; and ¢,; be the total
exponents of x,; in f, and g, , respectively. Let A, be the set of all indices A
such that 7', is heteroexponential. /1, may happen to be empty.

LemMma 7. If 9 is atiainable on I, then either
(9.1) All T,, Ae A, are equiexponential, that is, .7 is the equality on I;

or

. | =

(9.22) ged {Isy —t b1 <i<m,Aed} =1

Conwversely if 7 includes heteroexponential identities and satisfies (9.2) then T
is universal on 1.

Proof. For simplicity the left sides of (9.2.1) and (9.2.2) are denoted by
6(7") and w(J"), respectively. Let &(a,, #,) be the smallest -7 -congruence
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on the additive semigroup I of all positive integers. Recalling the method of
construction of the smallest congruence and Lemma 6, we have ry == n(7")
and ay = (7). To show 6(F) == 1, suppose 8(7) == 1. Then a, > 2 and
the congruence class J; which is a subsemigroup of I consists of

try, {2+ Drg, =+ for some 7,

where i#y 2> a, . Consider the smallest .7 -congruence on I, . 'Then #r, com-
poses a class by itself alone. Therefore I is .7 -decomposable, contradicting
the assumption that 7™ is attainable. Thus 8(7") = 1. Accordingly 7 contains

an identity f, =g,, Aed,, such that [|f\ || =1. If |[f,] =g |=1,
i == g, 18 x =y, universality, which satisfies §(7) = m(.7") == |. Therefore
we may assume || f, | <[l g, [i. We have gy = || f, | = | and r, = #(7") by

Lemmas 5 and 6. Suppose r; > 1. Then « C {1, ry) C w, I/4(1, 7,) being the
group mod. 7, , and the congruence class which is a subsemigroup I,, consists
of ry, 2ry, ---, which is isomorphic to /. Thus /7, is .7 -decomposable, a
contradiction. Therefore #(77) = r, == |. The proof of the remaining part
is already included above.

The following lemma is discussed on all semigroups.

Lemma 8. If F includes heteroexponential identities and satisfies (9.2),
then there is T such that 769" and 7 'p{x = x?}.

Proof. Let S be any semigroup and let @ be any element of S. Since .7~
satisfies (9.2.1) and (9.2.2), 7 is universal on I by Lemma 7; and hence, by
Lemma 3, 7 is universal on the cyclic subsemigroup [a] of S generated by a.
Therefore the image @’ of a into S/.7 satisfies @’ = a&’?, that is, /7 satisfies
x == x% Thus.7 o{x — a?}. By Lemma 1 and (7), this lemma has been proved.

Remark. Lemma 8 can also be proved directly by procedures (3) through
(6) without using (7), but the above proof is simpler.

THEOREM 2. Let J be a system including heteroexponential identities. If
T is attainable on all (commutative) semigroups, then

T6T, T 'plx =x%  for some T,

Proof. Immediately from Lemmas 7 and 8.

4, O~ Grours

Let [ be the group of all integers with addition. Analogously to Lerama 7,
and with the same notations,
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LemMma 9. If T is attainable on ], then either
(11.1) all T,, A € A, are equiexponential,

or
(11.2) ged.{[s, —t, ;1 <<i<<m, ,Aed} =1

Conversely if 7 includes heteroexponential identities and satisfies (11.2)
then J is universal on J.

TreoREM 3. If T is a system including heteroexponential identities and if T
1s attainable on all groups, then 7 is universal on all groups.

Proof. By using Lemmas 9 and 3, we get J o{x = x?} in the same way
as the proof of Lemma 8. On the other hand x = x? on groups implies that 7~
is universal on all groups.

For a word & —= x; --- x, we introduce the inverse word as follows

-1 .-1.-1 . -1
W= Xn Xp-q X1

and for an identity f -= g, the word fg~!, which has been reduced by the
procedure wxx 12 == wo, Is called the induced word of f = g. The termino-
logy “total exponent” is defined even if negative exponents are admitted.
A word in which the total exponent of each letter is O is called null-exponen-
tial.

Let 7 = {1',; A € A} be a system of equiexponential identities 7', : f, = g, .
Accordingly the induced word of 7',

10y fgt= xpioexin, where n,;are integers is null-exponenital.
Let G be a group. The smallest .7 -congruence on G is determined by the
normal subgroup N of G which is defined in the following way: Ny is a
subgroup of G generated by (10), precisely speaking, by the subset

i vee pliy e 4o aee
1'11 “”1',/\)\’ ‘\i, ) )

fx eG,Aedl.

U X

iy
Ng is called the normal subgroup of G associated with .7,

THEOREM 4. If 7 is a system of nontrivial equiexponential identities,
then T is not attainable on all groups.

Proof. Let F be a free group such that the number of the generators of I
is equal to the number of letters contained in a particular identity T, .
Let N be the normal subgroup of I associated with 7. Then N C F because
each element of N, is null-exponential with respect to the generators of F.
Also since Ny contains the word f,g7%, {¢! C N, that is, N is a proper
normal subgroup of F. According to the theory of free groups [6], N is also
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a free group. Consider the normal subgroup NNFCNF. This means that
Ny is J -decomposable.

5. ON IDEMPOTENT SEMIGROUPS

As a consequence of sections 3 and 4, we may proceed under the assump-
tion that  consists of heteroexponential identities including x* = «. In
other words we may find a system .7~ of identities which are attainable on
idempotent semigroups. The purpose of this section is to prove

THEOREM 5. Let J contain x = x% F is attainable if and only if T is
equivalent to either universality or {x = x* | xy = yx}.
As the first step

Lemma 10. If {xy = y} o, then J is not attainable.

Proof. Let R be a right zero semigroup, (xy = y for all %, y € R) with the
cardinal number | R | = 2. Tet S =R U{p, ¢}, p ¢ R, g ¢ R, p 5 ¢, and let

a and b be fixed elements of R. A binary operation in .S is defined as follows:

gp =56
xp = a, if g#xes
xy =y, if pFEyes. (12)

Associativity is easily checked. Define a congruence ¢ on .S as follows:
xfy if and only if x = v or x, v € {a, b, p}. This £ is the smallest idempotent-
congruence on .S and S/¢ is of type {xy = y}. Hence ¢ is the smallest .7 -con-
gruence. The congruence class {q, b, p}, however, is {xy = y}-decomposable,
hence 7 -decomposable.

As the dual case.

Lemma 10, If {x = x% xy = x} 0.7, then I is not attainable.

Lemma 11, If {x? = x, xy = yx} 67, then F is attainable.
Lemma 11 was proved in [7, 9, [1].
To prove the main theorem, we may show

Lemma 12, If T contains x = x%, then T satisfies exactly one of the
Sfollowing :

(13.1) T6{x = &% xy = yx}.

(13.2) F6{x =y}

(13.3) {xy =y} o7, or {xy = x} 07, or both.
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To prove Lemma 12 we need to investigate the concept of single identities
on idempotent semigroups. The following terminology is essentially due to
Kimura [5].

Recall that E(f) denotes the set of all letters contained in a word f. Let
H(f) be the head of £, that is, the first letter in f; L( f) the tail of £, that is, the
final letter of f. For exampleif f - - xy%wx,%, H(f) == %, L{f) -~ a5 Let fhave
the form: f -, x; -, E(f) = ix,, - x4 For £, another word f is

defined as follovxs ’

’ Pt
f - ‘\’ilxi.l ‘\z,{a

4 SR - .
Xiyp TE X

assuming that x; , ---, x; are selected, x; a8 determined in such a way that
x; is the letter mfwhlch is distinct from any one of & , -+, &; and appears
for the first time from the left. The word S 1s called "the 1n1t1al part of f,
denoted by (/). Dually we can define the final part F(f) of f.
IfI(f) --= I(g),then f == gis called coinitial; if #(f) = f(g), then f - gis called
confinal.

Most parts of the following lemma, (14.1) through (14.7), are due to
Kumura {3, 13, /4]. We shall state the sketch of the proof of (14.1) through
(14.7) and will give only the proof of the remaining part.

Let .7, == {x = &%, f = g} where we may assume fand g are different words.

Levma 13.

(14.1) E(f) = Eg), H(f) # H(g), and L(f) + L(g) imply Fé{x = &,
xy = yx§, semilattice.

(142) E(f) # E(g), H(f) = H(g), and L(f) # L(g) imply Tys{x -y}
unrversality.

(143) E(f) = E(g), H(f) = H(g), and L(f) = L(g) imply Tolay ),
left zero semigroup.

(14.4)  E(f) # E(g), H(f) # H(g), and L(f) = L(g) imply FoS{xy = i,
right zero sengroup

(145)  B(f) # E(g), H(f) = H(g), and L(f) — L(g) imply Tydlayx = xl,
rectangular band.

(1460 E(f) = E(g), H(f) — H(g), L(f) #L(g) and I(f) =I(g) imply
T o6{x == &2 xyx = xy}, left regular band.

(147 E(f) = L(g) H(f) = H(g), L(J) = L(g) and F(f) = F(g) imply
Fbia == x*, xyx = yx}, right regular band.

(14.8)  L(f) = L(g) H(f) = H(g), L(f) #L(g), and I(f) # I(g) imply

Fob{x = a2, xyz = xzy}, left normal band.



ATTAINABILITY OF SYSTEMS OF IDENTITIES ON SEMIGROUPS 271

(14.9)  E(f) = E(g), H(f) # H(¢), L(f) =1{g) and F(f) # Flg) imply

T G{x = «°, xyx = yxz}, right normal band.
(14.00) E(f) = E(g), H(f) = Hl(g), L(f) — L{g) imply
{x = a2, xyzx = xzyx} 07, .
{x = &%, xysx = xzyx} is called a normal band.

Proof. To change identities, in addition to the procedures defining the
equality and the procedures (3) through (6), we shall use the following proce-
dures:

(15.1) A word f?1is replaced by f,
(15.2) A word f is replaced by f2

For (14.1) through (14.5), if | E(f) U E(g) | = 2, by means of suitable parti-
tions (6") of the set of the letters, f = g is reduced to f' ==g" where
| E(f) U E(g") | = 2, in which the conditions on E, H, and L are preserved.
For (14.6) and (14.7), if | E(f) V E(g)| =2 3, f =g is reduced to [’ =g’
where | E(f) U E(g’) | = 3, in which the conditions on E, H, L, I, and F
are preserved. This gives -7 yo{ f = g}. The proof of { f = g} 07 is easy.

Below we use for simplicity the terminology “by {x, ---} U {v, ---},” which
means “‘with the procedure (6') by a partition of the set of all letters included
in f = g such that a class contains «, the complementary class contains y”’;
also “{w, ¥} U {2} U{y, --}"" is a partition of the set into the three classes:
the first contains only x, v, the second z alone, the third all other elements
containing u.

Proof of (14.8) through (14.10). The identity f=g has the form
x oy =uw--u yFu By {x,u -} Uy -~} we have xyx = xy. Let
I(f) =, 2 Xy, L(g) = 31 = ¥; ** ¥m . By the assumption, x, =y, ,
 Xg = Vg, % F ¥, 1 LBy ey, e w b U e U {y; o), we get
xyz = xzy. Conversely xyz = xzy enables us derive f =g by permuting
letters other than heads of f and g. Thus we have (14.8).

(14.9) is obtained as the dual of (14.8).

(14.10) According to Kimura and Yamada [/3, 14], a normal band can
be embedded into the direct product of a left normal band a right normal
band. Immediately we see

{x = &%, xyzx = x2yx} 6{x = &3, xy2u = xzyu}.

It is easy to show that ¥ = x2 and xyzu = xzyu imply f = g. Thus Lemma 13
has been proved.
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Recall the ten cases of bands which appear in Lemma 13:

S semilattice, universality, left zero semigroup, right zero semigroup,
(15) { rectangular band, left regular band, right regular band,
? left normal band, right normal hand, normal band.

Using Kimura and Yamada’s result |3, /4], we can show that any two of (15)
are not 6-equivalent, Let H* be the sct of the ten -equivalence classes such
that each class contains exactly one of (15). According to Yamada [I0),
U* 15 a subsemilattice of T* with respect to the greatest lower bound. The
ordering o* of 1I* is shown in the following diagram. T'he rcaders can verify
the relation ¢ immediately from the definition without any references.

Right Regular Normal Left Regular
Right Normal Rectangular Left Normal
/\\ T
Right Zero Semigroup Semilattice Left Zero Semigroup

o

Universal

T'o make the readers understand immediately, we give examples as follows:

ExamprLe 1. Normal band

| ‘
b a b a a ‘
¢ a b ¢ c |

To show xyzx = xzyx, we can check only the cases x = ¢ or d; and y2 = q,
and 2y == b; or yz == ¢ and gy = d. However, it is not left regular since
dbd == db; not right regular since edc # dc; not rectangular since cac # ¢; not
left normal since aab =£ aba; not right normal since cde +# dec.
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Exampre 2. Left regular band

It is casy to show xyx = xy; but it is not right regular since aba 5 ba; not
normal since cabc # chac.

Exampre 2°. Right regular band: the dual of Example 2. It is neither left
regular nor normal.

ExampLE 3. Left normal band

a\‘a a a

c | a a c |

It is casy to show xyz —= wzy; but not right regular since bch =~ ¢b; not
rectangular since cbe =£ c.

ExampLE 3. Right normal band; the dual of Example 3.
ExampLE 4. Rectangular band

a b ¢ d

a | a b a b
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This is not left regular since bab # ba; not right regular since cac +# ac. It is
obvious that there is an example of a semilattice which is not rectangular.

Lemma 14.  The converse of Lemma 13, that is of each of (14.1) through
(14.10), is true.

Proof. 'The conditions in (14.1) through (14.10) with respect to f and g
are all possible cases any two of which do not ceoxist. Let us start with the
proof of the converse of (14.10). Suppose that {v - &% vyzx = xgyx} 0.7
implies one of the conditions of (14.1) through (14.9). Then normal band
would imply one of (15) except normal band. This is impossible by Example 1.
Therefore the converse of (14.10) has been proved. By examples 1 though 4,
we sec that any two of (15) are not ¢-cquivalent. Immediately we can easily
show that each converse of (14.1) through (14.9) is truc. Q.ED.

Let 3 be the set of all systems .7 of identities such that each identity
J = g belonging to 7 satisfies f2(f) = FE(g), H(f) = 11(g), L(f) = L{g), and
let 3* - - 3/5. Below the symbol (v = x2, f ~= g) denotes the 6-class containing
{x = a% f = g}. Clearly

T = U* UTIH U* N I*F = (1 == &%, 2y2x = x2Y%),

and 3* is a subsemilattice of T* with respect to greatest lower bound, and
(x = ¥% xyzx = x2yx) is the smallest element of I*. For any .7 * & 3*

T* N (x = &2, xyx = xy) == either (x = &% xyx = xy)
or (x == x% xyz = x3y),

T* N (2 = 22, xyx = px) = either (x = &%, xyx == yx)
or (x == 2% vy = yx2).

If *eU* and if * is neither left regular nor right regular then
T* N\ % =% for every 7 * ¢ 3*. Now we have arrived in the step of
the proof of Lemma 12.

Proof of Lemma [2. Let T o=y =X f e g A e Al Then
T = Uy 7, where.7 | = {x = &%, f, == g,}. By Corollary 1,7 * = A\, 7 ,.
By Lemma 13, each .7, * belongs to either [* or 3*, and hence, by the above
statement, either .7 * € U* or .7 * € 3*. This concludes that .7 satisfies onc
of (13.1), (13.2), and (13.3). Thus Lemma [2 has been proved.

After all, gathering Lemmas 12, 10, 10", 11, we have completed the proof
of Theorem 5.

6. CoNcLUSION AND GENERALIZED PROBLEMS

In consequence of the discussions through this paper, we get not only the
results concerning attainability on all semigroups but also those concerning
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attainability on commutative semigroups, idempotent semigroups and groups.
Thus we summarize them as follows:
Let .7 be a nontrivial system of identities.

THEOREM. I is attainable on all semigroups if and only if 7 is equivalent to
{x = x% 2y = &}

T is attainable on all commutative semigroups if and only if 7 is equivalent
to {x = a%}.

T is attainable on all idempotent semigroups if and only if T is equivalent to
{xy = yx} on all idempotent semigroups.

No nontrivial system of identities is attainable on all groups, even on all
abelian groups.

Finally we propose a few unsolved generalized problems. We can consider
identities f, == g, not only on semigroups but also on groupoids and algebraic
systems with more than one binary operations. In such cases, the words f, ,
g, are regarded as the sequences of letters which are connected by parentheses
and the binary operations. For a given system .7 of identities, there is the
greatest 7 -decomposition of an algebraic system of a fixed type [/0)].

ProBLEM 1. Determine all attainable systems of identities on all grou-
poids.

ProBLEM 2. Find all attainable systems of identities on all rings, lattices,
or semirings.

ProBLEM 3. If identities admit constant elements, how can we study the
problem of attainability of systems of identities on all semigroups? In this
case the sense of attainability has to be modified, if necessary.

An implication has the form f, g, ,ue M, =~ h =k where f,, g, h
and k& are words. We know that for a given system ¥ of implications there is
the greatest -#-decomposition of any semigroup or groupoid.

ProBLEM 4. Let . be a system of implications. Under what conditions
on ¢ is . attainable on all semigroups ? What about the case where the
words contain constant elements ?

We note that the condition “weak reductivity’’ is an implication. Let .S
be a semigroup.

Xl = KR, Vg = B, for all 2. €8
imph
Yy =3

where each «x, is a constant element, and the caridnal number of the set of
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xey == %% and yx, = 2y, ds equal to 215, . Clearly weak reductivity is

attainable on all semigroups. Is there any attainable implication besides it ?

From another generalized view, we have the following problem:

ProBLEM 5. Let .7 and a semigroup S be fixed. Under what conditions
on.7 and S, is .7 attainable on the semigroup S?

Remark. 'The brief announcement of this paper was published in [15].

10.
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12.
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15.

REFERENCES

. Currrorp, A. H. anp Preston, G, B. “Algebraic Theory of Semigroups, Vol. I,

Math. Surveys No. 7,” Amer. Math. Soc., Providence, R. L., 1961.

. Kmmura, N. Note on idempotent semigroups II1. Proc. Japan Acad., 34 (1958),

113-114.

. Kmmura, N. Note on idempotent semigroups IV. Proc. Japan Acad. 34 (1958),

121-123.

. Kmvura, N. On some existence theorems on multiplicative systen. L., Proc. Japan

Acad. 34 (1958), 305-309.

. Kmvura, N. The structure of idempotent semigroups (1), Pacific ¥. Math. 8 (1958),

257-275.

. KurosH, A. G. ““The Theory of Groups,” Vol. 2 (translation). Chelsea Pub.

Comp., N.Y., 1960.

. PeTricH, M. The maximal semilattice decomposition of a semigroup. Bull. Amer.

Math. Soc. 69 (1963), 342-344.

. Tamura, ‘I anp Kivura, N, Existence of greatest decomposition of a semi-

group. Kodai Math. Sem. Rep. T (1955), 83-84.

. Tamura, T. The theory of construction of finite semigroups 1. Osaka Math. ¥.

8 (1956), 243-201.

Tamtra, T. Operations on binary relations and their applications, Bull. Amer.
Math. Soc. 70 (1964), 113-120.

I'amura, T. Another proof of a theorem concerning the greatest semilattice-
decomposition of a semigroup, Proc. Fapan Acad., 40 (1964), 777-780.

Yamapa, M. On the greatest semilattice decomposition of a semigroup. Kodal
Math. Sem. Rep. 7 (1955), 59-62.

Yamava, M. anp Kivura, N. Note on idempotent semigroups 1I. Proc. Japan
Acad. 34 (1958), 110-112.

Yamabpa, M. The structure of separative bands. Dissertation, 1962.

TaMURa, 'I". Report on attainability of svstems of identities. Bull. Amer. Math.
Soc. 71 (1965), 555-558.



