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Abstract

This paper studies the properties of the Cayley distributions, a new family of models for random
p × p rotations. This class of distributions is related to the Cayley transform that maps a p(p −
1)/2 × 1 vector s into SO(p), the space of p × p rotation matrices. First an expression for the
uniform measure on SO(p) is derived using the Cayley transform, then the Cayley density for random
rotations is investigated. A closed-form expression is derived for its normalizing constant, a simple
simulation algorithm is proposed, and moments are derived. The efficiencies of moment estimators
of the parameters of the new model are also calculated. A Monte Carlo investigation of tests and of
confidence regions for the parameters of the new density is briefly summarized. A numerical example
is presented.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The construction of distribution functions for rotation matrices has received a limited
attention in the statistical literature. The matrix Fisher–von Mises distribution introduced
by Downs [4] is an exponential family which has been studied by Khatri and Mardia
[10], Jupp and Mardia [9], Prentice [16], and Mardia and Jupp [11]. A recent account of

∗ Corresponding author. Fax: +418 656 2817.
E-mail address: lpr@mat.ulaval.ca (L.-P. Rivest).

0047-259X/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2005.03.009

http://www.elsevier.com/locate/jmva
mailto:lpr@mat.ulaval.ca


C. A. León et al. / Journal of Multivariate Analysis 97 (2006) 412–430 413

the theory for this model is given by Chikuse [2]. This class of distributions is hindered
by the fact that even its basic characteristics lead to complicated expressions which are
difficult to evaluate. Also, the simulation of random rotations distributed according to the
Fisher–von Mises distribution is not a simple task.

The present paper attempts to broaden the family of models for random rotations defined
in SO(p), the manifold of p×p rotations, with a proposal that leads to relatively simple sta-
tistical procedures. We parametrize rotations using the Cayley transform, that maps vectors
of Rp(p−1)/2 into rotations in SO(p). This parametrization yields a new parametric form
for the invariant measure on SO(p), also called the Haar measure. In Section 3 we show
that uniformly distributed rotations in SO(p) are the Cayley transforms of random vectors
distributed according to a generalization of the multivariate t-distribution. The new model
is obtained by letting the degrees of freedom of the multivariate t vary.

This work is motivated by applications in biomechanics, where the data points are 3 × 3
rotation matrices. Errors are typically introduced in the modelling by assuming that the
measured rotations have normal distributions in the tangent spaces to their modal values.
This is the technique used by Woltring [20] in a sensitivity analysis of the Euler angle
representation of a rotation, by Rivest [18] in a model for rotation matrices representing a
simple flexion-extension motion about a fixed rotation axis, and by Rancourt et al. [17] to
construct analysis of variance tests for rotations. An objective of this paper is to enlarge the
class of densities for the error rotations in this context.

In terms of the unit Haar measure on SO(p), denoted [dP], the proposed Cayley family
of densities is defined by

fp(P |�, M) = c−1
�,p |Ip + PM ′|�[dP], P ∈ SO(p), (1)

where c�,p is the normalizing constant, ��0 is the dispersion parameter, M ∈ SO(p),
is the modal rotation for P, Ip denotes the p × p identity matrix, and | · | represents the
determinant. Section 2 reviews the properties of the Cayley transform and derives a new
parametric expression for [dP]. Section 3 gives a closed-form expression for c�,p, derives
moments of fp(P |�, M) and suggests a simple algorithm to simulate a random rotation
distributed according to a Cayley density. Section 4 calculates the Fisher information matrix
for (�, M) and derives the efficiencies of simple moment estimators for M and �. Some
characteristics of the random rotations obtained when p is either 2, 3, or 4 are given in
Section 5 and comparisons with the symmetric matrix Fisher–von Mises distributions are
presented. Section 6 reports the results of a Monte Carlo simulation of statistical procedures
presented in this paper while a numerical example is given in Section 7.

The following notation is used throughout the paper:

• e
(p)
1 , e

(p)
2 , . . . , e

(p)
p denote the columns of the identity matrix Ip,

• If s denotes a vector in Rp(p−1)/2, then S(s) denotes a p × p skew-symmetric matrix
containing the entries of s, which are denoted sjk with p�k > j �1 so that S(s)jk = sjk .

• S−1(S) denotes the p(p − 1)/2 × 1 vector of the entries above the diagonal of the p ×p

skew-symmetric matrix S defined in such a way that S{S−1(S)} = S.
• �(p, q) denotes a beta distribution with parameters p and q.



414 C. A. León et al. / Journal of Multivariate Analysis 97 (2006) 412–430

2. The Haar measure on SO(p)

2.1. The Cayley transform

The rotations in SO(p) are the real p × p matrices P such that P ′P = Ip and |P | = 1.
Endowed with the standard matrix multiplication, SO(p) is an algebraic group and a Lie
group. For an illuminating exposition on abstract manifolds and statistical applications see
[6]; a good reference for the mathematical background on manifolds and Lie groups is
Warner [19, Chapters 1–4], whereas Farrell [5, Chapters 6–8] gives a modern account from
a statistical perspective. Here we will be interested mainly in the general case, but most of
the applications concern SO(3)—a concise treatment of SO(3) can be found in [12].

In what follows, an important role is played by the vector space tangent to a point P in
SO(p). This vector space can be represented by the set of PS(s) for s in �p(p−1)/2. The
skew-symmetric matrices S(s) form the Lie algebra of SO(p). Given a vector s ∈ Rp(p−1)/2

the Cayley transform constructs a rotation in SO(p) using S = S(s) as

P = (Ip − S)−1(Ip + S) = 2(Ip − S)−1 − Ip. (2)

Observe that this map is always well defined since Ip − S is invertible for any skew-
symmetric matrix. The inverse of (2) is

S = Ip − 2(Ip + P)−1.

This is well defined as long as −1 is not an eigenvalue for P. Thus the Cayley transform
allows us to construct all the rotations in SO(p) except for those having an eigenvalue of
−1. This set has Haar measure 0 and is therefore negligible.

2.2. The invariant measure on SO(p)

The existence of invariant measures in SO(p) has been known since the late 19th century
and systematic methods to obtain them were developed by Deltheil [3] even before the
general existence result of A. Haar. Since then many authors have supplied a derivation
for the Haar measure on SO(3) under different parametrizations (see e.g. [13,16], and the
references therein). The modern approach using differential forms and their exterior algebra
yields the Haar measure for general compact manifolds [6,10,14,5].

An integral with respect to [dP] can be viewed as an integral defined on the manifold
SO(p) viewed as a subsurface of �p2

. The form of [dP] in terms of an Euclidean product
measure depends, of course, on the parametrization of this manifold. The Cayley map allows
us to determine [dP] using standard multivariate calculus. For any matrix X, let dX denote
the matrix of differentials (dX ij ). If X, Y are matrices for which the matrix product XY is
defined, then d(XY) = (dX) Y + X dY . For an invertible matrix A, the preceding result
implies 0 = d(A−1)A + A−1 dA so that d(A−1) = −A−1 dA A−1. In particular, Ip − S

being always invertible, we have d(Ip − S)−1 = (Ip − S)−1 dS (Ip − S)−1.
For the Cayley transform, the differential is dP = 2(Ip − S)−1dS(Ip − S)−1. Following

James [6], an invariant measure on SO(p) is given by the exterior product of the elements of
S−1(P ′dP) = S−1{2(Ip + S)−1dS(Ip − S)−1)}. From Muirhead [14, Theorem 2.1.7], this
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exterior product is given by (2p/2|Ip +S|−1)p−1 times the exterior product of the elements
of s = S−1(S). This gives the following form to an invariant measure for SO(p):

2p(p−1)/2|Ip + S|−(p−1) ds, (3)

where the exterior product ds = ∧j>idsij is the standard product measure in Rp(p−1)/2.
Now integrating (3) over Rp(p−1)/2 can be shown to yield 2p−1∏p

i=2 �i/2/�(i/2) as the
volume of SO(p). This is demonstrated in Section 3.2. Normalizing (3) gives the following
expression for the unit invariant measure:

[dP] =
p∏

i=2

�(i/2)

�i/2

2(p−1)(p−2)/2

|Ip + S|p−1 ds. (4)

3. The Cayley family of densities

3.1. The multivariate t-distribution

This section recalls some elementary properties of the multivariate t-distribution that are
useful for investigating the properties of the new model for rotation matrices. Let Z be a
p×1 vector of independent N(0, 1) random variables and letW be distributed independently
of Z according to a �2

2�+p distribution. Then the marginal distribution of X = Z/
√

W is a
scaled multivariate t2�+p; its density can be shown to be given by, see [8, Chapter 37],

hp(x|�) = �(� + p)

�p/2�(� + p/2)

1

(1 + x′x)�+p
x ∈ Rp. (5)

Moments of functions of X are given in the next proposition. All the proofs are given in the
appendix.

Proposition 3.1. If the random vector X is distributed according to hp(x|�), then

(i) 1/(1 + X′X) has a �(� + p/2, p/2) distribution;
(ii) E(X2

i ) = 1/(2� + p − 2) provided that 2� + p > 2;

(iii) E

(
X2

i

1 + X′X

)
= 1

2(� + p)
;

(iv) E

(
X4

i

(1 + X′X)2

)
= 3

4(� + p)(� + p + 1)
;

(v) E

(
X2

i X
2
j

(1 + X′X)2

)
= 1

4(� + p)(� + p + 1)
if i �= j ;

(vi) E

(
X2

i

(1 + X′X)2

)
= 2� + p

4(� + p)(� + p + 1)
.
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3.2. The normalizing constant

If P is distributed as fp(·|�, M), then PM ′ has the fp(·|�, Ip) distribution. In the sequel,
fp(·|�) denotes the Cayley density with M = Ip. Thus, we evaluate the normalizing
constants and some moments of the centered rotation matrix PM ′. Let s ∈ �p(p−1)/2 and

S(s) =
(

S11 S12
−S′

12 0

)
, (6)

where S11 is (p − 1) × (p − 1) and S12 ∈ Rp−1. Let s′ = (s′
1, s

′
2)

′ be the corresponding
partition of s, where s1 is the vector of the (p − 1)(p − 2)/2 distinct entries of S11 and
s2 = S12.

To derive a closed-form expression for the normalizing constant observe that, from (2),
|Ip + P | = 2p/|Ip + S|, where S is the skew-symmetric matrix associated to the rotation
P. In view of the expression for the invariant probability measure for SO(p) given in (4),
the normalizing constant of the proposed model is given by

c�,p = 2�p+(p−1)(p−2)/2
p∏

i=2

�(i/2)

�i/2

∫
Rp(p−1)/2

1

|Ip + S|�+p−1 ds, (7)

where S = S(s). A standard result on the determinant of a partitioned matrix yields

|Ip + S| = |Ip−1 + S11|{1 + S′
12(Ip−1 + S11)

−1S12}, (8)

where S11 and S12 are defined in (6). The integral in (7) can be split as∫
R(p−1)(p−2)/2

1

|Ip−1 + S11|�+p−1

∫
Rp−1

1

{1 + S′
12(Ip−1 + S11)−1S12}�+p−1 ds2 ds1.

Observe that

S′
12(Ip−1 + S11)

−1S12 = 1
2 S′

12{(Ip−1 + S11)
−1 + (Ip−1 − S11)

−1}S12

= S′
12(Ip−1 − S11)

−1(Ip−1 + S11)
−1S12. (9)

Changing variable x = (Ip−1 + S11)
−1S12 in the integral on Rp−1 yields a jacobian equal

to |Ip−1 + S11|. Thus,∫
Rp(p−1)/2

1

|Ip + S|�+p−1 ds

=
∫

R(p−1)(p−2)/2

1

|Ip−1 + S11|�+p−2 ds1

∫
Rp−1

1

(1 + x′x)�+p−1 dx

=
∫

R(p−1)(p−2)/2

1

|Ip−1 + S11|�+p−2 ds1
�(p−1)/2�(� + (p − 1)/2)

�(� + p − 1)
,

since the integral on �p−1 involves a function proportional to density (5). Iterating this
result yields the following formula for the normalizing constant:

c�,p = 2�p+(p−1)(p−2)/2

�(p−1)/2

p−1∏
i=1

�{(i + 1)/2}�(� + i/2)

�(� + i)
. (10)
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When � = 0, since �(i) = 2i−1�(i/2)�{(i + 1)/2}/√�, the normalizing constant reduces
to c0,p = 1.

3.3. A simulation algorithm

Let P be a random rotation distributed according to fp(P |�) and define s = S−1{Ip −
2(Ip + P)−1}. Changing variables yields the following expression for the density of s:

gp(s|�) =
p−1∏
i=1

[
�−i/2 �(� + i)

�(� + i/2)

]
1

|Ip + S|�+p−1 , s ∈ Rp(p−1)/2.

Proceeding as in Section 3.2 one can factor gp(s|�) as the product of the marginal distri-
bution of s1 times the conditional distribution of s2 given s1,

gp(s|�) = gp−1(s1|�)
hp−1{(Ip−1 + S11)

−1s2|�}
|Ip−1 + S11| . (11)

If s1 and X are independent random vectors, respectively, distributed as gp−1(s1|�) and
hp−1(x|�), then s = (s1, (Ip−1 + S11)X) is distributed according to g,p(s|�). In addition,
g2(s|�) = h1(s|�). This is the key to the simulation of a random vector s with density
gp(s|�) and of a random rotation having a Cayley distribution.

3.4. Moments and marginal distributions

Let S = S(s) and define S11, S12, and s1 as in (6); let X = (Ip−1+S11)
−1S12, X ∈ �p−1.

When p = 2, set S11 = 0. Using standard results on the inverse of a partitioned matrix,

(Ip − S)−1 =
(

(Ip−1 − S11)
−1 0

0 0

)

+

(
(Ip−1 − S11)

−1S12
1

)(−{(Ip−1 − S11)
−1}′S12

1

)′

1 + S′
12(Ip−1 − S11)−1S12

.

Let P1 = 2(Ip−1 − S11)
−1 − Ip−1 = (Ip−1 − S11)

−1(Ip−1 + S11) be the Cayley transform
of S11 and observe that {(Ip−1 − S11)

−1}′ = (Ip−1 + S11)
−1. Some manipulations of the

above expression for (Ip −S)−1 yields the following expression for P = 2(Ip −S)−1 −Ip:

P =
(

P1 0
0 0

)
+ 2

(
P1X

1

)(−X

1

)′

1 + S′
12(Ip−1 + S11)−1S12

− e
(p)
p e

(p)
p

′

=
(

P1{Ip−1 − 2XX′/(1 + X′X)} 2P1X/(1 + X′X)

−2X′/(1 + X′X) (1 − X′X)/(1 + X′X)

)
. (12)

If P1 and X are independent and distributed as fp−1(P1|�) and hp−1(x|�), respectively,
then, as shown in Section 3.3, (12) is distributed according to fp(P |�). The proof of the
next proposition uses extensively formula (12) for P.
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Proposition 3.2. Let Pij denote the entry (i, j) of the random rotation P, for i, j =
1, . . . , p. If P is distributed as fp(P |�), then

(i) the random variable |Ip +P |/2p is distributed as a product of p −1 independent beta

distributions,
∏p−1

1 �(� + i/2, i/2);
(ii) the marginal distribution of (1 + Pii)/2 is a �{� + (p − 1)/2, (p − 1)/2}. Thus,

E(Pii) = �/(� + p − 1);
(iii) E{tr(P )} = �p/(� + p − 1) and

Var{tr(P )} = p(p − 1)(2� + p − 2)(2� + p − 1)

(� + p − 2)(� + p − 1)2(� + p)
;

(iv) for i �= j

E{(Pij − Pji)
2} = 2(2� + p − 2)(2� + p − 1)

(� + p − 2)(� + p − 1)(� + p)
;

(v) the entries of S−1[(Ip + P)−1 − {(Ip + P)−1}′] are uncorrelated and have the same
marginal distribution; their variance–covariance matrix is Ip(p−1)/2/(2� − 1) when
� > 1/2.

Let X be a (p − 1) × 1 random vector with density hp−1(x|�) and define the p × 1 unit
vector V as

V = 1

1 + X′X

(
2X

1 − X′X

)
.

From (12), V and the pth column of a random rotation distributed as fp(P |�), have the same
density. To derive the density of V one parametrizes Sp−1, the unit sphere in �p, in terms
of x ∈ �p−1 as,

v = 1

1 + x′x

(
2x

1 − x′x

)
.

To calculate the parametric expression for the uniform density on Sp−1 corresponding to v,
note that the p × (p − 1) matrix of partial derivatives of v with respect to x is

�v

�x
= 2

1 + x′x

(
Ip−1 − 2xx′/(1 + x′x)

−2x′/(1 + x′x)

)
.

This is equal to 2/(1 + x′x) times the first p − 1 columns of the orthogonal matrix Ip −
2uu′/u′u where u = (x′, 1)′. Thus, the exterior product of the p − 1 columns of �v/�x

gives {2/(1 + x′x)}p−1 as the density of the invariant measure on Sp−1. In view of (5), this
leads to the following expression for the uniform density on Sp−1:

du = 1

�(p−1)/2

�(p − 1)

�((p − 1)/2)

1

(1 + x′x)p−1 dx, x ∈ �p−1.

Now vp, the pth component of v, satisfies (1 + vp)/2 = 1/(1 + x′x), and the marginal
density of V is given in the next proposition.
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Proposition 3.3. The marginal density, with respect to the uniform distribution on Sp−1,
of V, the last column of a rotation matrix P distributed according to fp(·|�) is

f
(p)
�,p (v) = �((p − 1)/2)

2��(p − 1)

�(� + p − 1)

�(� + (p − 1)/2)

(
1 + vp

)�
,

where v = (v1, . . . , vp)′ ∈ Sp−1.

Proposition 3.2(ii) applies to V. Thus E(V ) = e
(p)
p �/(� + p − 1) and, properly scaled,

the pth element of V has a beta distribution.
The last result shows that as � goes to ∞ a Cayley distribution approaches a normal

distribution in the tangent space to SO(p) at Ip.

Proposition 3.4. Let s = S−1{Ip − 2(I + P)−1}, where P is distributed as fp(P |�). As �
goes to ∞, the elements of

√
2�s converge in distribution to independent N(0, 1) random

variables.

4. Parameter estimation

4.1. General

This section assumes that P1, P2, . . . , Pn is a sample of p×p rotation matrices distributed
according to fp(PM ′|�), where � > 0 and M ∈ SO(p) are unknown parameters. First,
the estimation of the parameters by maximum likelihood is investigated and a closed-form
expression for the Fisher information matrix is presented. Then simple moment estimators
for M and �, both functions of P̄ = ∑

Pi/n, are investigated and their efficiencies are
derived. Without loss of generality, we assume that the true value of M is Ip.

4.2. Maximum likelihood estimators for � and M

The log-likelihood for � and M is

�(�, M) = �
∑

log |Ip + PiM
′| − n log c�,p.

Rotations in an infinitesimal neighborhood of Ip, the true value of M, can be written as
Ip + A + o(A) where A = S(a) and a ∈ Rp(p−1)/2. Let Ajk , k > j , denote the entry

(j, k) of A. Observe that A = ∑p
k>j Ajk(e

(p)
j e

(p)′
k − e

(p)
k e

(p)′
j ). The score vector for M is

the vector of the coefficients of a in the first-order expansion for �(�, M) around M = Ip.
This first order expansion can be derived by noting that

log |Ip + Pi(Ip − A)| − log |Ip + Pi | = log |Ip − (Ip + Pi)
−1PiA|

= log[1 − tr{(Ip + Pi)
−1PiA}] + op(a)
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= −tr{(Ip + Pi)
−1PiA} + op(a)

=
p∑

k>j

Ajk{e(p)′
k (Ip + Pi)

−1e
(p)
j − e

(p)′
j (Ip + Pi)

−1e
(p)
k } + op(a),

since (Ip+Pi)
−1Pi = Ip−(Ip+Pi)

−1. Thus the (j, k) element of the score vector involves
the coefficient of Ajk in the above expansion,

s(M, j, k) = �
n∑

i=1

e
(p)′
j (Ip + Pi)

−1e
(p)
k − e

(p)′
k (Ip + Pi)

−1e
(p)
j .

The Fisher information matrix for M is the variance covariance matrix of the vector of the
s(M, j, k).According to Proposition 3.2 (v), this is equal to n�2Ip(p−1)/2/(2�−1) provided
that � > 1/2.

The partial derivatives of �(�, M) with respect to both M and � have null expectations so
that the Fisher information matrix is block-diagonal. To determine the (�, �) term observe
that, from expression (10) for the normalizing constant c�,p,

�2
�(�, M)

��2
= n

⎡
⎣p−1∑

i=1

�2 log{�(� + i)}
��2

− �2 log{�(� + i/2)}
��2

⎤
⎦

= n

p−1∑
i=1

{�′(� + i) − �′(� + i/2)},

where �′(z) denotes the trigamma function (Abramowitz and Stegun, [21]). These findings
can be summarized in the following proposition:

Proposition 4.1. The Fisher information matrix for the parameters �, M , is given by
nI (�, M) where

I (�, M) =
(∑p−1

i=1 �′(� + i/2) − �′(� + i) 0
0 �2Ip(p−1)/2/(2� − 1)

)
, (13)

provided that � > 1/2.

When 1/2�� > 0, the Fisher information matrix for M is infinite.
When the Fisher information matrix exists, the asymptotic distribution of the maximum

likelihood estimators is normal. The asymptotic distribution of M̂ can be expressed in terms
of the vector â in Rp(p−1)/2 such that M̂ = Ip + S(â) + op(n−1/2), where Ip is the true
value of M. Indeed the limiting distribution of n1/2(�̂−�, â) is Np(p−1)/2+1{0, I (�, M)−1}.
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4.3. Moment estimators for M and �

The moment estimator of M is defined as the rotation M in SO(p) that maximizes tr(P̄M ′).
This estimator is easily calculated using Procrustes techniques. If P̄ = Udiag(�1, . . . , �p)V ′
denotes a singular value decomposition, where �1 > · · · > �p−1 > |�p| denote the singu-
lar values and U, V are rotations in SO(p), then M̂m = UV ′ maximizes the trace and is
therefore the moment estimator (index m denotes moment estimators). To estimate � one
sets the maximum value of the trace equal to �p/(� + p − 1), the expectation of the trace
according to Proposition 3.2. This yields the following moment estimator for �:

�̂m = (p − 1)
�̄

1 − �̄
,

when �̂ is the average of the singular values. This section derives the large sample distribution
of (M̂m, �̂m).

According to the weak law of large numbers, as n goes to ∞, P̄M ′ converges weakly to
E(P1)M

′ = �M ′/(� + p − 1). Thus M = Ip maximizes tr{E(P1)M
′} and, by Slutsky’s

Theorem, M̂m is convergent. The underlying density fp(P |�) and the moment estimator M̂m

satisfy the symmetry conditions of Chang and Rivest [1]. Thus, applying their Proposition
4, if âm is such that M̂m = Ip +S(âm)+op(n−1/2), then the limiting distribution of n1/2âm

is Np(p−1)/2{0, c1Ip(p−1)/2/(2d2
1 )}, where c1 and d1 can be evaluated using Chang and

Rivest [1] Eqs. (36) and (37), with �0(t) = t . This yields

c1 = E{(P12 − P21)
2}

2
= (2� + p − 2)(2� + p − 1)

(� + p − 2)(� + p − 1)(� + p)

and d1 = E(P11) = �/(� + p − 1). Thus the asymptotic covariance matrix of n1/2âm is

(� + p − 1)(2� + p − 2)(2� + p − 1)

2�2(� + p − 2)(� + p)
Ip(p−1)/2.

Considering Proposition 4.1, the efficiency of M̂m is given by

(� − 1/2)(� + p − 2)(� + p)

(� + p − 1)(� + p/2 − 1)(� + p/2 − 1/2)
= 1 − p2 − p + 4

4�2 + O(�−3)

when � > 1/2. Efficiency curves are presented in Fig. 1; they show that the moment
estimator is quite good when the clustering is relatively large (� > 4).

To derive the large sample distribution of �̂m observe that

�̄ = 1

np

n∑
i=1

tr(Pi) + tr P̄ (M̂m − Ip)

p
.

The second term on the right-hand side is op(n−1/2), thus applying the Central limit theorem
to the first term on the right-hand side gives the asymptotic distribution of �̄; from Proposition
3.2, n1/2{�̄−�/(�+p−1)} is approximately distributed as N [0, (p−1)(2�+p−2)(2�+
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Fig. 1. Efficiency of the moment estimator for M.
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Fig. 2. Efficiency of the moment estimator for �.

p − 1)/{p(�+p − 2)(�+p − 1)2(�+p)}]. Using a standard linearization argument leads
to the following limiting distribution:

n1/2(�̂m − �)
d−→ N

(
0,

(� + p − 1)2(2� + p − 2)(2� + p − 1)

p(p − 1)(� + p − 2)(� + p)

)
.

The efficiency curves given in Fig. 2 reveal that the moment estimator for � is quite good
when � > 2.
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5. The model in a few special cases

5.1. The case p = 2

When p = 2, it is convenient to express the density of P in terms of � and 	, respectively,
equal to the angles of P and M. The density of � is then given by

f2(�|�, 	) = �(� + 1)

2�+1�1/2�(� + 1/2)
{1 + cos(� − 	)}� d�, 0���2�.

This is a circular beta distribution as presented in [7, p. 51].
Let a and b be two angles such that −� < a − 	 < b − 	 < �, then Pr{a < � < b}

can be expressed in terms of F2�+1(x), the t-distribution with 2� + 1 degrees of freedom.
Indeed

Pr{a < � < b} = �(� + 1)

2�+1�1/2�(� + 1/2)

∫ b−	

a−	
(1 + cos �)� d�.

Let x = sin �/(1 + cos �) so that dx = d�/(1 + cos �). Using 1 +x2 = 2/(1 + cos �), after
some manipulations, the above integral can be expressed as

Pr{a < � < b} = F2�+1

(√
�

sin(b − 	)

1 + cos(b − 	)

)
− F2�+1

(√
�

sin(a − 	)

1 + cos(a − 	)

)
.

The equation for the maximum likelihood estimation of 	 based on a sample �1, . . . , �n

is

∑ sin(�i − 	)

1 + cos(�i − 	)
= 0.

Observe that sin(� − 	)/{1 + cos(� − 	)} has a singularity at � − 	 = −�. It is −∞ at
−�+ and +∞ at −�−. This makes the maximum likelihood estimate of 	 sensitive to small
changes in the data. For this reason, we prefer to use the moment estimator of Section 4.2.

It is interesting to compare the Cayley density with the von Mises density which is propor-
tional to exp(� cos �). As � goes to 0, both the von Mises and the Cayley models tend to the
uniform distribution. For any positive value of �, f�,2,	(	+�) = 0, so that the convergence
of the Cayley density to the uniform density is not uniform. This convergence is uniform for
the von Mises distribution so that the two models differ near the uniform distribution. For
concentrated samples the two models are equivalent since they are approximately normal.
As their concentration parameters increase the two models become more and more similar.
This is illustrated in Fig. 3.

5.2. The case p = 3

When p = 3 the three eigenvalues of a rotation P are 1, ei�, and e−i�, where i =√−1 and � is the angle of P. Thus |I3 + P | = 2{1 + tr(P )} = 4(1 + cos �), and the
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Fig. 3. Comparison of the Cayley and of the von Mises density when the mean resultant length (MRL), E(cos �),
is equal to 0.7 and 0.85.

density function of the model takes the form

f3(P |�, M) =
√

��(� + 2)

22��(� + 1/2)
(1 + tr(PM ′))�.

It is convenient to redefine the operator S by

S(s) =
⎛
⎝ 0 −s3 s2

s3 0 −s1
−s2 s1 0

⎞
⎠ ,

where s = (s1, s2, s3)
′ belongs to �3. For this special case,

g3(s|�) = h�−1,3(s) = 1

�3/2

�(� + 2)

�(� + 1/2)

1

(1 + s′s)�+2 , s ∈ �3.

The Cayley transform satisfies

2{I3 − S(s)}−1 − I3 = I3 + 2

1 + s′s
{S(s) + S2(s)}.

This is a rotation of arccos{(1 − s′s)/(1 + s′s)} radians about axis s.
Following [13], one can write the uniform measure for [dP] for SO(3) in terms of the

rotation angle � ∈ (0, �) and of the rotation axis u ∈ S2 as

[dP] = 1 − cos �

�
d� du,

where du is the uniform unit measure on S2. Thus when P is distributed as f3(·|�), its axis
is uniformly distributed on S2 and the density of its angle is

�(� + 2)√
�2��(� + 1/2)

(1 + cos �)�(1 − cos �) � ∈ (0, �).
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Fig. 4. Comparison of the densities for the rotation angle when the expected trace (etr), E{tr(P )}, is equal to 1.5
and 2.25.

Elementary manipulations show that (1+ cos �)/2 has a �(�+1/2, 3/2) distribution. Thus
the distribution of � can be expressed in terms of the F3,2�+1 distribution as

Pr{� < a} = Pr

{
F3,2�+1 <

(2� + 1)(1 − cos a)

3(1 + cos a)

}
.

The value a for which the probability that � belongs to (0, a) is 1 − 
 is

a = arccos

(
1 − 3F3,2�+1,1−
/(2� + 1)

1 + 3F3,2�+1,1−
/(2� + 1)

)
. (14)

For instance, the � values for which the upper bounds, in degrees, for the 95% prediction
intervals for the rotation angle are 10◦, 20◦ and 30◦ are equal to 510, 127 and 56, respectively.
This relationship is helpful to relate the value of � and the magnitude of the errors.

It is interesting to compare the Cayley distribution to the symmetric matrix Fisher–von
Mises distribution whose density is proportional to exp{� tr(P )}. Since tr(P ) = 2 cos �+1,
the corresponding density for � is

(1 − cos �) exp{2� cos(�)}
�{I0(2�) − I1(2�)} , � ∈ (0, �),

where Ik(·) denotes the modified Bessel of the first kind, see Appendix 1 of [11]. For
this distribution, elementary manipulations of Bessel functions show that E{tr(P )} =
I0(2�)/[�{I0(2�) − I1(2�)}] − 1. The situation is similar to the circular case. As � goes
to 0, the Cayley density does not converge uniformly to the uniform density because of
the singularity at � = � and the two models differ. They both converge to the same local
normal model when their concentration parameters become large. The is exemplified in Fig.
4 which shows a very close agreement between the two models when E{tr(P )} = 2.25.

When p = 3, model fp(·|�) assumes that the errors have no preferred orientation.
Statistic R, proposed at the end of Section 5 of Prentice, is available to test this hypothesis.
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Considering formula (6.1) in Prentice [15], one can correct a typographical error in the
formula for R which leads to the following expression for the test statistic:

R = n

∑3
i=1(�i − �̄)2

8ĉ23
,

where c23 is defined in [15] and the �i are the singular values defined in Section 4.3. In
the notation of this paper, c23 = E[{tr(P ) − 3}2]/(15 × 16). Using Proposition 3.2, c23 is
easily evaluated,

c23 = 1

15 × 16
[Var{tr(P )} + {E tr(P ) − 3}2] = 1

4(� + 2)(� + 3)
.

A simple model based test for spherical symmetry rejects the null hypothesis if R = n(�̂ +
2)(�̂ + 3)

∑
(�i − �̄)2/2 is large when compared to critical values of a �2

5 distribution.
When p = 4, the model is more complex. One can write f4(P |�) in terms of tr(P ) and

tr(P 2). Also |I4 + S| appearing in the density g4(s|�) is a polynomial of order 4 featuring
cross-product terms. Unlike the case p = 3, the entries of s are not permutation-symmetric.

6. A Monte Carlo study

This section presents the results of a Monte Carlo experiment investigating the confidence
levels of confidence regions for � and M and the true level of Prentice’s R test for samples
coming from a Cayley density when p = 3. Since the log-transform stabilizes the variance of
�̂m, the Monte Carlo simulations investigated the coverage of the following 95% confidence
interval for log �

log(�̂m) ± 1.96

√
(2�̂m + 1)(�̂m + 2)2

3n�̂2
m(�̂m + 3)

.

From Section 4, âm = S−1{(M̂mM ′−MM̂ ′
m)/2} has a N3[0, (�+2)(2�+1)I3/{�2(�+3)}]

distribution. Since tr(M̂ ′
mM) ≈ 3 − â′

mâm, the asymptotic distribution of 3 − tr(M̂ ′
mM) is

proportional to a �2
3. A 95% confidence region for M given by

{
M : n

{3 − tr(M̂mM ′)}�̂2
m(�̂m + 3)

n(�̂m + 2)(2�̂m + 1)
< 7.81

}
,

was considered in the study (where �2
3,0.95 = 7.81). The true level of Prentice’s R test, at a

nominal 5% level was also investigated.
Table 1 reveals that the true levels of the confidence regions for � and R are slightly less

than 95%. Their performance improves as either n or � increases. The level of Prentice’s R
test holds for all the cases considered.
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Table 1
Simulation results of statistical methods for � and M based on asymptotic approximations, for three sample sizes
and four concentration parameters

n � = 1/2 � = 1 � = 20 � = 1000

5 0.75, 0.73, 0.95 0.74, 0.82, 0.95 0.83, 0.85, 0.96 0.84, 0.84, 0.97
10 0.75, 0.80, 0.95 0.84, 0.88, 0.95 0.89, 0.90, 0.96 0.89, 0.91, 0.95
30 0.87, 0.86, 0.95 0.91, 0.92, 0.95 0.93, 0.93, 0.96 0.93, 0.94, 0.95

100 0.93, 0.94, 0.95 0.94, 0.95, 0.95 0.95, 0.95, 0.95 0.94, 0.94, 0.95

The true levels, or confidence levels, of procedures constructed at a nominal level of 95% are reported for four
sample sizes. In each cell, the three entries correspond to (i) a confidence interval for log �, (ii) a confidence region
for M, and (iii), Prentice’s R test.

7. A numerical example

Rancourt et al. [17] measured the orientations of the back, the upper arm, the forearm
and the hand of 8 subjects performing drilling tasks. For each segment×subject treatment
there are n = 30 rotations. The average P̄ for the hand of subject 2 is

P̄ =
⎛
⎝−0.0055 0.9620 0.2641

−0.9902 0.0248 −0.1145
−0.1173 −0.2638 0.9543

⎞
⎠ .

The singular values of P̄ are 0.9982, 0.9969, and 0.9966. Thus �̂m = 721 (s.e. = 108).
Furthermore, the mean rotation is

M̂m =
⎛
⎝−0.006 0.964 0.265

−0.993 0.025 −0.115
−0.117 −0.264 0.957

⎞
⎠ .

This rotation matrix is interpreted in terms of the local coordinate system for the wrist
marker measured when the arm is parallel to the body: the y-axis goes up while the x-axis
goes back. Now M̂m can roughly be regarded as a rotation of −90◦ in the x–y plane. This
is the rotation needed to bring the upper arm from its original vertical position up to the
horizontal position used for drilling. To test the fit of the proposed model, one can compare
Prentice’s R statistics to �2

5 critical values. One has R = 10.77, p = 0.056. The hypothesis
of spherical symmetry is tenable. Using (14) a 95% prediction interval for the angle of
a rotation distributed as f3(·|�̂m, M̂m) is 8.43◦. This characterizes the variability of the
orientation of the wrist marker of the second subject in the experiment.

The spherical symmetry of the Cayley density is a restrictive constraint when analyzing
biomechanical data. It appears to be appropriate for segments whose orientation does not
vary much during the experiment. In [17], the orientations of the forearm and of the upper
arm varied by more than 20◦. These variations typically have preferred orientations that
cannot be modeled with a Cayley density. Thus it would be useful to extend f3(·|�, M) to
non-spherically symmetric errors; this is under investigation.
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8. Discussion

This paper has introduced the Cayley densities as a class of symmetric distributions for
random rotations. This model has appealing properties. As � increases from 0 to ∞, the
Cayley density goes from the uniform distribution to a locally normal distribution on the
tangent space. Its moments can be expressed in terms of simple functions of � and random
Cayley rotations are easily generated. Many of the distribution functions associated to the
Cayley model can be expressed in terms of standard F and t distribution functions. Thus
it is an appealing alternative to the symmetric matrix Fisher–von Mises model for rotation
matrices.

Appendix

Proof of Proposition 3.1. According to the construction of X, E(X2
i ) = E(1/�2

2�+p) =
1/(2�+p−2). In terms of the random vectors W and Z defined in Section 3 (1+X′X)−1 =
W/(W+Z′Z). This follows a �(�+p/2, p/2) distribution. Since the Xi’s are exchangeable,
E{X2

i /(1+X′X)} = E{p−1X′X/(1+X′X)} = p−1[1−E{1/(1+X′X)}] = 1/{2(�+p)}.
To prove (iv), write

E

(
X4

i

(1 + X′X)2

)
= (� + p/2)(� + p/2 + 1)

(� + p)(� + p + 1)
E�+2(Y

4
i ),

where the index � + 2 refers to an expectation with respect to the density h�+2,p(y). Now
Yi is distributed as the ratio of a N(0, 1) random variable over

√
W where W has a �2

2�+4+p

distribution. Thus E(Y 4
i ) = 3E(1/W 2) = 3/{4(� + p/2)(� + p/2 + 1)}. This completes

the proof of (iv); (v) and (vi) are proved using the same technique. �

Proof of Proposition 3.2. If P and s are, respectively, distributed as f�,p(P ) and gp(s|�),
then for any p × p orthogonal matrix Q, P and QPQ′, resp. S(s) and QS(s)Q′, have the
same distribution. Taking a Q obtained by interchanging two columns of Ip or by changing
the sign, from + to −, of one of its diagonal entries proves the following results that are
used in the proof:

(i) the diagonal elements of P have a permutation-symmetric distribution,
(ii) the marginal distribution of Pij − Pji does not depend on i and j, and

(iii) the elements of s have the same marginal distribution.

Throughout the proof let X be a random vector with density hp−1(x|�). Considering (8),
(9), and (11), we see that |Ip + P |/2p is distributed as |Ip + S11|−1(1 + X′X)−1, the
product of two independent random variables. From Proposition 3.1(i), (1 + X′X)−1 has a
�{�+ (p − 1)/2, (p − 1)/2} distribution. Since S11 is a skew-symmetric matrix associated
to a (p − 1)× (p − 1) rotation, (i) is proved by iterating (8) and (9). According to (12), Ppp

is distributed as 2/(1 +X′X)− 1. The proof of (ii) is completed by using (i) of Proposition
3.1. To prove (iii) observe that, since the Pii’s are permutation-symmetric the variance of the
trace is equal to p times the variance of P11, (p−1)(2�+p−1)/{(�+p−1)2(�+p)}, plus
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p(p−1) times the pairwise covariance. We calculate E(P11Ppp). Using (12) this expectation
can be written as a function of the (p−1)× (p−1) rotation P1 and of a random vector X. It
can be evaluated by noting that X and P1 are independent, that E(P1) = �Ip−1/(�+p−2),
and using Proposition 3.1. This yields

E(P11Ppp) = E

(
e
(p−1)′
1 P1e

(p−1)
1

1 − X′X
1 + X′X

)

−2E

(
e
(p−1)′
1 P1XX′e(p−1)

1 (1 − X′X)

(1 + X′X)2

)

= �2

(� + p − 1)(� + p − 2)
− 2

�

(� + p − 2)
E

(
X2

1(1 − X′X)

(1 + X′X)2

)

= �2

(� + p − 1)(� + p − 2)
− �(� − 1)

(� + p)(� + p − 1)(� + p − 2)

= �{�2 + (p − 1)� + 1}
(� + p)(� + p − 1)(� + p − 2)

.

Subtracting the product of the expectations yields �(2� + p − 1)/{(� + p − 2)(� + p −
1)2(� + p)} as the pairwise covariance. To prove (iv) we take i = 1 and j = p. According
to (12), P1p − Pp1 = 2e

(p−1)′
1 (I + P1)X/(1 + X′X). This is the dot product of two

independent random vectors, with one, namely X/(1 + X′X), distributed according to a
rotationally symmetric density. Thus P1p − Pp1 is distributed as the product of the length

of the first vector, 2
√

e
(p−1)′
1 (2I + P1 + P ′

1)e
(p−1)
1 =

√
8(1 + e

(p−1)′
1 P1e

(p−1)
1 ), times the

first component of the second, X1/(1 + X′X). Now, using results of Proposition 3.1,

E{(P1p − Pp1)
2} = 8{1 + E(e

(p−1)′
1 P1e

(p−1)
1 )}E

(
X2

1

(1 + X′X)2

)

= 8

(
1 + �

� + p − 2

)
2� + p − 1

4(� + p − 1)(� + p)

= 2
(2� + p − 2)(2� + p − 1))

(� + p − 2)(� + p − 1)(� + p)
.

To prove (v) observe that S−1{(Ip +P)−1 − (Ip +P)−1′} = −S−1(S) = −s. By (11), the
marginal density of one entry of s is h�,1(x) whose second moment is given by Proposition
3.1(ii). �

Proof of Proposition 3.4. Let t = √
2�s and T = S(t). The density of t is proportional

to ∣∣∣∣Ip + T√
2�

∣∣∣∣
−(�+p−1)

= ∣∣Ip + T ′T/2�
∣∣−(�+p−1)/2

≈ exp{−tr(T ′T )/4}
=

∏
j>i

exp(−t2
ij /2). �
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