

Available at www.**Elsevier**Mathematics.com powered by **Science @**direct*

Topology and its Applications 136 (2004) 123-127

Topology and its Applications

www.elsevier.com/locate/topol

A compact homogeneous S-space

Ramiro de la Vega, Kenneth Kunen^{*,1}

University of Wisconsin, Madison, WI 53706, USA Received 29 May 2003; received in revised form 26 June 2003

Abstract

Under the continuum hypothesis, there is a compact homogeneous strong S-space. © 2003 Elsevier B.V. All rights reserved.

MSC: 54G20; 54D30

Keywords: S-space; Homogeneous space

1. Introduction

A space X is *hereditarily separable* (*HS*) iff every subspace is separable. An S-space is a regular Hausdorff *HS* space with a non-Lindelöf subspace. A space X is *homogeneous* iff for every $x, y \in X$ there is a homeomorphism f of X onto X with f(x) = y. Under CH, several examples of S-spaces have been constructed, including topological groups (see [5]) and compact S-spaces (see [8]). It is asked in [1] (Problem I.5) and in [6] whether there are compact homogeneous S-spaces. As we shall show in Theorem 4.2, there are under CH. This cannot be done in ZFC, since there are no compact S-spaces under MA + \neg CH (see [13]); there are no S-spaces at all under *PFA* (see [14]).

In Section 2, we use a slightly modified version of the construction in [8,11] to refine the topology of any given second-countable space, and turn it into a first-countable *strong S*-space (i.e., each of its finite powers is an *S*-space). In Section 3, we show that if the original space is compact then there is a natural compactification of the new space that is also a first-countable strong *S*-space. If in addition the original space is zero-dimensional,

brought to you by a C

Corresponding author.

E-mail addresses: delavega@math.wisc.edu (R. de la Vega), kunen@math.wisc.edu (K. Kunen).

¹ Partially supported by NSF Grant DMS-0097881.

^{0166-8641/\$ –} see front matter $\,$ © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0166-8641(03)00215-3

then the ω th power of this compactification will be homogeneous by Motorov [10], proving Theorem 4.2.

2. A strong S-space

If τ is a topology on X, we write τ^{I} for the corresponding product topology on X^{I} ; likewise if $\tau' \subseteq \tau$ is a base we write $(\tau')^{I}$ for the natural corresponding base for τ^{I} . If $E \subseteq X$, then $cl(E, \tau)$ denotes the closure of E with respect to the topology τ . This notation will be used when we are discussing two different topologies on the same set X.

The following two lemmas are well known; the second is Lemma 7.2 in [11]:

Lemma 2.1. If X is HS and Y is second-countable, then $X \times Y$ is HS.

Lemma 2.2. X^{ω} is HS iff X^n is HS for all $n < \omega$.

The next lemma, an easy exercise, is used in the proof of Theorem 2.4:

Lemma 2.3. If $(x, y) \in X \times Y$ and $S \subseteq X \times Y$, then $(x, y) \in cl(S)$ iff $y \in cl(\pi(S \cap (U \times Y)))$ for all neighborhoods U of x, where $\pi : X \times Y \to Y$ is projection.

The following is proved (essentially) in [11], but our proof below may be a bit simpler:

Theorem 2.4. Assume CH. Let ρ be a second-countable T_3 topology on X, where $|X| = \aleph_1$. Then there is a finer topology τ on X such that (ω_1, τ) is a first-countable locally compact strong S-space.

Proof. Without loss of generality, $X = \omega_1$. For $\eta < \omega_1$ we write ρ_η for the topology of η as a subspace of (ω_1, ρ) . Applying CH, list $\bigcup_{0 < n < \omega} [(\omega_1)^n]^{\leq \omega}$ as $\{S_\mu: \mu \in \omega_1\}$, so that each $S_\mu \subseteq \mu^{n(\mu)}$ for some $n(\mu)$ with $0 < n(\mu) < \omega$.

For $\eta \leq \omega_1$ we construct a topology τ_η on η by induction on η so as to make the following hold for all $\xi < \eta \leq \omega_1$:

(1) $\tau_{\xi} = \tau_{\eta} \cap \mathcal{P}(\xi).$

(2) τ_{η} is first-countable, locally compact, and T_3 .

(3) $\tau_{\eta} \supseteq \rho_{\eta}$.

Note that (1) implies in particular that $\xi \in \tau_{\eta}$; that is, ξ is open. Thus, if $\tau = \tau_{\omega_1}$, then (ω_1, τ) is not Lindelöf. Also by (1), τ_{η} for limit η is determined from the τ_{ξ} for $\xi < \eta$. So, we need only specify what happens at successor ordinals.

For $n \ge 1$ and $\xi < \omega_1$, let Iseq (n, ξ) be the set of all $f \in (\omega_1)^n$ that satisfy $f(0) < f(1) < \cdots < f(n-1) = \xi$. The following condition states our requirement on $\tau_{\xi+1}$:

(4) For each $\mu < \xi$ and each $f \in \text{Iseq}(n, \xi)$, where $n = n_{\mu}$:

$$f \in \operatorname{cl}(S_{\mu}, (\tau_{\xi+1})^{n-1} \times \rho) \Longrightarrow f \in \operatorname{cl}(S_{\mu}, (\tau_{\xi+1})^n).$$

If $n = n_{\mu} = 1$, then $(\tau_{\xi+1})^{n-1} \times \rho$ just denotes ρ . That is, (4) requires

$$\xi \in \operatorname{cl}(E,\rho) \Longrightarrow \xi \in \operatorname{cl}(E,\tau_{\xi+1}) \tag{(*)}$$

for all *E* in the countable family $\{S_{\mu}: \mu < \xi \& n(\mu) = 1\}$. It is standard (see [8]) that one may define $\tau_{\xi+1}$ so that this holds. Now, consider (4) in the case $n = n_{\mu} \ge 2$. By (2), τ_{ξ} is second-countable, so let τ'_{ξ} be a countable base for τ_{ξ} . Applying Lemma 2.3, (4) will hold if whenever $U = U_0 \times \cdots \times U_{n-2} \in (\tau'_{\xi})^{n-1}$ is a neighborhood of $f \upharpoonright (n-1)$,

$$\xi \in \mathrm{cl}\big(\pi\big(S_{\mu} \cap \big(U \times (\xi+1)\big)\big), \rho\big) \Longrightarrow \xi \in \mathrm{cl}\big(\pi\big(S_{\mu} \cap \big(U \times (\xi+1)\big)\big), \tau_{\xi+1}\big),$$

where $\pi: \xi^{n-1} \times (\xi + 1) \rightarrow (\xi + 1)$ is projection. But this is just a requirement of the form (*) for countably many more sets *E*, so again there is no problem meeting it.

Now, we need to show that τ^n is *HS* for each $0 < n < \omega$. We proceed by induction, so assume that τ^m is *HS* for all m < n. Fix $A \subseteq (\omega_1)^n$; we need to show that *A* is τ^n -separable. Applying the induction hypothesis, we may assume that each $f \in A$ has all coordinates distinct. Also, since permutation of coordinates induces a homeomorphism of $(\omega_1)^n$, we may assume that each $f \in A$ is strictly increasing; that is, $f \in \text{Iseq}(n, \xi)$, where $\xi = f(n-1)$. By the induction hypothesis and Lemma 2.1, *A* is separable in $\tau^{n-1} \times \rho$. We can then fix μ such that $n(\mu) = n$, $S_{\mu} \subseteq A$, and S_{μ} is $\tau^{n-1} \times \rho$ -dense in *A*. Now, say $f \in A$ with $\xi = f(n-1) > \mu$. Applying (4), we have $f \in \text{cl}(S_{\mu}, \tau^n)$. Thus, $A \setminus \text{cl}(S_{\mu}, \tau^n)$ is countable, so *A* is τ^n -separable. \Box

3. Compactification

We need the following generalization of the Aleksandrov duplicate construction. Similar generalizations have been described elsewhere; see in particular [2], which also gives references to the earlier literature.

Definition 3.1. If φ is a continuous map from the T_2 space Y into X, then $Y \dot{\cup}_{\varphi} X$ denotes the disjoint union of X and Y, given the topology which has as a base:

- (a) All open subsets of Y, together with
- (b) All $[U, K] := U \cup (\varphi^{-1}U \setminus K)$, where U is open in X and K is compact in Y.

Our main interest here is in the case where X is compact and Y is locally compact. Then, if |X| = 1, we have the 1-point compactification of Y, and if Y is discrete and φ is a bijection we have the Aleksandrov duplicate of X.

Lemma 3.2. Let $Z = Y \dot{\cup}_{\varphi} X$, with X and Y Hausdorff:

- (1) X is closed in Z, Y is open in Z, and both X and Y inherit their original topology as subspaces of Z.
- (2) If Y is locally compact, then Z is Hausdorff.
- (3) If X is compact, then Z is compact.

- (4) If X and Y are first-countable, X is compact, Y is locally compact, and each $\varphi^{-1}(x)$ is compact, then Z is first-countable.
- (5) If X and Y are zero-dimensional, X is compact, and Y is locally compact, then Z is zero-dimensional.
- (6) If X is second-countable and Y^{ω} is HS, then Z^{ω} is HS.

Proof. For (3): If \mathcal{U} is a basic open cover of Z, then there are $n \in \omega$ and $[U_i, K_i] \in \mathcal{U}$ for i < n such that $\bigcup_{i < n} U_i = X$. Thus, $\bigcup_{i < n} [U_i, K_i]$ contains all points of Z except for (possibly) the points in the compact set $\bigcup_{i < n} K_i \subseteq Y$.

For (4): Z is compact Hausdorff and of countable pseudocharacter.

For (5): *Z* is compact Hausdorff and totally disconnected.

For (6): By Lemma 2.2, it is sufficient to prove that each Z^n is *HS*. But Z^n is a finite union of subspaces of the form $X^j \times Y^k$, which are *HS* by Lemma 2.1. \Box

4. Homogeneity

The following was proved by Dow and Pearl [4]:

Theorem 4.1. If Z is first-countable and zero-dimensional, then Z^{ω} is homogeneous.

Actually, we only need here the special case of this result where Z is compact and has a dense set of isolated points; this was announced (without proof) earlier by Motorov [10].

Note that by Šapirovskii [12], any compact *HS* space must have countable π -weight (see also [7, Theorem 7.14]), so if it is also homogeneous, it must have size at most 2^{\aleph_0} by van Douwen [3]. Under CH this implies, by the Čech–Pospíšil Theorem, that the space must be first-countable.

Theorem 4.2. (CH) There is a (necessarily first-countable) zero-dimensional compact homogeneous strong S-space.

Proof. Let *X* be the Cantor set 2^{ω} with its usual topology, let *Y* be 2^{ω} with the topology constructed in Theorem 2.4, let φ be the identity, and let $Z = Y \dot{\cup}_{\varphi} X$. By Lemma 3.2, *Z*, and hence also Z^{ω} , are zero-dimensional first-countable compact strong S-spaces; Z^{ω} is homogeneous by Theorem 4.1. \Box

No compact topological group can be an S-space or an L-space. However under CH there are, by [9], compact L-spaces that are right topological groups (i.e., they admit a group operation such that multiplication on the right by a fixed element defines a continuous map). We do not know whether there can be compact S-spaces that are right topological groups.

126

References

- A.V. Arkhangel'skiĭ, Topological homogeneity. Topological groups and their continuous images, Uspekhi Mat. Nauk 42 (2) (1987) 69–105 (in Russian), English translation: Russian Math. Surveys 42 (2) (1987) 83–131.
- [2] R.E. Chandler, G.D. Faulkner, J.P. Guglielmi, M.C. Memory, Generalizing the Alexandroff–Urysohn double circumference construction, Proc. Amer. Math. Soc. 83 (1981) 606–608.
- [3] E.K. van Douwen, Nonhomogeneity of products of preimages and π -weight, Proc. Amer. Math. Soc. 69 (1978) 183–192.
- [4] A. Dow, E. Pearl, Homogeneity in powers of zero-dimensional first-countable spaces, Proc. Amer. Math. Soc. 125 (1997) 2503–2510.
- [5] A. Hajnal, I. Juhász, A separable normal topological group need not be Lindelöf, Gen. Topology Appl. 6 (1976) 199–205.
- [6] K.P. Hart, Review of [9], Math. Rev., 2003a:54040.
- [7] R. Hodel, Cardinal functions, I, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1–61.
- [8] I. Juhász, K. Kunen, M.E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976) 998–1005.
- [9] K. Kunen, Compact L-spaces and right topological groups, Topology Proc. 24 (1999) 295-327.
- [10] D.B. Motorov, Zero-dimensional and linearly ordered bicompacta: Properties of homogeneity type, Uspekhi Mat. Nauk 44 (6) (1989) 159–160 (in Russian), English translation: Russian Math. Surveys 44 (6) (1989) 190–191.
- [11] S. Negrepontis, Banach spaces and topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1045–1142.
- [12] B. Šapirovskiĭ, π-character and π-weight in bicompacta, Dokl. Akad. Nauk SSSR 223 (1975) 799–802 (in Russian), English translation: Soviet Math. Dokl. 16 (1975) 999–1004.
- [13] Z. Szentmiklóssy, S-spaces and L-spaces under Martin's axiom, in: Topology, Vol. II, in: Colloq. Math. Soc. János Bolyai, Vol. 23, North-Holland, Amsterdam, 1980, pp. 1139–1145.
- [14] S. Todorčević, Partition Problems in Topology, in: Contemp. Math., Vol. 84, American Mathematical Society, Providence, RI, 1989.