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a b s t r a c t

Non-invasive ventilation (NIV), a recognized treatment for chronic hypercapnic respiratory failure, is
predominantly applied at night. Nevertheless, the quality of sleep is rarely evaluated due to the required
technological complexity. A new technique for automatic sleep staging is here proposed for patients
treated by NIV. This new technique only requires signals (airflow and hemoglobin oxygen saturation)
available in domiciliary ventilators plus a photo-plethysmogram, a signal already managed by some
ventilators. Consequently, electroencephalogram, electrooculogram, electromyogram, and electrocardio-
gram recordings are not needed. Cardiorespiratory features are extracted from the three selected signals
and used as input to a Support Vector Machine (SVM) multi-class classifier. Two different types of sleep
scoring were investigated: the first type was used to distinguish three stages (wake, REM sleep and
nonREM sleep), and the second type was used to evaluate five stages (wake, REM sleep, N1, N2 and N3
stages). Patient-dependent and patient-independent classifiers were tested comparing the resulting
hypnograms with those obtained from visual/manual scoring by a sleep specialist. An average accuracy of
91% (84%) was obtained with three-stage (five-stage) patient-dependent classifiers. With patient-
independent classifiers, an average accuracy of 78% (62%) was obtained when three (five) sleep stages
were scored. Also if the PPG-based and flow features are left out, a reduction of 4.5% (resp. 5%)
in accuracy is observed for the three-stage (resp. five-stage) cases. Our results suggest that long-term
sleep evaluation and nocturnal monitoring at home is feasible in patients treated by NIV. Our technique
could even be integrated into ventilators.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Non-invasive ventilation (NIV) is a recognized treatment for the
patient with chronic respiratory failure. It is usually applied during
sleep and recently it has been increasingly used at home [1,2]. The
main objective of NIV is to control hypoventilation during sleep,
thus improving sleep quality. As a consequence, patient's well-
being should be improved. However it is quite difficult to confirm
objectively this benefit, mainly because NIV may induce undesir-
able respiratory events disrupting sleep (patient–ventilator inter-
actions [3,4], discomfort due to the mask, etc.) and the sleep may
ll rights reserved.
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be also influenced by other external physical conditions or clinical
reasons. In order to objectively determine whether the patient
sleeps sufficiently well or to understand why sometimes the use of
NIV is not beneficial, routinely assessing sleep quality during NIV
is a crucial step [5].

Polysomnography (PSG) is considered as the gold standard
method to evaluate sleep but this is a time consuming procedure
that requires expert personnel and which is most often realized in
a sleep laboratory with attended recordings. The patient spends
the night at the hospital with many sensors connected to the head
and other parts of the body. Several physiological signals are
recorded such as the neural cortical activity (electroencephalo-
gram, EEG), ocular activity (electrooculogram, EOG), electromyo-
grams (EMG), pulse oximetry (SpO2), electrocardiogram (ECG)
among others cardiorespiratory signals. Special care is required
in placing the electrodes and data acquisition should be monitored
during the night. Although it is possible to perform home
measurements, their quality is very often not sufficient to be of a
practical interest [6,7]. Specialized manual intervention is also
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necessary for a visual sleep scoring according to standard rules
and specifications [8]. All these factors make the PSG a complex
and expensive procedure and limit sleep monitoring to sleep
clinics and hospitals. Electrodes and sensors used to record these
signals may affect sleep quality and structure. Moreover, a more
simple way to evaluate sleep at reduced costs is therefore invalu-
able, especially for home treated NIV patients.

There are many studies that describe non-invasive ways for
recording a full night of sleep that could, at least in principle, be
applied at home [9–15]. Bed sensors like the ballistocardiography
are non-contact measuring systems used to measure heart rate
and breathing variations [16,17]. Features related to the cardio-
vascular system were found to be promising for classifying sleep
stages. Sleep stages in adults were estimated using cardiorespira-
tory information obtained from an air mattress designed as a
noninvasive measurement system [18]. Sleep disorders in children
were diagnosed using pulse time transit (PTT) in [19,20], thus
indicating that this signal gives useful information about sleep
structure. The detection of REM sleep stage, which can be under-
stood as a binary classification problem, was performed using only
breathing signals in [13]. In other works, respiratory signals were
used for detecting apnea events [12,14]. Actigraphy has also been
widely used as a portable monitoring method for assessing sleep
quality to check whether the patient is quiet during sleep [16].
Nevertheless, in none of such studies it was possible to identify
more than three different sleep stages and no sufficient informa-
tion was thus available to evaluate the sleep structure. Moreover,
most of these methods require additional sensors.

Modern ventilators used in NIV commonly measure and record
data in the ventilatory circuit (at least airflow and pressure).
Several models are also equipped with a pulse oximeter to
study the patient's cardiorespiratory system. It is important to
investigate whether these data could allow sleep scoring and,
consequently, sleep assessment of patients ventilated at home.
Moreover, this sleep evaluation could potentially be much less
disturbing compared to PSG, since the patient already sleeps with
the ventilator and no extra sensor would be required, apart from a
pulse oximeter which is already used in some cases.

The main goal of this work is to develop and to assess the
performance of a sleep classification technique for patients under
NIV that only uses signals available to ventilators. The key point is
to consider an amplitude signal derived from pulse plethysmo-
graphy (PPG). This type of signal so far has not been fully exploited
in spite of its apparent potential as mentioned in [21]. In order to
be able to accurately assess the sleep structure, up to five sleep
stages will be scored. Sleep staging (classification) is accomplished
by a multi-class support vector machine (SVM) scheme. The
technique described in this paper could eventually be integrated
to the ventilators themselves, thus allowing for continuous sleep
monitoring at home for patients treated by NIV.

The paper is organized as follows. Section 2 describes the
protocol and the preprocessing of the three signals used to train a
classifier based on SVMs, which is described in Section 3. Results
are presented in Section 4 and discussed in Section 5, where the
main conclusions are provided.
2. Methods: data and signal processing

The data used in this work were collected during an observa-
tional study conducted at the Pulmonary and Respiratory Unit of
the Rouen University Hospital (France) [22].1 This study was
authorized as part of a protocol for routine care by the Committee
1 ClinicalTrials.gov identifier: NCT01255111.
to Protection People (CPP North West 1, approval dated October 16,
2009) and the patients gave informed consent to the work. The
aim of this study was to evaluate patient–ventilator interactions
and changes in sleep structure during the first nights after
initiation to NIV. Some details of 13 patients that suffer from
chronic respiratory failure and selected from the aforementioned
study will be described in the sequel. Data of a 14 patient (P5),
originally included in [22], were not used in the present study.

2.1. Patients

Clinical characteristics of 13 patients are listed in Table 1. Seven
patients (P3, P4, P7, P8, P11, P12, P13) had obesity hypoventilation
syndrome (OHS) associated with obstructive sleep apnea syn-
drome (OSAS) of variable severity (Apnea/Hypopnea Index (AHI)
ranging from 34 to 142 events/hour). Four patients (P2, P6, P10, P14)
had amyotrophic lateral sclerosis (ALS) among which the first
three had a peripheral presentation and OSAS, the fourth having a
bulbar presentation. Two other patients presented restrictive
pathologies: one patient (P1) suffers from tuberculosis sequel
and another one (P9) from kyphoscoliosis associated with OSAS.

All patients performed three full PSG. The first diagnostic PSG
was carried out under spontaneous breathing (night 1) and the
two others (night 2 and night 15, that is, two weeks later) were
made under NIV. Only the latter two PSG recordings were
considered in the present work due to our interest in investigating
sleep in patients under NIV [22]. One PSG recording (night 15) is
missing for patient P13.

2.2. Recorded data

The recorded signals included electrophysiological signals
(EEG, EMG, EOG and ECG) and ventilation physiological data
(pressure, airflow, oxygen saturation, among others). The acquisi-
tion system used was a CID102-L8D (CIDELEC SA, France). Each
data set was analyzed by a neurologist and sleep was coded in 30-s
epochs according to the guidelines of the American Association of
Sleep Medicine [8]. Five stages were distinguished: Wake (W),
Rapid Eye Movements (REM) sleep, sleep stages N1 and N2 and
slow wave sleep (N3).

From all signals recorded in PSG, only three were used:
(i) photo-plethysmogram (PPG); (ii) hemoglobin oxygen saturation
(SpO2) and (iii) airflow. The first two were measured by a sensor
placed at patient's index finger. The sampling frequency of PPG
was 64 Hz and that of SpO2 was 1 Hz. Airflow was measured by a
pneumotachograph inserted in the ventilation circuit and was
sampled at 128 Hz. Although the ventilator has an internal
pneumotachograph like most modern ventilators, its raw mea-
surements are not easily accessible. Unlike the oxygen saturation
signal SpO2, the PPG and airflow signals required preprocessing as
described in the next two subsections.

2.3. Photo-plethysmogram preprocessing

All features related to the cardiac activity were determined by
analyzing photo-plethysmogram signal (ECG signal was not used
in this work). Although the use of PPG to determine heartbeat
intervals for sleep classification was suggested in [21] to avoid ECG
measurement and the required electrodes, it was not yet imple-
mented. This is the key-signal used in this work which enables
sleep stage classification for patients under NIV, possibly at home
and without the need of any electrode.

The PPG signal was first preprocessed by applying a third order
band-pass Butterworth filter with corner frequencies at 0.667 Hz
and 5 Hz, which correspond to 40 and 300 beats per minute,
respectively. The filtered signal is then used to detect heartbeats



Table 1
Clinical characteristics of the 13 patients (6 females and 7 males) included in the
study. From [22].

Clinical characteristics Mean 7s n

Age (years) 65.4710.9 –

Body mass index (kg m−2) 32.878.62 –

Apnea/hypopnea index (per hour) 53.4741.6 –

OSAS+OHS – 7
OSAS+ALS – 3
ALS – 1
Sequelæof tuberculosis – 1
OSAS + thoracic deformation – 1

Fig. 1. Amplitudes of the PPG oscillations are computed using maxima and minima
of the original non-filtered, non-interpolated PPG signal (top). Heartbeat intervals
are computed using the zero-crossings of the bandpass filtered and interpolated
PPG signal (bottom).

Table 2
List of features computed for each 30 s epoch.

Index Feature Source

1 HRVmed PPG
2 HRVsd

3 ampmed

4 ampsd

5 totmed Flow
6 totsd
7 ampfmed

8 ampfsd

9 satmed O2 saturation
10 satsd

11 age Other
12 BMI
13 EPAP
14 IPAP
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and to compute inter-beat intervals. The relatively low sampling
frequency of PPG signal (64 Hz) induces a high quantization noise
in the heartbeat intervals, since any computed interval must be an
integer multiple of the PPG sampling period, that is, 15.625 ms in
the present case. In order to have a smaller quantization error for
the heartbeat intervals, the filtered PPG signal was interpolated.
The Fourier transform of the filtered signal was zero-padded and
then transformed back to the time domain in such a way that the
new signal was sampled at 256 Hz. This type of interpolation does
not change the frequency content of the original signal.

The heartbeats were detected by looking for zero-crossings of
the band-pass-filtered and interpolated PPG signal (Fig. 1). Only
zero crossings switching from negative to positive values were
considered. This proved to be numerically more efficient than the
analogous procedure for detecting peaks of the PPG signal. The
detected heartbeat positions were then used to compute a
tachogram. The amplitude of PPG oscillations was computed using
the difference between the maximum and the minimum of the
original raw (non-filtered, non-interpolated) PPG signal inside
each detected beat (Fig. 1), thus producing a time series of the
fluctuations of PPG oscillations. This procedure resulted in two
time series: (i) one corresponding to a tachogram (from the
processed PPG signal) and (ii) one containing amplitude of PPG
oscillations for each heartbeat (from the raw PPG signal).

2.4. Flow preprocessing

The flow signal was filtered with a third-order band-pass
Butterworth filter with corner frequencies of 0.0833 Hz and
0.667 Hz, which correspond to 5 and 40 breaths per minute. One
time series made of the time duration of breathing cycles and one
made of the amplitudes of the airflow were generated using the
same unidirectional zero-crossings method as used with PPG
(Fig. 1). The amplitudes of the airflow oscillations are also rarely
used because such measurements require the use of a mask during
all the night, and this may disturb sleep. However, since patients
under NIV are necessarily equipped with such a mask, this
procedure comes, in our case, without extra cost.
3. Methods: classifier design and feature generation

The main goal of the classification phase is to develop from the
data a mathematical algorithm, referred to as the classifier, that
should be able to classify sleep stages. Instead of trying to build the
classifier directly from the three recorded signals, it is known to be
more convenient to determine some key features from the data
and then to train a classifier from such information [23]. Examples
of classifiers include Support Vector Machines (SVM's), Hidden
Markov Models (HMM's), Artificial Neural Networks (ANN's) [24],
genetic-fuzzy models [25] and others. Examples of classification
features include model coefficients [26], Discrete Fourier Trans-
form coefficients, wavelets coefficients, features based on artifact-
free signals [24], and so on. In the development of classifiers, the
choice of which features to use is vital, and far from trivial. The
outcome of this important step will be described below, before
discussing the classifier.

3.1. Feature extraction

After a thorough investigation 14 features were chosen to train
the classifier. Such features can be divided into four groups
depending on the data from which they were estimated
(Table 2). Four features were estimated from the PPG-signal:
HRVmed, the median of heartbeat intervals; HRVsd, the interquar-
tile interval of heartbeat intervals; ampmed, the median of PPG
oscillation amplitudes, and ampsd, the interquartile interval of PPG
oscillations. Four other features were estimated from the airflow:
totmed, the median of respiratory cycle intervals (tot); totsd, the
interquartile interval of tot; ampfmed, the median the amplitudes
of flow oscillations, and ampfsd, the interquartile interval of the
amplitudes of flow oscillations. Two features were estimated from
the SpO2 signal for which no preprocessing was required, as
mentioned in Section 2.2: satmed, the median of SpO2 values, and
satsd: the interquartile interval of SpO2 values. Median and inter-
quartile values were used instead of average and standard
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deviation for their lower sensitivity to outliers. Finally, the follow-
ing four features were obtained from “other” sources: age of the
patient; body mass index (BMI); expiratory positive airway pres-
sure (EPAP) and inspiratory positive airway pressure (IPAP).

The first three groups of features (Table 2) were computed from
the three time series listed in Section 2.2 for each epoch. The last
group, of four features, is patient-related and was taken to be
constant over each PSG night but could vary from patient to
patient or from one PSG recording to the next.
3.2. Classifier

The classifiers were trained from data that were divided into
epochs of 30 s following current practice for sleep scoring [8]. Each
epoch has its own set of 14 features whose indices are reported in
Table 2, and a sleep stage (a class label) attributed by a neurologist.
After training, the classifier automatically determine the sleep
stage corresponding to the set of 14 features associated with each
epoch (Fig. 2). This following procedure is based on a multi-class
SVM with a Gaussian kernel (Radial Basis Function, RBF) and
training was accomplished using the LIBSVM open source library
[27]. Details on SVM-based classification schemes can be found in
[23,28].
3.2.1. Support vector machine
SVMs provide good generalization performance on pattern

classification problems in the case of separable patterns [28]. It
is assumed that a training set is composed of instance-label pairs
(xi, yi), i¼ 1;…; ℓ, where ℓ is the number of epochs used for
training. Vectors xi∈Rn are composed of n features (Table 2) and
yi∈ 1;−1f g is the class label (sleep class) of xi.

An input data vector x∈Rn can be represented in an N-dimensional
space (N4n) using a vector function ϕ : Rn⟶RN where classifica-
tion can be performed by means of a hyperplane. The SVM
produces a nonlinear classification boundary in the original Rn

space by constructing a linear hyperplane in a transformed RN

space [29]. This is achieved by taking the sign of the function

f ðxÞ ¼w � ϕðxiÞ þ b: ð1Þ
Decision of Sleep Stage
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2

Fig. 2. Sketch of the classification procedure.
Therefore, for linearly separable patterns, ∃ðw; bÞ such that the
inequalities

f ðxiÞ≥þ 1 if yi ¼ 1

f ðxiÞ≤−1 if yi ¼ −1 ð2Þ

are valid for all elements of the training set [30,31]. The vectors for
which the equalities hold are the so-called support vectors. Clearly,
by definition, a SVM is a binary classifier. The multi-class classi-
fication problem will be mentioned shortly. The computations are
simplified by formulating the functional to be minimized with
respect to the weight vector w as [28]

Φðw; ϵÞ ¼ 1
2
wTw þ C ∑

ℓ

i ¼ 1
ϵi; ð3Þ

where C40 is the regularization parameter and ϵi≥0 are the slack
variables. After some algebra, function f can be written as [28]

f ðxÞ ¼ ∑
ℓ

i ¼ 1
yiαiKðx; xiÞ; ð4Þ

where xi is the ith training vector, αi≥0 are the Lagrangian multi-
pliers and K : ðRN � RNÞ-R the kernel function defined as the
inner product Kðx; xiÞ ¼ ϕðxÞ � ϕðxiÞ.
3.2.2. Multi-class SVM
The “one-against-one” approach [32] is implemented in [27] for

multi-class classification problems. The number of binary classi-
fiers needed to classify among k classes is kðk−1Þ=2. Each (binary)
classifier is trained using data from only two different classes.
Every data vector x is submitted to the set of binary classifiers. At
the end, a vector is designated to be in the class where it received
the maximum number of votes. In the case of a tie, choose the
class that appears first in the storage array [27].
3.2.3. Unbalanced data
Due to the nature of sleep, the classification problem is

unbalanced. The amount of time a patient stays in a sleep stage
can vary significantly from one stage to another, and the number
of epochs for one class can be very different from another. Such
training with unbalanced data set can lead to biased classifiers.
The approach chosen to deal with this problem is random
subsampling [33] by which it is guaranteed that each class (sleep
stage) has the same number of occurrences in the training data.
This was done for all training data sets used in this work.
3.2.4. Model selection—RBF Kernel and cross-validation
The next step is the choice of the kernel and SVM parameters.

The RBF kernel is a common first choice

f ðxÞ ¼ sign ∑
ℓ

i ¼ 1
αi exp

jx−xij2
s2

� � !
: ð5Þ

The main parameters to be chosen are the pair (C; s) in Eqs. (3)
and (5), respectively. Instead of fixing a priori values for these
parameters, LIBSVM was used to perform a search over a 2D para-
meter space for the most adequate values to our problem. An
important problem is to choose a good pair of values for (C; s). This
was done by testing a grid of values and cross-validating the
corresponding SVMs. The one with greatest accuracy was selected.
Logarithmically spaced values were used, hence C∈f2−1;2−0:25;

20:5;21:25; 22…;28g and s∈f25;24:25;23:5;22:75;22…2−2g). Once the
best pair (C; s) was found, the final classifier was trained using
such a pair and the whole data set.



Table 3
Results for 5 sleep stages (classes). Acc stands for the average value of Acc defined in

(6). k stands for the Mean Cohen's Kappa Coefficient. PD: patient-dependent; PI:
patient-independent, and in parenthesis is the number of nights recorded.

P(N) Acc7sð%Þ k7s Features

PD(1) 8475:0 0:7870:06 1–10
PD(2) 7375:2 0:6470:07 1–10
PI(2) 6270:85 0:5170:01 1–14

Table 4
Results for 3 sleep stages (classes). See caption to Table 3 for definitions.

P(N) Acc7sð%Þ k7s Features

PD(1) 9172:5 0:8370:05 1–10
PD(2) 8473:5 0:7170:06 1–10
PI(2) 7870:74 0:6470:01 1–14
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3.3. Patient-dependent classification

Ideally, an automatic sleep classifier should be able to work
with data from a new patient without additional training, that is, it
should be patient-independent (PI). The training of such a classifier
will therefore require data from a representative set of patients. In
this way, when data of a new patient is used, as long as his sleep
patterns are somehow accounted for in the original training data,
an adequate corresponding classification can be expected. On the
other hand, a patient-dependent (PD) system is based on a classifier
trained with data from a specific patient. Of course, this single
patient is far less representative and unless other patients with
very similar sleep patterns are in view, one should not expect good
performance of this classifier applied to any other patient. In spite
of its limitations, a patient-dependent classifier is also useful. First,
it serves as a proof for the feasibility of the technique and also
serves as an upper bound for the accuracy one may expect to
obtain using a patient-independent classification. Second, a clas-
sifier can be trained for a specific patient whose sleep is to be
monitored through his/her private ventilator.

Sleep classifiers trained with data from a single patient were
analyzed (i) with data from a single night and, (ii) with data from
two nights, as discussed in the sequel.

3.3.1. One-night classification
One SVM multi-class classifier was trained for each night of

each Patient (two classifiers for each patient – with the exception
of P13 for whom data corresponding to a single night are available).
Two scenarios were evaluated: a five-classes classifier using W,
REM, N1, N2 and N3 sleep stages and a three-class classifier using
W, REM and non-REM (in which N1, N2 and N3 stages were
grouped) sleep stages. Thus 25 classifiers were trained for the
three-class type and 25 for the five-class type.

Each classifier was trained with typically 12% of the available
epochs and was subsequently tested on all the data. The SVM
classification was considered as being correct when it coincided
with that of the neurologist. Hence, for a given patient and a full-
night recording with M epochs, the percentage accuracy is given
by

Acc ¼ na

M
� 100%; ð6Þ

where na indicates the number of correctly classified epochs. Acc is
an estimate of the classifier overall accuracy. For the one-night
classification study, in the end there were 25 classifiers with the
respective Acc. The mean and standard deviation of such a sample
are reported.

3.3.2. Two-night classification
The same procedure mentioned above was followed for the

two-night records of each patient for which two nights were
recorded (they are only 12). The epochs from both nights were
grouped to form a single data set of greater generality and a single
classifier for each patient was trained. Tests were performed using
all data from the two nights. Training data were always balanced.
Once again the percentage accuracy Acc in (6) was computed for
each patient. The mean and standard deviation of these 12 values
are also reported.

3.4. Patient-independent classification

Since features 11–14 (Table 2) vary from one patient to the
other, they are useful in training patient-independent classifier.
For the construction of a such a classifier, epochs of the 13 patients
were grouped to form the training and test data. In fact, two
classifiers were trained: one to discriminate between three classes
and one to classify among five sleep stages. The 14 features
(Table 2) were extracted for each patient separately. The features
for all patients were then arranged in a feature array. Subse-
quently, 12 different balanced training data sets of the same size
were randomly chosen from the feature array. This number was
chosen in order to make performance comparable to the case of
two-night patient-dependent classification, where 12 classifiers
were obtained, one for each patient. All the data in the feature
array were used for testing. After the percentage accuracy Acc was
computed for each of these 12 realizations, mean and standard
deviation were computed and reported.

3.5. Feature pertinence test

Two sets of features used in this work are not standard in
automatic sleep classification. They are the features associated
with the amplitudes of PPG oscillations and flow oscillations.
In order to test their influence on the classifier performance,
specific tests were performed in which such features were
excluded for training different classifiers. The performance of
these classifiers was then compared with that obtained with the
full set of features. Three cases were studied: (i) only the features
related to PPG amplitude were excluded; (ii) only the features
related to flow amplitude were excluded, and (iii) both the
features related to PPG amplitude and to flow amplitude were
excluded. To evaluate the impact of such changes, a non-
parametric paired difference test (Wilcoxon) was used to compare
accuracies before and after removing the features.
4. Results

In Table 3 (Table 4) are reported the results for five-stage
(three-stage) classification for both patient-dependent and inde-
pendent scenario. The hypnogram produced by a five-stage one-
night patient-dependent classifier is shown in Fig. 3. The accuracy
rate in this case is about 92%. It can be observed that the
automatically scored hypnogram is more fragmented than the
one produced by the sleep specialist. Unlike the visual/manual
scoring, where the continuity from one epoch to the other is
subjectively taken into account, the SVM classifies each epoch
independently.

Table 5 (Table 6) shows the results that concern the automatic
sleep classification in five (three) stages. The first third part of the
table corresponds to the classification without features associated
with plethysmogram and flow amplitude (features 3, 4, 7 and 8 in
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Fig. 3. Hypnogram produced by a patient-dependent classifier (a) according to the
one-night scenario and by a neurologist (b). Case of patient P12. In this case
Acc≈92%.

Table 5
Results for 5 sleep stages (classes) leaving out specific features. See caption of
Table 3 for definitions.

P(N) Acc7sð%Þ k7s Features

PD(1) 8075:5 0:7370:07 1, 2, 5, 6, 9, 10
PD(2) 6775:6 0:7670:08 1, 2, 5, 6, 9, 10
PI(2) 5770:96 0:4470:03 1, 2, 5, 6, 9–14

PD(1) 8375:8 0:7670:07 1, 2, 5–10
PD(2) 7175:6 0:6170:06 1, 2, 5–10
PI(2) 5970:68 0:4770:01 1, 2, 5–14

PD(1) 8374:2 0:7670:05 1 to 6, 9, 10
PD(2) 7276:2 0:6270:07 1 to 6, 9, 10
PI(2) 6070:63 0:4970:01 1 to 6, 9–14

Table 6
Results for 3 sleep stages (classes) leaving out specific features. See caption to
Table 3 for definitions.

P(N) Acc7sð%Þ k7s Features

PD(1) 8774:3 0:7670:08 1, 2, 5, 6, 9, 10
PD(2) 7974:0 0:6270:08 1, 2, 5, 6, 9, 10
PI(2) 7471:4 0:5670:02 1, 2, 5, 6, 9–14

PD(1) 9073:3 0:8070:06 1, 2, 5–10
PD(2) 8274:3 0:6770:07 1, 2, 5–10
PI(2) 7670:83 0:6070:01 1, 2, 5–14

PD(1) 9072:9 0:8170:05 1 to 6, 9, 10
PD(2) 8373:6 0:6870:07 1 to 6, 9, 10
PI(2) 7770:61 0:6170:01 1 to 6, 9–14

Table 7
Wilcoxon paired test for statistical significance of performance differences when
specific features are not used. Asterisks indicate values that are not statistically
significant.

P(N) p-value (5 stages) p-value (3 stages)

PD(1) 1:2� 10−5 1:8� 10−5

PD(2) 4:88� 10−4 4:88� 10−4

PI(2) 4:88� 10−4 4:88� 10−4

PD(1) 0.0397 0.0068
PD(2) 0.0640n

9:7656� 10−4

PI(2) 4:88 � 10−4 4:8828� 10−4

PD(1) 0.0032 0.0042
PD(2) 0.0522n 0.0640n

PI(2) 9:77� 10−4 4:88� 10−4
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Table 2). In the second part, the features associated with plethys-
mogram amplitude (features 3 and 4 in Table 2) were not used. In
the last (third) part the features associated with flow amplitude
(features 7 and 8 in Table 2) were left out.

In order to verify if there are significant differences between
results shown in Table 5 (resp. Table 6) compared to Table 3 (resp.
Table 4) a Wilcoxon paired test was performed. Results are shown
in Table 7 and show that the majority of the differences are
statistically significant (p≤0:05).
5. Discussion and conclusion

Cardiorespiratory signals were used in [9] to verify if measure-
ments obtained from ECG and respiration signals could provide
a classification of the wakefulness, REM and non-REM sleep stages.
The main goal was to increase the use of cardiorespiratory
ambulatory care systems for the detection of sleep-disordered
breathing. In that study, a group of 37 patients with obstructive
sleep apnea was considered. For each of them, 27 features were
extracted from three signals: the RR interval series, electrocardiogram-
derived respiration and respiratory effort. Using a Quadratic
Discriminant Classifier the attained accuracy was 79% (κ¼ 0:56)
for the patient-dependent system and 67% (κ¼ 0:32Þ for patient-
independent classification. The results obtained in the present
paper for a similar classification problem but with different types
of patients (Table 4) reveal greater accuracy 91% (κ¼ 0:83) and
78% (κ¼ 0:64).

Cardiorespiratory measures were also used in [10] to discrimi-
nate between the wakefulness, REM and quiet sleep in 35 healthy
infants. Seven cardiorespiratory features were used, leading to the
following accuracy rates: 80.0% when only respiratory-based
features were used, 82.0% using only cardiovascular-based features
and 84.8% when both sets of features were employed. ECG and
respiratory effort signals (chest plethysmography) of six healthy
subjects were used in [11] to discriminate only between wakeful-
ness and sleep (a binary classification problem). Features consisted
of the logarithm of power spectral density of raw ECG and
respiratory signals. Using artificial neural network classifiers, the
following accuracy was reached: 95.4% for patient-dependent
cases and 85.3% for patient-independent. In comparing the results
presented in Tables 3 and 4 to those in [10,11], it should be
remembered that in the present work sleep patterns are classified
into 3 and 5 stages using an electrode-free technique.

The inclusion of certain features resulted in statistically sig-
nificant (Table 7) improvement in classification accuracy. Average
improvement was about 1% (resp. 1.7%) when flow-related fea-
tures were included; 1.5% (resp. 2%) when PPG-related features
were included; and 4.5% (resp. 5%) when both classes of features
were included for three-stage (resp. five-stage) classification
problems. Both sets of features are relevant although PPG-related
features being slightly more relevant than flow-related features.
Also, the greatest advantage is attained including both sets of
features. These results suggest that such features contain informa-
tion about sleep which cannot be retrieved from other features
and, consequently, could lead to more efficient automatic sleep
classifiers which do not require electrodes.

The reported results show that it is possible to develop an
appropriate procedure for the automatic classification of sleep
stages from signals readily available to a ventilator. This opens up
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the possibility for a better assessment of the quality of sleep under
NIV treatment since it can allow for evaluating sleep at home on a
long term basis without the use of electrodes nor loading patients
with extra sensors. In the future, it could be even possible for the
ventilators themselves to deliver a sleep report together with
standard compliance and diagnostic reports such machines
already produce. Another possibility would be for the ventilator
to use information about the patient's sleep to adapt its settings
and to thus improve the quality of treatment.
Summary

Objective: The paper presents a system for automatic sleep
scoring targeted at patients treated by non-invasive ventilation
(NIV). Methods: The method uses only signals available to the
ventilator and no other sensor are required apart from the ones
already included in ventilator and a pulse oximeter. Particularly no
electrodes (e.g. EEG or ECG) are used. Cardiorespiratory (rhythm
and amplitude) features are extracted from pulse plethysmogra-
phy (PPG), airflow and oxygen saturation, which constitutes an
important contribution. Classification is achieved by a scheme
based on Support Vector Machine (SVM). Three-stage (wake, REM
and non-REM) and five-stage (wake, REM, N1, N2 and N3)
classification schemes were investigated. Also, patient-dependent
and patient-independent classifiers were tested. Results: Obtained
accuracies for 3 and 5 stage classification are: 91% and 84% with
patient-dependent schemes and 78% and 62% with patient-
independent schemes, respectively. Such results are quite compe-
titive compared to other electrode-based systems reported in the
literature. Also if the PPG-based and flow features are left out, a
reduction of 4.5% (resp. 5%) in accuracy is observed for the three-
stage (resp. five-stage) cases. Conclusion: These results suggest that
long-term sleep evaluation and nocturnal monitoring at home
could be feasible for patients treated by NIV. It maybe even
integrated to the ventilators themselves.
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