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Matthew E. Pipkin,1,4 Susan Togher,1 Vigo Heissmeyer,5,6 Yi Chen Zhang,7 Shane Crotty,8 Edward D. Lamperti,9

K. Mark Ansel,10 Thorsten R. Mempel,3 Harri Lähdesmäki,2,* Patrick G. Hogan,1 and Anjana Rao1,*
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SUMMARY

During persistent antigen stimulation, CD8+ T cells
showagradual decrease in effector function, referred
to as exhaustion, which impairs responses in the
setting of tumors and infections. Here we demon-
strate that the transcription factor NFAT controls
the program of T cell exhaustion. When expressed
in cells, an engineered form of NFAT1 unable to
interact with AP-1 transcription factors diminished
T cell receptor (TCR) signaling, increased the expres-
sion of inhibitory cell surface receptors, and inter-
feredwith the ability of CD8+ T cells to protect against
Listeria infection and attenuate tumor growth in vivo.
We defined the genomic regions occupied by endog-
enous and engineered NFAT1 in primary CD8+ T cells
and showed that genes directly induced by the engi-
neered NFAT1 overlapped with genes expressed in
exhausted CD8+ T cells in vivo. Our data show that
NFATpromotes Tcell anergy andexhaustionbybind-
ing at sites that do not require cooperation with AP-1.

INTRODUCTION

The transcription factor nuclear factor of activatedT cells (NFAT) is

well establishedasakey regulatorofTcell activation (Crabtreeand

Olson,2002;Hoganetal., 2003;Macian, 2005;Raoetal., 1997).Of

the five members of the NFAT family, NFAT1–NFAT4 (also known

as NFATc1–NFATc4) are regulated by Ca2+-calcineurin signaling;

of these, NFAT1, NFAT2, and NFAT4 are expressed in cells of the

immune system and have important roles in T cell development
and function. All NFAT proteins make very similar contacts with

DNA but can have distinct expression patterns and functions as

judged by the non-overlapping phenotypes ofmice deficient in in-

dividual NFAT family members (Crabtree and Olson, 2002; Hogan

et al., 2003;Macian, 2005).NFATproteins interactwith structurally

unrelated Fos-Jun (AP-1) transcription factors to formcooperative

NFAT:AP-1complexes (Chenetal., 1998) that are critical for the in-

duction of cytokine genes and other activation-associated genes

(Macián et al., 2000). Adding to its versatility, NFAT forms dimers

on palindromic kB-like sequence elements and can bind DNA as

a monomer (Chen et al., 1998; Giffin et al., 2003; Jin et al., 2010;

Stroud et al., 2002); it also forms cooperative complexes with

FOXP3, a transcription factor central to T cell regulatory function

(Bandukwala et al., 2011; Chen et al., 1998; Macián et al., 2000;

Wuet al., 2006). The ability to participate inmultiple transcriptional

complexes allows NFAT to contribute to different transcriptional

programs depending on the cell type and signaling context in

which it is activated (Hogan et al., 2003).

We previously linked NFAT not only to T cell activation but also

to T cell ‘‘tolerance’’ and ‘‘anergy’’ (Fehr et al., 2010; Heissmeyer

et al., 2004; Macián et al., 2002), hyporesponsive states induced

in T cells exposed to activating signals through the T cell receptor

(TCR) in the absence of positive or presence of negative costi-

mulatory signals (Nurieva et al., 2011). Another hyporesponsive

state, termed CD8+ T cell ‘‘exhaustion,’’ is induced in antigen-

specific cytolytic T cells (CTLs) exposed to persistent antigen

stimulation, for instance in the context of chronic viral infections

and cancer (Schietinger and Greenberg, 2014; Wherry, 2011).

Exhausted CD8+ T cells display a transcriptional program

distinct from that of functional effector or memory CD8+ T cells

(Wherry et al., 2007), characterized, for example, by the expres-

sion of several inhibitory cell surface receptors including PD-1,

LAG3, TIM3, TIGIT, and CTLA-4 (Schietinger and Greenberg,

2014; Wherry, 2011). However, the key transcription factor(s)
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Figure 1. CTLs Expressing a Constitutively Active NFAT1 Incapable of Cooperating with AP-1 Have Impaired In Vivo Function

(A–D) GFPhiP14+CD8+ T cells expressing CA-RIT-NFAT1 or its DNA-binding mutant were transferred to CD45.1+ congenic mice, which were infected 1 day later

with gp33-expressing Listeria monocytogenes.

(A) Schematic of the experiment. Abbreviation is as follows: RV, retrovirus.

(legend continued on next page)
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responsible for establishment of CD8+ T cell exhaustion have not

yet been identified (Wherry, 2011).

Here we show that NFAT elicits two parallel programs of CD8+

T cell activation and exhaustion. To separate the NFAT-depen-

dent programs of T cell activation and exhaustion, we generated

an engineered version of NFAT1 that is incapable of AP-1 coop-

eration and therefore elicits no effector response. Expression of

this engineered protein blunts T cell receptor (TCR) responses

and elicits CD8+ T cell exhaustion in mouse models of tumor

growth and bacterial infection. The alternative NFAT-dependent

transcriptional program is not limited to this simplified experi-

mental situation, however, as shown by the fact that NFAT-defi-

cient CD8+ T cells fail to express either effector cytokines or the

inhibitory cell surface receptors PD-1, LAG3, and TIM3 that are

characteristic of exhausted CD8+ T cells. By using genome-

wide analyses, we have defined the DNA elements functionally

occupied by endogenous and engineered NFAT1 proteins and

have correlated occupancy with gene expression and in vivo

function. Our results elucidate the transcriptional programs of

hyporesponsiveness (anergy and exhaustion) in both CD4+ and

CD8+ T cells and show that NFAT proteins have a primary role.

RESULTS

We generated an engineered version of NFAT1, CA-RIT-NFAT1,

that is constitutively nuclear and therefore constitutively active

(CA) (FigureS1A;Okamuraet al., 2000) andalsounable to interact

with AP-1 (‘‘RIT’’ refers to three residues—R468, I469, and T535

inmouseNFAT1—that have beenmutated to interfere selectively

with the NFAT:AP-1 interaction [Macián et al., 2000, 2002]). The

engineered CA-RIT-NFAT1 elicits no effector response, and so

was a convenient tool for the genome-wide analysis. However,

all three NFAT proteins present in T cells contribute to the nega-

tive regulatory program, as described below.

CA-RIT-NFAT1-Expressing Cells Display Defective TCR
Signaling
We used a bicistronic (IRES-GFP) retrovirus to introduce CA-

RIT-NFAT1 into in-vitro-activated P14+ TCR transgenic T cells
(B) Three days after infection, total bacterial colony-forming units (CFUs) per spl

***p < 0.001 via t test). A representative experiment of two is shown.

(C) Five days after infection, co-expression of PD-1 and LAG3 or PD-1 and TIM3 on

contour plots are shown.

(D) The mean fluorescence intensity (MFI) for each receptor is shown. p values w

(E–I) GFPhiThy1.2+CL4+ TCR transgenic CD8+ T cells expressing CA-RIT-NFAT1

7 days previously with CT26 and CT26HA tumor cells in contralateral flanks.

(E) Schematic of the experiment. Abbreviation is as follows: TILs, tumor-infiltratin

(F) Tumor growth was determined on a daily basis after cell transfer.

(G–I) Characterization of transferred cells 3 days after transfer.

(G) Frequency of tumor-infiltrating CA-RIT-NFAT1- and DBDmut-CA-RIT-NFAT1

(H and I) Co-expression of inhibitory receptors on transferred cells determined b

(H) Representative contour plots are shown.

(I) MFI for each receptor is shown. p values were calculated by t test. **p < 0.005

(J and K) NFAT nuclear translocation in exhausted cells. Single-cell suspensions f

of plate-bound anti-CD3 and immediately fixed.

(J) Confocal images of ex-vivo-stimulated TIL exhausted cells (CD45+CD8+PD-

highlight cells with nuclear NFAT1. Scale bar represents 10 mm.

(K) NFAT nuclear translocation in exhausted (PD-1+TIM3+) and non-exhausted

images in (J). Means ± SD of >10 fields of view (at least 720 cells) are shown. p

See also Figures S1 and S2.
that also bore a deletion of the TCR Ca region (Tcra�/�); the
P14 TCR transgene recognizes a peptide from the gp33 protein

of mouse lymphocytic choriomeningitis virus (LCMV) presented

on H-2Db. Naive T cells were stimulated with anti-CD3 and

anti-CD28; infected with IRES-GFP retrovirus, empty (mock),

or expressing either CA-RIT-NFAT1 or CA-RIT-NFAT1 with four

point mutations in the DNA binding loop that abolish DNA bind-

ing (DBDmut-CA-RIT-NFAT1) (Jain et al., 1995); and expanded

with interleukin-2 (IL-2) to generate effector CTLs (Pipkin et al.,

2010). Expression of CA-RIT-NFAT1 in CD8+ T cells substantially

decreased IL-2 production in response to secondary stimulation

(Figures S1B and S1C), even though CA-RIT-NFAT1 was ex-

pressed at amounts comparable to or lower than endogenous

NFAT1 (Figures S1D and S1E).

To ask whether CA-RIT-NFAT1 expression impaired Ca2+

influx, we transduced CD4+ T cells with CA-RIT-NFAT1 or empty

vector (mock), labeled them with the Ca2+ indicators Fluo-4 or

Fura-2, and quantified Ca2+ influx by flow cytometry (Figure S1F)

or single-cell imaging (Figure S1G). Compared to cells trans-

duced with empty vector, cells expressing CA-RIT-NFAT1 dis-

played increased basal Ca2+ (Figure S1F) as well as reduced

Ca2+ influx upon TCR stimulation (Figure S1F; Figure S1G, left).

In contrast, Ca2+ influx was not diminished when TCR signaling

wasbypassedwith thapsigargin treatment,whichdepletesendo-

plasmic reticulum (ER) Ca2+ stores by inhibiting the SERCACa2+-

ATPase (Figure S1G, right). Moreover, the increased phosphory-

lation of both ZAP-70 and PLCg1 observed in control cells within

minutes of re-stimulation with anti-CD3 and anti-CD28 was

strongly impaired incellsexpressingCA-RIT-NFAT1 (FigureS1H).

Thus, CA-RIT-NFAT1 expression affects two of the earliest steps

of TCR signaling upstream of Ca2+ entry; other steps in the

signaling window between TCR stimulation and ER store deple-

tion could potentially also be impaired (Heissmeyer et al., 2004).

CA-RIT-NFAT1-Expressing Cells Display Impaired
Function In Vivo
To test the biological effects of expressing CA-RIT-NFAT1 in

CD8+ T cells, we utilized an in vivo Listeria protection assay

(modified from Kaech et al., 2003) (Figures 1A and S1I). Naive
een were determined (each dot represents a mouse; mean ± SEM; *p < 0.05;

transferred cells (CD45.2+) was determined by flow cytometry. Representative

ere calculated by t test. *p < 0.05; **p < 0.005; ****p < 0.0001.

or its DNA-binding mutant were transferred to Thy1.1+ congenic mice, injected

g cells.

-transduced cells in live gate.

y flow cytometry.

; ***p < 0.0005; ****p < 0.0001.

rom 10-day-old CT26HA tumors were stimulated ex vivo with increasing doses

1+TIM3+) purified by cell sorting and stained for endogenous NFAT1. Arrows

(PD-1�TIM3�) CD8+ tumor-infiltrating lymphocytes calculated from confocal

values were calculated by t test.

Immunity 42, 265–278, February 17, 2015 ª2015 Elsevier Inc. 267



P14+ TCR transgenic CD8+ T cells were stimulatedwith anti-CD3

and anti-CD28 and transduced 1 day later with CA-

RIT-NFAT1, DBDmut-CA-RIT-NFAT1, or empty vector, then

expanded with a low concentration of IL-2 in vitro to generate

‘‘memory-like’’ CD8+ T cells (Pipkin et al., 2010). Transduced

GFP+ cells were then sorted by flow cytometry and transferred

into naive recipient mice; 1 day later, the mice were infected

with genetically modified Listeria monocytogenes expressing

gp33 peptide (Figures 1A and S1I). Consistent with induction of

an effective immune response against the Listeria-gp33, mice

receiving mock-transduced gp33-specific T cells showed a sig-

nificant reduction in bacterial colony-forming units (CFUs) per

spleen at 3 and 5 days after infection, compared to mice that

did not receive any cells, whereas mice receiving cells trans-

duced with CA-RIT-NFAT1 did not control Listeria infection

effectively (Figures 1B and S1J). Thus CA-RIT-NFAT1 expres-

sion blunted the secondary immune response of CD8+ T cells

in vivo; some protection was still evident, however, indicating

that T cell function was strongly diminished but not completely

eliminated.

The adoptively transferred CA-RIT-NFAT1-expressing cells

survived in vivo and were able to reach the infection site,

although at lower percentages and total numbers compared

to control cells, as judged by their presence in spleens of

recipient mice 5 days after infection (Figure S1K and data

not shown). Compared to cells transduced with DBDmut-

CA-RIT-NFAT1, a higher percentage of CA-RIT-NFAT1-ex-

pressing cells expressed PD-1, TIM3, and LAG3, inhibitory

surface receptors characteristic of exhausted T cells (Figures

1C and 1D).

To assess the impaired function of CA-RIT-NFAT1-expressing

T cells in a different in vivo system, we utilized a tumor model in

which influenza hemagglutinin (HA)-specific CL4 TCR transgenic

T cells were transduced with CA-RIT-NFAT1 or DBDmut-CA-

RIT-NFAT1 (Bauer et al., 2014; Marangoni et al., 2013). The cells

were expanded in vitro, then transferred into congenic mice that

had previously received HA-expressing CT26 tumors (CT26HA)

subcutaneously in one flank and CT26 tumors that did not ex-

press HA in the contralateral flank. Tumor growth was assessed

daily for 8 days after T cell transfer, and the expression of

exhaustion-associated surface markers on the transferred cells

was evaluated 3 days after transfer (Figure 1E). Control cells ex-

pressing the mutant DBDmut-CA-RIT-NFAT1 rejected the

CT26HA antigen-expressing tumor without rejecting the contra-

lateral tumor that did not express HA (Figure 1F), whereas cells

expressing CA-RIT-NFAT1 showed diminished effector activity

(Figure 1F) despite being present in the tumor at similar

frequencies as cells expressing DBDmut-CA-RIT-NFAT1 (Fig-

ure 1G). As in the Listeriamodel, we observed a higher frequency

of expression of the inhibitory markers PD-1, TIM3, and LAG3 in

CA-RIT-NFAT1-expressing cells recovered from the tumor,

compared to cells expressing DBDmut-CA-RIT-NFAT1 (Figures

1H and 1I).

Overall, even in the presence of endogenous NFAT proteins,

CA-RIT-NFAT1 directly or indirectly upregulated the expression

of several markers of T cell exhaustion on the CD8+ T cells and

induced a negative feedback transcriptional program that

attenuated CD8+ T cell responses in two different settings

in vivo.
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Exhausted Cells Retain the Ability to Signal through
NFAT
We asked whether NFAT could translocate to the nucleus in

in-vivo-exhausted T cells. CT26HA tumors were implanted in

Thy1.1+ recipients that were then injected with regulatory

T cells that recognize the HA antigen; this regimen induces

exhaustion of endogenous CD8+ T cells (Bauer et al., 2014).

Ten days after tumor injection, mice were sacrificed, and tu-

mor-infiltrating T cells were restimulated ex vivo with plate-

bound anti-CD3ε for 15min. The cells were then fixed and sorted

to separate the exhausted PD-1+TIM3+ cell and control PD-

1�TIM3� cell populations (Figure S2A) and stained for endoge-

nous NFAT1 and DAPI (Figures 1J and S2B). The results show

clearly that exhausted CD8+ T cells are permissive for NFAT1

nuclear translocation upon activation through the TCR, although

higher amounts of TCR stimulation are required than for non-ex-

hausted cells (Figure 1K). Thus, in-vivo-generated exhausted

T cells can activate NFAT nuclear import, thus further reinforcing

the exhaustion phenotype in the absence of AP-1 cooperation.

The Transcriptional Program Induced by CA-RIT-NFAT1
Overlaps with that of Exhausted and Anergic T Cells
To define the transcriptional program induced by CA-RIT-

NFAT1, we performed RNA-seq on CD4+ and CD8+ T cells trans-

duced with empty or CA-RIT-NFAT1 retrovirus. Almost 2,000

genes showed altered expression (p < 0.05) in CA-RIT-NFAT1-

expressing CD8+ T cells compared to mock-transduced cells,

with approximately half of the genes showing increased expres-

sion and half decreased expression (Figure 2A, top). Similar

results were obtained for CD4+ T cells (Figure 2A, bottom). There

was substantial overlap in genes differentially expressed in CD4+

and CD8+ T cells (one-tailed version of Fisher’s exact test;

p value < 10�10), indicating that ectopic expression of CA-RIT-

NFAT1 has similar transcriptional effects in both cell types (Fig-

ures 2B–2D). There was also a highly significant overlap between

the transcriptional profiles induced in CD8+ and CD4+ T cells by

CA-RIT-NFAT1 and those observed in exhausted CD8+ T cells

and anergic CD4+ T cells in vivo (22/56 genes and 99/371 genes,

respectively; p value < 10�10) (Figures 2E, 2F, and S3E; Tables 1,

S1, and S2; Doering et al., 2012; Okamura et al., 2009; Wherry

et al., 2007).

CA-RIT-NFAT1-expressing T cells showed increased protein

and mRNA expression of the inhibitory receptors LAG3, TIM3,

PD-1, and GITR, based on flow cytometry, RNA-seq, and quan-

titative PCR (Figures 2 and S3A–S3D). Upregulation of the inhib-

itory receptors depended on NFAT1 DNA-binding, as shown by

the fact that it was not observed in cells expressing DBDmut-CA-

RIT-NFAT1 (Figure S3B and data not shown), despite higher

expression of this DNA-binding mutant compared to CA-RIT-

NFAT1 (Figure S1E). Several genes coding for transcription fac-

tors (Prdm1, Bhlhe40, Irf4, Ikzf2, Zeb2, Lass6, Tox, Eomes) were

recently identified in a network analysis (Doering et al., 2012) as

potentially contributing to induction of the exhausted state;

except for Eomes, all these transcription factors are also upregu-

lated in CA-RIT-NFAT1-expressing cells (Figure S3E). Moreover,

genes encoding other categories of negative regulatory proteins

(e.g., diacylglycerol kinase, several phosphatases) were also ex-

pressed at higher amounts in cells expressing CA-RIT-NFAT1

compared to mock-transduced cells (Figure S3E). Thus, even
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Figure 2. The Transcriptional Program Induced by CA-RIT-NFAT1 in T Cells Overlaps with that of In Vivo Exhausted or Anergic T Cells

(A) Genes whose expression is altered upon CA-RIT-NFAT1 expression in CD8+ (top) or CD4+ (bottom) T cells. Changes in gene expression in CA-RIT-NFAT1-

expressing versus mock-transduced cells plotted against overall gene expression.

(B) Venn diagram displaying numbers of genes significantly induced (top) or downregulated (bottom) in CD8+ and/or CD4+ T cells.

(C) Heatmap representation of changes in gene expression in CA-RIT-NFAT1-transduced over mock-transduced CD4+ and CD8+ T cells (p < 0.05). Each

horizontal line represents one gene, ordered by gene expression (highest to lowest fold change). 18 genes that showed opposite trends in CD4+ and CD8+ T cells

were omitted (depicted in the upper left and lower right quadrants of D, right panel).

(D) Scatter plot representing changes in gene expression in CA-RIT-NFAT1-transduced cells versus mock-transduced cells (RPKM values from RNA-seq) in

CD8+ T cells (y axis) versus CD4+ T cells (x axis). Each dot represents a gene. Pearson correlation coefficients are indicated. *p < 10�10.

(E) Overlap of genes significantly upregulated upon CA-RIT-NFAT1 expression in CD8+ T cells with genes significantly upregulated in either in-vivo-generated

exhausted CD8+ T cells (top) (cluster #1 [Wherry et al., 2007]), or upregulated in anergic CD4+CD25�CD45RBloLAG3+ T cells compared to CD4+CD25�

CD45RBloLAG3� T cells (bottom) (Okamura et al., 2009).

(F) Plots show the probability of observing more than N overlapping genes if sets with 1,047 and 78 genes (top) or 1,007 and 470 genes (bottom) are sampled

randomly from the set of all genes. *p value for the overlap < 10�10 (one-tailed Fisher’s exact test).

See also Tables S1, S2, and S6 and Figure S3.
in the absence of interaction with AP-1, NFAT1 can induce

exhaustion- and anergy-associated genes in both CD8+ and

CD4+ T cells.

CA-RIT-NFAT1Directly UpregulatesGeneExpression by
Binding to Gene Promoter Regions
To determine which genes were likely to be direct targets of

NFAT1 and CA-RIT-NFAT1, we analyzed the genomic distribu-

tion of both proteins in CD8+ T cells by chromatin immunoprecip-

itation followed by next-generation sequencing (ChIP-seq).

Because only very small numbers of exhausted T cells can be

obtained frommice, it was not possible to perform ChIP-seq ex-

periments to defineNFAT binding sites in exhaustedCD8+ T cells
in vivo. Instead, we compared the genome-wide distribution of

endogenous NFAT1 with that of ectopically expressed CA-RIT-

NFAT1 in CD8+ T cells left resting or stimulated in vitro.

Wild-type (WT) or NFAT1-deficient naive P14+ Tcra�/� CD8+

T cells were stimulated with anti-CD3 and anti-CD28, retrovirally

transduced with empty vector or CA-RIT-NFAT1, and expanded

in IL-2-containing media to yield effector CTLs (Pipkin et al.,

2010). 6 days later, cells were either left untreated (resting) or re-

stimulated with PMA and ionomycin for 1 hr, and chromatin was

prepared and immunoprecipitated with anti-mouse NFAT1.

Immunoprecipitation was specific, as evidenced by the low

number of background peaks in NFAT1-deficient compared to

control cells (Figure 3A). For subsequent analysis, we removed
Immunity 42, 265–278, February 17, 2015 ª2015 Elsevier Inc. 269



Table 1. Partial List of Genes Expressed in Exhausted and/or

Anergic T Cells that Are also Induced in CA-RIT-NFAT1-

Expressing CD4 and CD8 T Cells

Gene Full Gene Name Expression

Cell Surface Receptors and Ligands

Lag3 Lymphocyte-activation gene 3 *

Tnfrsf9 Tumor necrosis factor receptor

superfamily member 9; 4-1BB

*

Ptger2 Prostaglandin E2 receptor 2 *

Havcr2 Hepatitis A virus cellular receptor

2; TIM-3

*

Alcam Activated Leukocyte cell adhesion

molecule

*

Tigit T cell immunoreceptor with Ig and

ITIM domains

+

Ctla4 Cytotoxic T-Lymphocyte Antigen 4 +

Ptger4 Prostaglandin E2 receptor 4 +

Tnfrsf1b Tumor necrosis factor receptor

superfamily member 1b

+

Ccl4 Chemokine (C-C motif) ligand 4 +

CD109 Cluster of Differentiation 109 #

CD200 Cluster of Differentiation 200; Ox-2 #

Tnfsf9 Tumor necrosis factor superfamily

member 9; 4-1BBL

#

Nrp1 Neuropilin-1 #

Sema4c Semaphorin-4C #

Ptprj Receptor-type tyrosine-protein

phosphatase eta

#

Il21 Interleukin 21 #

Tspan2 Tetraspanin-2 #

Transcription Factors

Ikzf2 IKAROS family zinc finger 2; Helios *

Egr2 Early growth response protein 2 *

Tox Thymocyte selection-associated

high mobility group box protein

*

Zeb2 Zinc finger E-box-binding homeobox 2 *

Irf4 Interferon Regulatory Factor *

Nfatc1 Nuclear Factor of Activated T cells

c1; NFAT2

*

Zbtb32 Zinc finger and BTB domain-containing

protein 32; ROG

#

Rbpj Recombinant binding protein

suppressor of hairless

#

Hif1a Hipoxia-inducible factor 1-alpha #

Signaling

Rgs16 Regulator of G-protein signaling 16 *

Sh2d2a SH2 domain-containing protein 2A +

Nucb1 Nucleobindin-1 +

Plscr1 Phospholipid scramblase 1 +

Ptpn11 Tyrosine-protein phosphatase

non-receptor type 11

#

Prkca Protein kinase C alpha (PKCa) #

Plscr4 Phospholipid scramblase 4 #

Table 1. Continued

Gene Full Gene Name Expression

Others

Casp3 Caspase 3 *

Gpd2 Glycerol-3-phosphate dehydrogenase +

Gas2 Growth arrest-specific protein 2 +

Sh3rf1 SH3 domain containing ring finger 1 #

Nhedc2 Na+/H+ exchanger domain containing 2 #

Plek Pleckstrin #

Tnfaip2 Tumor necrosis factor, alpha-induced

protein 2

#

Ctsb Cathepsin B #

The table shows representative genes (identified by RNA-seq) that are

significantly induced in CD4+ and CD8+ T cells upon CA-RIT-NFAT1

expression and also overlap with genes expressed in in-vivo-generated

anergic CD4+ and exhausted CD8+ T cells. Expression levels are as fol-

lows: *, genes that are upregulated in both anergic and exhausted

T cells; +, genes whose expression is significantly upregulated in ex-

hausted T cells but is not statistically significant in anergic T cells; #, genes

whose expression is significantly upregulated in anergic T cells but is not

statistically significant in exhausted T cells. In vivo data obtained from

Doering et al. (2012), Okamura et al. (2009), and Wherry et al. (2007).
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peaks also present in NFAT1-deficient cells and therefore

considered background. As expected from the constitutive

nuclear localization of CA-RIT-NFAT1 (Figure S1A), similar

numbers of CA-RIT-NFAT1 peaks were observed in resting

and restimulated NFAT1-deficient cells transduced with CA-

RIT-NFAT1 (Figure 3B, middle). Comparison with the genome

reference (mm9; Figure 3B, right) showed that both NFAT1 and

CA-RIT-NFAT1 peaks were enriched at promoters/transcription

start sites (TSS), exons, and the first introns of genes (Figures 3B

and 3C).

Genome browser views of genes encoding the inhibitory re-

ceptors PD-1, LAG3, TIM3, and Siglec-F illustrate that endoge-

nous NFAT1 binds only after PMA and ionomycin stimulation

(Figures 3D [compare lines 1 and 2] and S4A), whereas CA-

RIT-NFAT1 ChIP-seq peaks were observed in both resting and

stimulated cells (Figure 3D [compare lines 5 and 6]). These

ChIP-seq peaks were not observed in NFAT1-deficient T cells

(Figure 3D [compare lines 3 and 4]), attesting to the specificity

of our NFAT1 antibody. There was substantial overlap in ChIP-

seq peaks for endogenous NFAT1 and CA-RIT-NFAT1, as well

as ChIP-seq peaks of CA-RIT-NFAT1 binding under resting

and stimulated conditions (Figures 3D and S4A). Regions of

NFAT1 but not CA-RIT-NFAT1 binding and vice versa are dis-

cussed below.

To understand the genome-wide binding patterns of NFAT1

and CA-RIT-NFAT1, we examined the ChIP-seq data in more

detail. The distribution of CA-RIT-NFAT1-bound regions with

respect to the nearest TSS differed depending on whether the

genes transcribed from that TSS were up- or downregulated

by CA-RIT-NFAT1. The majority of upregulated genes had a

CA-RIT-NFAT1 binding site within 2.5 kb of the TSS, but the

binding sites were widely distributed with respect to the TSS of

downregulated genes (Figures 3E and 3F). These results suggest

that CA-RIT-NFAT1 directly regulates the transcription of



upregulated genes by binding to sites in the vicinity of their

promoter/TSS regions. Figure S4E shows the distribution of

ChIP-seq peaks for other transcription factors with respect to

the TSS (see Supplemental Discussion).

Sequence Motif Analyses of NFAT1 and CA-RIT-NFAT1
Binding Sites in CTLs
We used a motif-search algorithm (HOMER) to compare

sequence motifs enriched above background in NFAT1 and

CA-RIT-NFAT1 ChIP-seq peaks (Figure 4). We considered

ChIP-seq peaks that bound endogenous NFAT1 in stimulated

cells (n�29,000) and CA-RIT-NFAT1 under resting or stimulated

conditions (n �12,500 and �14,500, respectively; Figure 4A).

Notably, most NFAT1 ChIP-seq peaks did not overlap with CA-

RIT-NFAT1 ChIP-seq peaks (Figure 4A, left and middle), sug-

gesting that at these sites, NFAT binding is strongly stabilized

by AP-1 (probably by�20-fold ormore) (Rao et al., 1997). Among

these is the well-known composite NFAT:AP-1 element in the Il2

promoter (Figure 4B, left; Chen et al., 1998; Jain et al., 1992,

1993). Similar composite elements are known to occur in the pro-

moter and enhancer regions of several other calcium-respon-

sive, cyclosporin A (CsA)-sensitive genes (Hogan et al., 2003;

Rao et al., 1997).

In ChIP-seq peaks for endogenous NFAT1, the top two en-

riched motifs were the consensus monomer NFAT binding

element (50-TTTCCA-30, complement 50-TGGAAA-30) and a com-

posite NFAT:AP-1 element (50-TGGAAAnnnTGAG/CTCA-3
0)

(Figure 4C, left). CompositeNFAT1:AP-1 elementwas the top en-

riched motif in the subset of NFAT1 ChIP-seq peaks that did not

bind CA-RIT-NFAT1 (Figure 4D, left), whereas the monomer

NFAT element was the top enriched motif in the subset of

NFAT1 ChIP-seq peaks that also bound CA-RIT-NFAT1 (data

not shown). As an example of the latter group, the proximal

Ctla4 promoter contains the monomer NFAT binding element

50-TGGAAAAT-30 (Figure 4B, right). These data confirm that the

RIT mutation abolishes NFAT1:AP-1 interaction in cells as it

does in vitro and emphasize that despite its inability to engage

in cooperative interactionswithAP-1, CA-RIT-NFAT1binds func-

tionally andwithmeasurable affinity tomanyNFAT1bindingsites.

Finally, a substantial number of the CA-RIT-NFAT1 ChIP-

seq peaks detected in resting and stimulated cells were not

observed in stimulated WT cells (Figure 4A, Table S4). These

peaks showed low enrichment for NFAT:AP-1 composite sites

(Figure 4C) and no enrichment for kB-like sites such as the

site in the Rnf128 promoter that binds NFAT1 homodimers (50-
GTAACGTTTCC-30 or 50-GGATTCTTCC-30) (Soto-Nieves et al.,

2009); Rnf128, which encodes the E3 ligase Grail, is upregulated

in anergic CD4+ T cells (Fathman and Lineberry, 2007). Rather,

the strong enrichment for consensus NFAT binding motifs in

CA-RIT-NFAT1 ChIP-seq peaks suggests that monomer binding

is dominant under these conditions, perhaps stabilized through

protein-protein interactions with other partner proteins (see Sup-

plemental Discussion).

NFAT-Deficient CD8+ T Cells Show Diminished
Expression of Exhaustion-Associated Inhibitory Surface
Receptors
To examine the requirement for endogenous NFAT proteins in

the regulation of exhaustion-associated genes, we bred our con-
ventional gene-disrupted NFAT1-deficient mice (Xanthoudakis

et al., 1996) to mice deficient in NFAT2 in the T cell lineage (Fig-

ure S5A; see Experimental Procedures). When differentiated into

‘‘memory’’ CTLs (Pipkin et al., 2010) and restimulated with PMA

and ionomycin in vitro, NFAT1,2 double-deficient CD8+ T cells

showed clearly decreased induction of the effector cytokines

IL-2 and IFN-g compared toWT or singly NFAT1- or NFAT2-defi-

cient CD8+ T cells (Figure 5A); they also showed strongly dimin-

ished expression of the inhibitory surface receptors LAG3, TIM3,

and PD-1 (Figure 5C and data not shown). The residual expres-

sion was due to NFAT4, the third NFAT protein present in im-

mune cells: NFAT1,2-deficient cells additionally transduced

with shRNA against NFAT4 (Figure 5B) produced little or no

IL-2 or interferon-g (IFN-g) upon restimulation (Figure 5A) and

expressed little or no LAG3 and PD-1 either under resting condi-

tions or after restimulation (Figure 5C), indicating that all three

NFAT proteins contribute to CD8+ T cell activation and exhaus-

tion. Notably, there was no defect in proliferation of the NFAT1,

2-deficient CD8+ T cells under these conditions (Figure S5B).

To askwhether NFAT familymemberswere required for induc-

tion of the inhibitory receptors in vivo, we utilized a mouse model

of infection with LCMV. WT, NFAT1-deficient, NFAT2-deficient,

or NFAT1 and NFAT2 double-deficient naive CD8+ P14+ Tcra�/�

T cells (CD45.2+) were transferred into CD45.1+ congenic mice.

The mice were then infected with LCMV Armstrong 5 strain,

which induces an acute infection (Wherry et al., 2007); 8 days af-

ter infection, expression of the inhibitory receptors was deter-

mined in the transferred cells ex vivo (Figure 6A). Under these

conditions in vivo, there was only a minor upregulation of

LAG3; however, consistent with our in vitro studies, expression

of all tested inhibitory receptors was strongly decreased in cells

lacking both NFAT1 and NFAT2 (Figure 6A). Based on our in vitro

experiments (Figure 5), the residual expression is most likely due

to NFAT4.

We then evaluated the role of NFAT proteins by using LCMV

clone 13, which induces a chronic infection that leads to CD8+

T cell exhaustion (Wherry et al., 2007). Mice lacking both

NFAT1 andNFAT2 showed a dramatic decrease in the frequency

of cells co-expressing PD-1 and TIM3 or LAG3 (Figure 6B).

Together, our results support a direct role for NFAT family mem-

bers in controlling the expression of inhibitory receptors in CD8+

T cells, both in cell culture and in mice. Not all surface receptors

are affected, however: for instance, the expression of CD44 was

unimpaired in the absence of NFAT (data not shown).

DISCUSSION

In this study, we demonstrate that NFAT proteins, established

regulators of T cell activation, also participate in the transcrip-

tional program of CD8+ T cell exhaustion. To dissect these two

aspects of NFAT function, an essential tool was CA-RIT-

NFAT1, an engineered form of NFAT1 that is both constitutively

active and unable to interact with AP-1. Using this engineered

protein, we have defined, for the first time, the genome-wide

localization of NFAT1 under conditions where it does not coop-

erate with AP-1, as well as the NFAT-dependent transcriptional

profile induced under these conditions. Moreover, we have

used mice and T cells deficient for multiple NFAT family mem-

bers to show that NFAT proteins directly and redundantly control
Immunity 42, 265–278, February 17, 2015 ª2015 Elsevier Inc. 271



A B

C

D

E F

Figure 3. CA-RIT-NFAT1 Directly Upregulates Gene Expression by Binding to Promoter Regions

ChIP-seq results for endogenous NFAT1 in WT cells and for CA-RIT-NFAT1 in transduced NFAT1-deficient cells, either untreated or restimulated with PMA and

ionomycin for 1 hr.

(A) Number of NFAT1 and CA-RIT-NFAT1 ChIP-seq peaks identified by HOMER.

(legend continued on next page)
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cytokine expression as well as expression of exhaustion-related

genes in CD8+ T cells. We note that some of our detailed findings

might be specific to the experimental systems used here, and

might or might not apply to CD8+ T cell exhaustion observed in

other model systems or in human diseases.

Our data demonstrate that NFAT controls CD8+ T cell exhaus-

tion by binding directly to regulatory regions ofmany exhaustion-

associated genes, including the Pdcd1 (PD-1) andHavcr2 (TIM3)

promoters and cis-regulatory regions. Although NFAT1 and CA-

RIT-NFAT1 occupy many overlapping sites, endogenous NFAT1

demonstrates a strong preference for canonical NFAT:AP-1

composite sites under stimulation conditions that also activate

AP-1, whereas CA-RIT-NFAT1 shows a strong preference for

monomeric NFAT sites. In some cases, a two-step mechanism

might apply: for instance, LAG3 is induced by Egr2 (Okamura

et al., 2009), but NFAT1 binds near both the Egr2 and Lag3

TSSs (Figures 3D and S4A), suggesting that NFAT induces

Egr2, after which NFAT and Egr2 cooperate to induce the

expression of downstream target genes. Other pathways might

also be involved: Notch (Mathieu et al., 2013) and type I IFN

(Terawaki et al., 2011) signaling regulate Pdcd1 expression,

and MEK kinase (Yoon et al., 2011) and T-bet (Anderson et al.,

2010) regulate TIM3 expression.

The transcriptional program evoked by CA-RIT-NFAT1 in

CD8+ T cells overlaps with that observed in anergic CD4+

T cells. mRNAs encoding E3 ligases (Fathman and Lineberry,

2007; Heissmeyer et al., 2004; Nurieva et al., 2011); phospha-

tases (Macián et al., 2002); and other signaling proteins including

caspase 3, RGS proteins, and diacylglycerol kinases (Joshi and

Koretzky, 2013; Macián et al., 2002) are upregulated in both

cases. The combined action of these negative regulators is likely

to underlie the diminished activation of ZAP-70 and PLCg1 and

the consequent decrease in Ca2+ influx that we observe in CA-

RIT-NFAT1-expressing T cells. We propose that this negative

feedback program becomes dominant in CD4+ T cells under

conditions of ineffective costimulation (Mueller, 2010; Nurieva

et al., 2011), and in CD8+ T cells in the context of prolonged

low-grade antigenic stimulation and/or inflammation, as encoun-

tered in chronic viral infections and cancer (Schietinger and

Greenberg, 2014; Wherry, 2011).

Our data are consistent with previous studies on the role

of NFAT in CD8+ T cell exhaustion. Transcriptional profiling re-

vealed higher expression of mRNA encoding NFAT2 in ex-

hausted murine CD8+ T cells isolated directly ex vivo, compared

with all other T cell subsets (naive, effector, memory) examined

(Wherry et al., 2007); NFAT2 was shown to be nuclear in tolerant

CD8+ T cells (Srinivasan and Frauwirth, 2007); and Pdcd1

expression was shown to be regulated by NFAT2 (Oestreich
(B) Pie charts show the genomic distribution of ChIP-seq peaks for endogenous

seq peaks in NFAT1-deficient cells transduced with CA-RIT-NFAT1 (middle two p

is shown for comparison (right).

(C) Enrichment of NFAT1 binding sites in annotated genomic regions based on t

performed by Fisher’s exact test. ***p < 2 3 10�16; **p < 1 3 10�10; *p < 1 3 10�

(D) Genome browser views of Lag3, Pdcd1 (encoding PD-1), Siglecf, and Havcr

ChIP-seq peaks.

(E and F) Cumulative plots (E) or probability per base pair (F) of the distance betw

genes (black) and genes significantly (p < 0.05) upregulated (red) or downregula

conditions. The lower panels in (F) are expanded views of the histograms in the

See also Figure S4.
et al., 2008). Although Agnellini et al. (2007) reported that

NFAT2 was not present in the nucleus of exhausted CD8+

T cells generated during chronic, high-dose LCMV infection in

mice after 16 hr of stimulation (they did not examine other

NFAT proteins), an alternative interpretation of their data is that

the short inducible isoform of NFAT2 (Chuvpilo et al., 2002) is

poorly induced after restimulation of exhausted CD8+ T cells.

Indeed, the higher basal Ca2+ concentrations observed by

Agnellini et al. (2007) in exhausted CD8+ T cells and in CA-RIT-

expressing cells in this report would increase NFAT-dependent

induction of NFAT2 under basal conditions, as also observed

in ex vivo exhausted cells (Wherry et al., 2007). Moreover, the

blunted but not completely blocked Ca2+ influx in restimulated

CA-RIT-NFAT1-expressing T cells is consistent with the obser-

vation that exhausted CD8+ T cells support Ca2+ influx upon

restimulation (Agnellini et al., 2007).

Although in these studies we engineered NFAT1 to eliminate

NFAT:AP-1 cooperation, we propose that the NFAT-driven tran-

scriptional program of feedback attenuation of T cell responses

is a normal late feature of the immune response. Fos and Jun

are elevated only transiently after stimulation (Jain et al., 1992),

whereas NFAT can remain in the nucleus for long times even in

response to very low elevations of intracellular Ca2+ (Dolmetsch

et al., 1997; Marangoni et al., 2013; Oh-Hora et al., 2008). Fos

expression also declines during chronic infection despite antigen

persistence, whereas NFAT2 expression is increased as dis-

cussed above (Wherry et al., 2007). Finally, exhausted CD8+

T cells, defined in a tumor setting by PD-1 and TIM3 expression,

can support the nuclear translocation of endogenous NFAT1 in

response to high levels of TCR stimulation (Figure 1J). The combi-

nationof increasedbasal Ca2+ anda residual lowconcentrationof

Ca2+ signaling in anergized or exhausted cells would be sufficient

for NFAT proteins to enter and remain in the nucleus to maintain

the exhausted state. Thiswould result in the transcriptional induc-

tion of exhaustion-related genes, whose expression requires

NFAT but not NFAT:AP-1 cooperation as shown here.

Especially in the presence of antigen-specific T regulatory

cells, tumor-infiltrating CD8+ T cells display brief and unstable

T cell-APC contacts that nevertheless are sufficient to induce

prolonged NFAT-dependent transcription and establish a

feedback mechanism that results in decreased T cell responses

(Marangoni et al., 2013). Under these conditions, delayed export

of NFAT from the nucleus results in a ‘‘memory’’ of previous

signaling by NFAT (Marangoni et al., 2013). In contrast, signaling

pathways regulating Ras, ERK, and AP-1 activation exhibit a

shorter signal memory (Faroudi et al., 2003), suggesting that

tolerance and/or exhaustion programs are evoked in tumor-infil-

trating T cells as a result of an altered balance between NFAT
NFAT1 in WT cells transduced with empty vector (left) or CA-RIT-NFAT1 ChIP-

ie charts). Representation of the annotated regions in the mouse mm9 genome

heir relative abundance in the mouse genome (mm9). Statistical analysis was
2.

2 (encoding Tim3) loci showing the distribution of NFAT1 and CA-RIT-NFAT1

een the closest NFAT1 binding site relative to the transcription start site of all

ted (blue) in NFAT1-deficient cells transduced with CA-RIT-NFAT1 in resting

vicinity of the TSS.
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Figure 4. ChIP-Seq Peaks for Endogenous NFAT1 Are Enriched for Composite NFAT:AP-1 Sites

(A) Venn diagrams showing the overlap of ChIP-seq peaks in the different conditions.

(B) Genome browser views of Il2 and Ctla4 loci showing the distribution of ChIP-seq peaks.

(C) List of the top six most representative motifs ranked based on the p values. The HOMER program searches for publishedmotifs, and therefore duplicate AP-1

and Runx sequences are listed.

(D) Motifs identified as enriched only in peaks from one set of ChIP-seq data as indicated.

Sequences are in 50 to 30 direction. See also Table S3.
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Figure 5. NFAT Family Members Regulate the

Expression of Inhibitory Receptors In Vitro

Naive WT, NFAT1-deficient, NFAT2-deficient, or

NFAT1,2-deficient CD8+ T cells were purified

by FACS and transduced with a retrovirus en-

coding Ametrine (a variant GFP) and shRNAs

targeting either CD4 (negative control) or NFAT4

to yield single, double, or triple NFAT-deficient

cells.

(A and C) On day 6 after activation, cells were re-

stimulated with PMA and ionomycin for 6 hr (A and C,

right panels) or left untreated (C, left panel). IFN-g

and IL-2 production (A) or expression of cell surface

receptors (C) was determined by flow cytometry of

Ametrinehi cells. A representative experiment out of

two is shown.

(B) Expression of mRNA encoding NFAT4 was as-

sessed by quantitative RT-PCR and normalized to

mRNA encoding L32 ribosomal protein. The amount

of expression in control shCD4 cells was set at 1.

Combined results from three independent experi-

ments are shown (mean ± SEM).

See also Figure S5.
and other transcription factors including AP-1. Consistent with

the likelihood that AP-1 does not participate in the exhaustion

program, exhausted T cells show not only a higher expression

of NFAT2 transcripts but also a concomitant reduction in

the AP-1 family member Fos (Wherry, 2011). These findings

complement our own observations that the strongest exhaustion

phenotype is induced in vitro by CA-RIT-NFAT1, which cannot

cooperate with AP-1.

The NFAT-dependent program of anergy and/or exhaustion

has considerable relevance for the clinic. For instance, the PD-

1-PD-1 ligand pathway is well established as a major inhibitory

receptor pathway involved in T cell exhaustion (Barber et al.,

2006), and blocking this pathway during chronic LCMV infection

reinvigorates virus-specific CD8+ T cell responses, resulting in

lower viral loads (Barber et al., 2006). Moreover, antibodies to

PD-1 and CTLA-4 have emerged as surprisingly effective agents

for cancer immunotherapy (Schietinger and Greenberg, 2014),

and individual or combined blockade of TIM3, PD-1, and LAG3

with antagonist antibodies has been shown to reverse exhaus-

tion efficiently in CD8+ T cells (Blackburn et al., 2009; Jin et al.,

2010; Sakuishi et al., 2010). These therapies all act downstream

of the NFAT-dependent program of anergy and exhaustion that

we have described here.

Our data imply that rescuing AP-1 signaling in exhausted

T cells would reverse the exhausted state, and so offer therapeu-

tic value in chronic viral infections and cancer. Conversely, dis-

rupting NFAT:AP-1 interaction would impose a hyporesponsive

state, thus offering a potential therapeutic avenue for interfering

with autoimmune responses that depend on NFAT:AP-1 cooper-

ation. Because the RIT mutation does not interfere with

NFAT:FOXP3 cooperation (data not shown), confirming predic-

tions from the crystal structures that NFAT proteins make

partially distinct contacts with Fos-Jun and FOXP proteins (Ban-

dukwala et al., 2011; Chen et al., 1998; Wu et al., 2006), it might

be possible to design reagents that disrupt the NFAT:AP-1 inter-
action but leave T cell regulatory function intact. Our future

studies will address these possibilities.
EXPERIMENTAL PROCEDURES

Mice

P14+ TCR transgenic (P14+, Taconic) or OT-II mice were crossed with Tcra�/�

mice (the P14 TCR transgene recognizes a peptide from the gp33 protein of

mouse lymphocytic choriomeningitis virus [LCMV] presented on H-2Db; the

OT-II TCR transgene recognizes a peptide from ovalbumin presented on

I-Ab). P14+Tcra�/�mice were further crossed with NFAT1-deficient mice (Xan-

thoudakis et al., 1996) and with mice deficient in NFAT2 in the T cell lineage,

obtained by breeding CD4Cre mice with mice in which exon 3 of the gene en-

coding NFAT2 was ‘‘floxed’’ (flanked with LoxP sites) (Figure S5A). The result-

ing mice lack both NFAT1 and NFAT2 in T cells (NFAT1, 2-deficient mice). CL4

mice express a transgenic TCR specific for H-2Kd/HA515–523. All mice were

maintained in specific-pathogen-free barrier facilities and used according to

protocols approved by the La Jolla Institute for Allergy and Immunology animal

care and use committees.

Isolation, Culture, and Retroviral Transduction of T Cells

Naive CD8+ or CD4+ T cells were purified from spleen and lymph nodes har-

vested from 6- to 8-week-old mice by negative selection or by fluorescence-

activated cell sorting. Cells were activated with anti-CD3 and anti-CD28 and

maintained in the presence of IL-2. For cytokine production analyses, cells

were restimulated with PMA and ionomycin. For retroviral transduction, viral

supernatants were generated by transfection of PlatE cells. GFP+ or Ametrine+

transduced cells were purified by fluorescence-activated cell sorting. Formore

details, see Supplemental Experimental Procedures.

RNA-Seq

For RNA-seq analysis, total RNA was used to isolate poly(A) RNA with the

micropoly(A)purist kit (Ambion). The whole transcriptome library kit (Life

Technologies) was used to prepare paired-end sequencing libraries.

Sequencing was performed with a SOLID4 sequencer (Applied Biosystems)

and the sequencing reads in color-space were mapped to the mm9 genome

via Tophat (Trapnell et al., 2009). For more details, see RNA-seq data ana-

lyses and microarray data analysis in the Supplemental Experimental

Procedures.
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Figure 6. NFAT Family Members Regulate

the Expression of Inhibitory Receptors

In Vivo

(A) Acute infection. Naive P14+ Tcra�/�WT,NFAT1-

deficient, NFAT2-deficient, or NFAT1,2-deficient

CD8+ T cells (CD45.2+) were transferred intrave-

nously into CD45.1+ congenic mice, after which the

mice were injected with LCMV (23 105 PFU) intra-

peritoneally. Eight days after infection, splenocytes

were harvested and the expression of inhibitory re-

ceptors on the adoptively transferredCD8+CD45.2+

cells was evaluated. Top: A representative example

for each genotype is shown. Bottom: Data for 8–10

mice in each group are summarized as mean ±

SEM, with each dot representing a mouse. A

representative experiment out of two is shown. The

gray histogram shows unstained control.

(B) Chronic infection. WT mice and mice lacking

both NFAT1 and NFAT2 in T cells were infected

with LCMV clone 13. Eighteen days after infection,

splenocytes were harvested and expression of

inhibitory receptors on CD8+CD44+ H2Db-gp33-

41+ cells was determined by flow cytometry. Top:

Representative contour plots. Bottom: Results

from individual mice (2–3 independent experi-

ments; data are summarized as mean ± SEM;

each mouse is represented by a dot). p values

were calculated by t test.
ChIP-Seq

Fixed chromatin was sheared to yield 100–300 bp DNA fragments and

immunoprecipitated with protein G/anti-NFAT1 antibody complexes.

Immunoprecipitated and de-crosslinked DNA was end-repaired and ligated

with barcoded SOLID adaptors. Ligated products were size selected by gel

andPCRamplified. Barcoded librarieswere sequenced in aSOLID4 sequencer

(Applied Biosystems) and the reads were mapped by Bowtie (Langmead et al.,

2009) to the mm9 genome in color-space. For more details, see ChIP-seq and

motif analyses in the Supplemental Experimental Procedures.

Lymphocytic Choriomeningitis Virus Models

Six-week-old WT mice or mice lacking NFAT1 and NFAT2 in T cells were in-

fected i.v. with 3 3 106 PFU of LCMV clone 13. Eighteen days after infection,

splenocytes were harvested and cells were stained with antibodies against

CD8, CD44, PD-1, LAG3, TIM3, and tetramer (H2Db-gp33-41). Expression of

these markers was assessed by flow cytometry.

For adoptive transfer experiments, naive P14+Tcra�/�CD8+ T cells were iso-

lated from 6-week-old WT or NFAT1-deficient mice, or mice lacking NFAT2 or
276 Immunity 42, 265–278, February 17, 2015 ª2015 Elsevier Inc.
both NFAT1 and NFAT2 in T cells (all mice are

CD45.2+). 5 3 104 cells were adoptively trans-

ferred (i.v.) into B6.SJL (CD45.1+) congenic mice,

and then mice were infected with 2 3 105 PFU of

LCMV Arm5 intraperitoneally. Eight days after

infection, spleens were harvested and cells

stained for cell surface markers.

Listeria monocytogenes-gp33 In Vivo

Protection Assay

Naive P14+Tcra�/� CD8+ T cells were activated

with anti-CD3 and anti-CD28, transduced with

CA-RIT-NFAT1, DBD-mut-CA-RIT-NFAT1, or

empty vector (mock), and expanded with 10 U/ml

IL-2 for 4 days. Then, GFPhi cells were purified

by FACS, and 5 3 104 cells were transferred into

C56BL/6 recipient mice. One day later, mice
were infected with 1 3 105 CFU Listeria-gp33, kindly provided by Dr. Rafi

Ahmed (Kaech et al., 2003). On day 3 and 5, spleens were harvested and

plated on brain heart infusion agar plates for colony counts and cells pheno-

typically characterized by FACS.

In Vivo Tumor Model

Single-cell suspensions from spleens and LNs of CL4 mice were pulsed with

10 mM HA515–523 peptide for 1 hr at 37�C, then cultured with 10 ng/ml murine

rIL-12 for the first 2 days and 20 ng/ml murine rIL-2 for the following 5 days

as previously described (Bauer et al., 2014). Cells were then transferred to

mice that had been inoculated s.c. in both shaved flanks with 106 viable

CT26HA tumor cells suspended in 50 ml HBSS 7 days before. Tumor size

was determined by caliper measurements of tumor length and width, and

tumor volume was calculated as (l 3 w2) / 2 (Bauer et al., 2014).

To induce exhausted T cells, CT26HA tumors were implanted in Thy1.1 re-

cipients that were then injected with T regulatory cells that recognize the HA

antigen (Bauer et al., 2014). Ten days after tumor injection, mice

were sacrificed, and tumor-infiltrating T cells were restimulated ex vivo with



plate-bound anti-CD3ε for 15 min, after which cells were fixed. Then, PD-

1+TIM3+ and PD-1�TIM3� populations were sorted and stained for NFAT1

and DAPI, and then analyzed for confocal microscopy.
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