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SUMMARY
Amino acid (AA) is a potent mitogen that controls growth andmetabolism. Here we describe the identification
of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and
interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes
mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A
knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover,
Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling,
tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is anmTORC1 activator
and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis
and renders cancer cells prone to mTORC1-targeted therapy.
INTRODUCTION

Cell growth is a process of assimilating extracellular nutrients

into the cell mass, which requires the coordinated regulation of

nutrient transport and protein synthetic capability. Signaling

modules have evolved to transduce nutrient cues to cellular pro-

grams such as transcription and translation (Dechant and Peter,

2008; Jorgensen and Tyers, 2004; Zaman et al., 2008). mTOR is a

conserved central growth controller in eukaryotes (Loewith and

Hall, 2011; Sengupta et al., 2010). It forms two distinct kinase

complexes, mTORC1 and mTORC2 (Loewith et al., 2002;

Sarbassov et al., 2004). In response to nutrient signals, mTORC1
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controls cellular growth and metabolic processes, and mTORC2

regulates survival through AKT phosphorylation.

HyperactivemTORC1 signaling is amajor cause of human dis-

eases such as cancer (Tsang et al., 2007). Because mTORC1 is

commonly hyperactivated in human tumors, it is a desirable

target for cancer therapy (Bjornsti and Houghton, 2004; Zhang

et al., 2011). Two rapamycin analogs (rapalogs), everolimus

and temsirolimus, are Food and Drug Administration-approved

drugs for advanced renal and breast carcinomas. However,

the overall objective response rate remains low for rapalogs.

Therefore, studying the regulation of mTORC1 is of considerable

biological and clinical importance.
wth and metabolism. This study shows that Rab1A, a small
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Rab1 Mediates AA Signaling and Drives Oncogenesis
AA is not only an essential nutrient but also a potent mitogen.

AA rapidly activatesmTORC1. Rag proteins are lysosomal/vacu-

olar membrane-bound small GTPases. Upon AA stimulation,

Rag GTPases function as heterodimers that bind to and activate

TORC1 (Kim et al., 2008; Sancak et al., 2008). In the presence of

leucine, leucyl tRNA synthetase binds to Rags and promotes

TORC1 signaling (Han et al., 2012). Rag is well conserved from

yeast to humans (Sekiguchi et al., 2001). The yeast Rag homo-

logs Gtr1 and Gtr2 have been shown recently to also mediate

AA signaling to TORC1 (Binda et al., 2009; Bonfils et al., 2012).

Because the importance of AA in cell growth and metabolism,

however, Rag proteins are probably not the only sensors. The

goal of this study is to identify the Rag-independent regulator

of AA signaling and investigate the underlying mechanism and

significance.

RESULTS

Ypt1 Is Essential for AA to Activate TORC1 in Yeast
Gtr1 and Gtr2, the yeast orthologs of RagA/RagB and RagC/

RagD, respectively, function as a heterodimer to regulate

TORC1 (Binda et al., 2009; Bonfils et al., 2012). Consistently,

gtr1D and gtr2D mutants are hypersensitive to rapamycin (Fig-

ure 1A), indicative of their role in TORC1 signaling (Bertram

et al., 1998). However, thesemutants exhibit no apparent growth

defect, and AA can still fully activate TORC1 in gtr1D and gtr2D

mutants, as judged by phosphorylation of the TORC1 substrates

Sch9 and Maf1 (Figure 1B) (Wei and Zheng, 2009; Wei and

Zheng, 2010). Additionally, the dominant-active Gtr1-guanosine

triphosphate (GTP) and Gtr2-guanosine diphosphate (GDP) do

not affect TORC1 activity during AA starvation and restimulation

(Figure 1C). The yeast vacuole (lysosome) anchors Gtr1 and

Gtr2 signaling (Binda et al., 2009; Bonfils et al., 2012), but the

growth and TORC1 signaling remain normal in vacuolar biogen-

esis mutants vps16D, vps33D, pep3D, and pep5D (Figures 1A

and 1D). Together, these observations clearly show that GTR

and the vacuole are dispensable for AA signaling to TORC1 in

yeast.

We showed previously that genes in the TORC1 pathway

display the rapamycin-sensitive phenotype (Bertram et al.,

1998). Using this assay, we carried out a genomic screen and

identified a large set of TORC1 signaling genes (Chan et al.,

2000). Because most known mTORC1 activators are small

GTPases (e.g., Rheb, Rag, and Rho1) (Inoki et al., 2003; Kim

et al., 2008; Sancak et al., 2008; Stocker et al., 2003; Tee et al.,

2003; Yan et al., 2012; Zhang et al., 2003), we focused our search

for the Rag-independent TORC1 activator on small GTPases,

particularly Rab, one of the largest small GTPase subfamilies

(Hutagalung and Novick, 2011; Stenmark, 2009). Among the

nine nonessential yeast Rab mutants, ypt6D and ypt7D are

hypersensitive to rapamycin (Figure 1E). With the two essential

Rab genes, when assayed under Tet-off conditions (Hughes

et al., 2000), the Tet-YPT1 strain, but not the Tet-SEC4 strain,

showed a rapamycin-hypersensitive phenotype (Figure 1F). The

ypt1-ts mutant also displayed rapamycin hypersensitivity (Fig-

ure 1G). Therefore, Ypt1, Ypt6, and Ypt7 are involved in TORC1

signaling. However, depletion of YPT1 (Figure 1H), but not YPT6

and YPT7, blocks the activation of TORC1 by AA (Figures 1H

and 1I), indicating that Ypt1 is essential for AA signaling. The pre-
Can
cise role of Ypt6 and Ypt7 in TORC1 signaling is presently

unknown.

Ypt1 is the yeast paralog of Rab1, a highly conserved Golgi

membrane-bound GTPase previously known for ER-to-Golgi

vesicular trafficking (Hutagalung and Novick, 2011; Stenmark,

2009). However, a large number of yeast mutants in ER-Golgi

trafficking do not display a rapamycin-sensitive phenotype

(Figure S1A available online), suggesting that the role of

Rab1 in TORC1 signaling is not directly related to its trafficking

function. Consistently, Ypt1 interacts with Tor1, which is a

TORC1-specific component in yeast, in a GTP- and AA-

dependent manner (Figure S1B), and AA stimulates GTP-bind-

ing by Ypt1 (Figures S1C and S1D). These results indicate that

AA regulates Ypt1 and its GTP-dependent interaction with

TORC1.

AA Stimulates Rab1A Interaction with mTORC1 in a
GTP- and Golgi-Dependent Manner in HEK293E cells
A recent RNAi screen revealed that dRAB1 knockdown in

Drosophila S2 cells strongly inhibits dS6K phosphorylation

(Li et al., 2010), suggesting that the Rab1 function in TORC1

signaling is conserved. To further explore this, we knocked

down Rab1A in human embryonic kidney 293E (HEK293E)

cells with three distinct Rab1A small hairpin RNAs (shRNAs),

all of which efficiently downregulate Rab1A expression and

inhibit the phosphorylation of S6K1(T389) but not AKT(S473),

indicating that Rab1A is specifically required for mTORC1

signaling (Figure 2A). Rab1A knockdown attenuates the

activation of mTORC1 by AA (Figure 2B). In contrast, mTORC1

can still be stimulated by insulin after Rab1A knockdown

(albeit the overall mTORC1 signaling level is decreased) (Figure

2C). The latter phenomenon is similar to that of Rag knock-

down (Kim et al., 2008).Therefore, Rab1A function in AA

signaling is conserved in humans. Of note, Rab1A knockdown

does not cause cell death, as judged by lack of PARP cleav-

age (Figure 2A), which is consistent with the mTORC1-specific

function for Rab1A.

As in yeast, endogenous Rab1A also interacts with mTORC1

(Figure 2D). Hemagglutinin (HA)-Rab1A is associated with

mTOR and Raptor, not Rictor (Figure S2A), and is bound more

with Myc-Raptor than Myc-mTOR (Figures S2B and S2C). Myc-

Raptor, not Myc-mTOR, remained associated with HA-Rab1A

after the immunocomplex was washed with 0.5% TX-100, a con-

dition known to disrupt mTORC1 (Figure S2D), indicating that

Raptor mediates the binding of Rab1A. Rab1A is a small GTP-

binding protein anchored on ER and Golgi membranes through

prenylation (Calero et al., 2003; Gomes et al., 2003). mTOR

preferentially binds to Rab1A-GTP (Rab1A-Q70L, Rab1AGTP)

(Pind et al., 1994) compared with Rab1A-GDP (Rab1A-S25N,

Rab1AGDP) (Alvarez et al., 2003) or a Rab1AC202, 203S mutant

(Rab1AC2S) deficient of prenylation and ER/Golgi localization

(Calero et al., 2003; Gomes et al., 2003) (Figure 2E).

Upon AA stimulation, there is a significant increase in the GTP-

binding activity of Rab1A (Figures 2F and 2G). Moreover, AA reg-

ulates the Rab1A interaction with mTORC1 in a GTP-dependent

manner (Figure 2H). Strikingly, Rab1AGTP binds persistently to

mTORC1 and sustains mTORC1 signaling even during AA star-

vation (Figures 2H and 2I). In contrast, serum and insulin do not

affect Rab1A GTP-binding (Figure 2J) or the Rab1A-mTORC1
cer Cell 26, 754–769, November 10, 2014 ª2014 Elsevier Inc. 755
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Figure 1. Ypt1/Rab1 Is Crucial for AA to Activate TORC1 in Yeast

(A) GTR wild-type (WT) and mutant yeast cells were assayed for rapamycin sensitivity by a spot assay (10-fold serial dilutions).

(B) WT, gtr1D, and gtr2D cells were starved of AA and restimulated. TORC1 signaling was measured by immunoblotting for phosphorylation of HA-Sch9 and

Maf1-Myc.

(C) Yeast expressing Gtr1-GTP or Gtr2-GDP was starved of AA, restimulated, and assayed for TORC1 signaling as above.

(D) The WT and vacuolar biogenesis mutants were starved, restimulated with AA, and assayed for TORC1 signaling.

(E) Nonessential Rab gene deletion mutants were measured for rapamycin sensitivity. The tor1D strain was used as a positive control.

(F) The WT and Tet-off essential Rab mutant strains were assayed for rapamycin sensitivity with or without doxycycline (Dox).

(G) The WT and the ypt1 temperature-sensitive (ypt1-ts) mutant were assayed for rapamycin sensitivity at a permissive temperature.

(H) WT and Tet-YPT1 cells were starved and restimulated with AA in the presence or absence of Dox, and assayed for TORC1 signaling.

(I) WT, ypt6D, and ypt7D cells were starved, restimulated with AA, and assayed for TORC1 signaling.

See also Figure S1.

Cancer Cell

Rab1 Mediates AA Signaling and Drives Oncogenesis

756 Cancer Cell 26, 754–769, November 10, 2014 ª2014 Elsevier Inc.



D

A

Rab
1A

-1

Rab
1A

-2

Rab
1A

-3

Con
tro

l

PARP

P-S6K1

S6K1

Rab1A

AKT

P-AKT
+ - - - -
- + - - -
- - + - -
- - - + -
- - - - +

HA -Rap2A
HA -Rab1A
HA -Rab1AGTP

HA -Rab1AGDP

HA -Rab1AC2S

mTOR

Raptor

HA

mTOR

HA

IP
:m

TO
R

To
ta

l l
ys

at
e

E

G H

Myc-
mTOR

HA-
Rab1A

Myc-
mTOR

HA-
Rab1A

IP:
Myc 

Cell
Lysates

Rap2A Rab1A

AA - + - + - + - +

Rab1AGTP Rab1AGDP
Rap2A

Rap2A

Rab1A

Rab1A

AA

100

75

50

25

0

+ - + -

GTP-bound

Cell lysates

J

Rap2A Rab1A

Rap2A Rab1A

Serum + - + -

GTP-bound

Cell lysates

100

75

50

25

0

shCon shRab1A
Insulin - + - +

P-S6K1

S6K1

Rab1A

IgG
IP:

mTOR

IP-
WB

Total
WB

Raptor

Rab1A

mTOR

Raptor

Rab1A

Anti
-

    
Rab

1A

AA - +

GDP

GTP

origin

%GTP: +- +-95 565   5

C

F

I

AA - + - + - + - + - +

P-S6K1

S6K1

HA

Rap2A Rab1A Rab1A Rab1A Rheb1

Control shRab1A

P-S6K1

S6K1

Rab1A

AA - + - +

B

GTP GDP GTP

%
 G

TP
-b

ou
nd

  (
-A

A/
+A

A)

  %
 G

TP
-b

ou
nd

(-S
er

um
/+

Se
ru

m
)

Figure 2. Rab1A Is Essential for mTORC1

Activation by AA in Human Cells

(A) HEK293E cells infected with lentiviral Rab1A

shRNAs were analyzed for P-S6K1(T389), S6K,

P-AKT(S473), AKT, and PARP cleavage.

(B) HEK293E cells infected with Rab1A shRNA

were starved, restimulated with AA for 10 min,

and analyzed for P-S6K1(T389).

(C) HEK293E cells were starved of serum (full

complement of culture ingredients except serum),

restimulated with 100 ng insulin for 10 min, and

analyzed for P-S6K1(T389).

(D) Endogenous Rab1A was immunoprecipitated

and analyzed for the presence of mTOR and

Raptor.

(E) WT and mutant HA-Rab1A was transiently

expressed in HEK293E cells. mTOR was immu-

noprecipitated and analyzed for its interaction

with HA-tagged proteins and endogenous raptor.

HA-Rap2A was a negative control.

(F) 32P-labeled HEK293E cells were starved and

restimulated with AA. Rab1A was immunopre-

cipitated and analyzed for the bound 32P-labeled

GTP and GDP by thin-layer chromatography. The

numbers at the bottom show means ± SD of three

independent experiments.

(G) HEK293E cells were starved and restimulated

with AA. Extracts of cells were incubated with

GTP-agarose beads and the binding of Rab1A

were analyzed by western blot. The bottom panel

shows means ± SD of three independent experi-

ments.

(H) HEK293E cells expressing Myc-mTOR and WT

or mutant HA-Rab1A proteins were starved and

re-stimulated with AA. Myc-mTOR and HA-Rab1A

were analyzed for interaction by co-IP. HA-Rap2A

is a negative control.

(I) The same as Figure 2H, except mTORC1

signaling was analyzed by P-S6K1. Rheb was

used as a positive control.

(J) The same as Figure 2G, except cells were

starved and restimulated with serum. The bottom

panel shows means ± SD of three independent

experiments.

See also Figure S2.
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interaction (Figure S2E). These observations indicate that Rab1A

mediates AA signaling to mTORC1, which is a conserved phe-

nomenon. Curiously, AA starvation disrupts the association of

Ypt1GTP with TORC1 in yeast but not Rab1AGTP with mTORC1

in humans. This is likely due to the fact that nutrients such as

AA play a more prominent growth regulatory role in single-celled

organisms than in mammals. The latter is regulated by nutrients

as well as polypeptide factors (e.g., cytokines and hormones).

Consistent with this notion, starvation of HEK293E cells of both

serum and AA also blocks the binding of Rab1AGTP to mTORC1

(data not shown).
Cancer Cell 26, 754–769, N
Rab1A Regulates the Formation
of the Rheb-mTORC1 Complex
in the Golgi
When ectopically expressed, Rab1A

stimulates the level of P-S6K1 and
P-4EBP1 but not P-AKT (Figures S3A and S3B), indicating

that Rab1A overexpression specifically promotes mTORC1

signaling. The ability of Rab1A to enhance mTORC1 sig-

naling is dependent on Rab1A GTP-binding and associa-

tion with Golgi/ER membranes because such Rab1AGDP and

Rab1AC202, 203S mutants fail to increase S6K1 phosphorylation

(Figures S3A and S3B). To understand the underlying mecha-

nism, we examined the functional relationship between Rab1A

and two other major mTORC1 activators, Rheb and Rag.

Rab1A knockdown strongly attenuates RagB/RagC-dependent

mTORC1 activation by AA (Figure 3A). On the other hand,
ovember 10, 2014 ª2014 Elsevier Inc. 757
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Figure 3. Rab1A Stimulates mTORC1 Signaling and Regulates Rheb-mTORC1 Interaction in the Golgi

(A) HEK293E cells infected with Rab1A shRNA or a control shRNA in the presence or absence of overexpressed RagB/RagC or Rheb were starved with

AA (containing all culture ingredients except AA) and restimulated with AA for 10 min. The effect of Rab1A knockdown on P-S6K1 was analyzed by western blot.

(B) HEK293E cells overexpressing HA-Rab1A were infected with lentiviral shRNA against RagA/RagB or Rheb and then treated with AA starvation and

restimulation. The effect on mTORC1 signaling was assayed by western blot.

(C) Duolink was used to detect the interaction of endogenous Rab1A and Raptor (red) in HEK293E cells transiently expressing GM130-GFP (Golgi, green). Shown

is a representative image (n > 350). Scale bars, 10 mm.

(D) Duolink was used to detect the interaction of endogenous Rheb and Raptor (red) in HEK293E cells transiently expressingGM130-GFP (Golgi, green). Shown is

a representative image (n > 350). Scale bars, 10 mm.

(E) The same as Figure 3E, except the images were analyzed by confocal microscopy. Shown is a Z section of the confocal images. Arrowheads indicate Golgi

location. Scale bars, 10 mm.

(legend continued on next page)
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although downregulation of Rheb abolishes Rab1A-dependent

mTORC1 activation by AA, RagA/RagB knockdown only has

a partial effect (Figure 3B). Curiously, the dominant-active

RagBGTP/RagCGDP can partially rescue the loss of Rab1A

(Figure S3C). These observations indicate that the regulation

of mTORC1 by Rab1A is dependent on Rheb but that Rab1A

and Rag are relatively independent of each other, with Rab1A

having a more prominent role, which is consistent with the

yeast results.

Although Rag GTPases regulate mTORC1 in lysosomes

(Sancak et al., 2010), mTORC1 is widely distributed throughout

the cell, including the ER, the Golgi, endosomes, mitochondria,

and the nucleus (Drenan et al., 2004; Li et al., 2006; Liu and

Zheng, 2007; Sancak et al., 2008; Schieke et al., 2006), sug-

gesting that the regulation of mTORC1 signaling is more

complex than currently thought, involving multiple subcellular

systems and mechanisms. To locate where Rab1A engages

mTORC1, we used Duolink, which allows the detection of

protein-protein interactions in situ in intact cells and tissues

(Söderberg et al., 2006), to analyze in situ Rab1A-mTORC1

interaction. Antibodies against Rab1A and Raptor or mTOR

together, but not each individually or under the condition that

one partner is knocked down, generated a strong signal in

the Golgi (Figure 3C; Figures S3D–S3H). Therefore, Rab1A in-

teracts with mTORC1 specifically in the Golgi, which is consis-

tent with our earlier observation that Golgi localization is

required for Rab1A to bind to and activate mTORC1 (Figure 2E;

Figure S3A).

To further investigate the mechanism of mTORC1 regulation

by Rab1A, we examined the localization of the Rheb-mTORC1

complex. Rheb-Raptor interaction prominently occurs in the

Golgi, as judged by conventional and confocal microscopy

(Figures 3D and 3E; Figure S3D). This result is consistent

with the observation that both Rheb and mTORC1 are promi-

nently localized in this organelle (Figure S3I) (Buerger et al.,

2006; Drenan et al., 2004; Hanker et al., 2010; Liu and Zheng,

2007). In addition, Rheb interaction with mTORC1 has been

mainly detected in the Golgi in live cells (Yadav et al., 2013).

Raptor-Rheb15 is a fusion protein of Raptor and the C-terminal

Rheb CAAX signal sequence. When expressed in cells, it

causes constitutive activation of mTORC1 (Sancak et al.,

2010). Because Rheb15 contains the CAAX motif that is suffi-

cient to target Rheb to the Golgi (Buerger et al., 2006; Hanker

et al., 2010), we investigated Raptor-Rheb15 subcellular local-

ization and found that it is indeed predominantly found in the

Golgi (Figures S3J and S3K). Moreover, Rab1A knockdown

disrupts mTORC1 localization or Rheb-mTORC1 interaction

in the Golgi (Figures 3F and 3G; Figure S3L) while not affecting

mTORC1 localization or interaction with Rag in the lysosomes

(Figures S3M-S3Q). Therefore, Rab1A controls mTORC1

signaling by regulating the formation of the Golgi Rheb-

mTORC1 complex.
(F) HEK293E cells were transfected with a Rab1A small interfering RNA (siRNA) or

bar, 10 mm.

(G) HEK293E cells transiently expressing GM130-GFP (green) were analyzed for

siRNA. Shown is a representative image (n > 350). Scale bars, 10 mm.

See also Figure S3.

Can
Rab1A Is Overexpressed in Human Colorectal Cancer,
Which Is Correlated with Hyperactive mTORC1
Signaling, Tumor Invasion, and Poor Prognosis
A previous microarray study revealed that Rab1A is overex-

pressed in 98% of human tongue squamous carcinomas

(Shimada et al., 2005). To ask whether Rab1A is also aberrantly

expressed in other malignancies, we performed immunohisto-

chemistry (IHC) staining of Rab1A in primary human colorectal

cancer (CRC) and adjacent normal tissues. Rab1A staining is

much stronger (median H score, 255) in tumors than the match-

ing normal tissues (median H score, 40) (Figures 4A and 4B).

Rab1A is scored higher in approximately 80% tumors, although

the intensity is markedly variable, with IHC scores 100-fold

higher in tumors than in normal tissues (Figure 4C).

We next examined the relationship between Rab1A expres-

sion and mTORC1 signaling by staining Rab1A and P-S6K1 in

consecutive tissue sections. Overall, Rab1A expression is

strongly correlated with P-S6K1 staining (Figures 4D and 4E).

In tumors with heterogeneous Rab1A expression, the P-S6K1

level still showed a striking correlation with the Rab1A level. In

tumor nodules with high Rab1A expression, P-S6K1 staining is

also stronger (Figure 4F). We further examined the relationship

between Rab1A staining and different clinicopathologic param-

eters and found that high Rab1A-positive staining is statistically

significantly correlated with poor survival (Figure 4G), increased

tumor invasion, and advanced tumor stages (Table S1). In

addition, high Rab1A-positive staining appears to be associated

with lymph node metastasis, but the result is not statistically

significant because of limited sample size (Table S1). Together,

these results show that Rab1A is frequently overexpressed in

CRC and that high Rab1A expression is correlated with hyper-

active mTORC1 signaling, tumor invasion and progression, and

poor prognosis.

Rab1A Is Essential for the Oncogenic Growth of
Rab1A-Overexpressing CRC Cells
In a panel of CRC cell lines, Rab1A expression is also highly

variable, ranging from high (e.g., DLD-1 and CACO2) to low

(e.g., RKO and COLO205) but is correlated with P-S6K1, not

P-AKT (Figure 5A; Figures S4A and S4B). Therefore, these cell

lines have similar characteristics as primary tumors and are

good models for studying the significance of Rab1A expression.

Surprisingly, P-S6K1 is not correlated with the expression of

Rab1B, Rheb, RagA, RagB, RagC, and RagD (Figures S4C–

S4H), suggesting that, unlike Rab1A, other known mTORC1 ac-

tivators are not responsible for hyperactive mTORC1 signaling

in CRC cells. When Rab1A is knocked down in three pairs of

CRC cell lines (DLD-1 and CACO2, KM12 and HCT116, and

RKO and COLO205, representative of high, moderate and low

Rab1A expression in cells, respectively), mTORC1 signaling is

abrogated (Figure 5B). However, there is a striking inverse

correlation between growth inhibition and Rab1A expression.
a control siRNA, and the Rab1A protein was analyzed by IF microscopy. Scale

Rheb-Raptor interaction by Duolink (red) in the presence of Rab1A or control
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Figure 4. Rab1A Is Frequently Overexpressed in CRC, Which Is Correlated with Hyperactive mTORC1 Signaling and Poor Survival

(A) IHC staining of the primary human CRC tissue microarray and adjacent noncancerous tissues. Shown are stained tumor and noncancerous tissue sections

representative of high, low, and negative Rab1A staining. Scale bar, 50 mm.

(B) Box plot graph showing a statistical analysis of Rab1A expression in CRC and adjacent noncancerous tissues.

(legend continued on next page)

Cancer Cell

Rab1 Mediates AA Signaling and Drives Oncogenesis

760 Cancer Cell 26, 754–769, November 10, 2014 ª2014 Elsevier Inc.



Cancer Cell

Rab1 Mediates AA Signaling and Drives Oncogenesis
Growth and colony formation are strongly, moderately, and

slightly inhibited, respectively, in the three cell pairs (Figures

5C–5H). Of note, Rab1A knockdown did not affect cell viability

because no significant increase in apoptotic cell death was

seen (data not shown), which is consistent with the results

with HEK293E cells (Figure 2A). Furthermore, Rab1A knock-

down attenuates mTORC1 signaling (P-S6K1 staining) and

oncogenic growth (Ki67 staining and mitotic index) of DLD-1

xenograft tumors in nude mice (Figures 5I–5K). The fact that

Rab1A knockdown preferentially inhibits CRC cells with high

Rab1A suggests that Rab1A overexpression is a key driver for

cancer growth.

Rab1A Overexpression Rather Than Activated PI3K
or MEK Is Essential for Hyperactive mTORC1 Signaling
and Oncogenic Growth of CRC Cells
Phosphatidylinositol 3-kinase (PI3K) is thought to be a major

upstream regulator of mTOR signaling. DLD1, HCT116, and

RKO each carry a heterozygote-activating mutant PIK3CA allele.

The P-S6K1 level is very low in RKO (Figure 5A), indicating that

activated PI3K is insufficient to promote mTORC1 signaling in

RKO cells. However, P-S6K is moderate or high in DLD1 and

HCT116 (Figure 5A), presenting an interesting dilemma. Is

Rab1A or PI3K responsible for elevated mTORC1 signaling and

oncogenic growth? To address this question, we analyzed the

isogenic DLD1 and HCT116 cell lines in which the PIK3CAWT

or PIK3CAmutant allele is deleted (Samuels et al., 2005). Deletion

of thePIK3CAmutant allele abolishes AKT but not S6K1 phosphor-

ylation (Figures 6A; Figure S5A), which is in contrast to Rab1A

knockdown, which abolishes mTORC1 signaling (Figure 6A).

Moreover, Rab1A knockdown, rather than PIK3CAmutant dele-

tion, attenuates CRC cell growth and colony formation (Figures

6B–6E). This result is consistent with a previous report showing

that the activated PI3K mutant is responsible for enhanced

survival but not growth of CRC cells (Samuels et al., 2005). The

Ras/MEK/ERK pathway is another major mitogenic signaling

pathway that is frequently mutated in CRC. However, MEK

inhibition had little effect on mTORC1 signaling, cell growth, or

colony formation of DLD1 and CACO2 cells that both have

Rab1A overexpression and high ERK signaling (Figures S5B–

S5D). These data show that Rab1A-AA signaling, rather than

PI3K and the MEK pathway, is crucial for hyperactive mTORC1

signaling and growth of DLD1, HCT116, and CACO2 cells.

CRC Cells with Rab1A Overexpression Are Addictive
to AA for Growth
Because Rab1A mediates AA signaling to activate mTORC1,

we investigated how AA modulates CRC oncogenic growth
(C) Scatter plot showing the Rab1A staining level in individual tumors as a ratio o

(D) Consecutive CRC tissue sections were stained for Rab1A and P-S6K1. Shown

P-S6K1 staining. Scale bar, 100 mm.

(E) Correlation plot of Rab1A and P-S6K1 IHC staining (arbitrary units). Correlation

coefficient of correlation (r), and the p value (p) are indicated.

(F) Correlation between Rab1A and P-S6K1 in cases with heterogeneous levels

black arrowhead, low Rab1A-positive/P-S6K1 staining. Scale bar, 50 mm.

(G) Kaplan-Meier survival analysis of CRC cases separated into two groups by th

rank test.

See also Table S1.

Can
by analyzing the effect of AA restriction on three pairs of CRC

cell lines with different Rab1A expression levels. There is a

striking inverse relationship between Rab1A expression and

cell growth during AA restriction. DLD1 and CACO2 cells

(high Rab1A expression) are much more sensitive to AA restric-

tion than RKO and COLO205 (low Rab1A expression), whereas

HCT116 and KM12 (modest Rab1A expression) are inter-

mediate (Figure 6F). For example, the growth of DLD1 and

CACO2 cells is reduced by nearly 50% in culture medium

supplied with 75% AA (Figure 6F). In contrast, that of RKO

and COLO205 remains normal. On the other hand, no sig-

nificant correlation is seen between Rab1A expression and

the sensitivity to serum or glucose starvation (Figures 6G

and 6H; Figure S5E). These observations suggest that CRC

cells with Rab1A overexpression are highly addictive to AA

for growth.

Rab1A Overexpression Promotes Oncogenic
Transformation and Malignant Growth
To evaluate the pathological consequence of Rab1A overex-

pression, we ectopically expressed GFP or GFP-Rab1A in NIH

3T3 cells. As observed in HEK293E cells, GFP-Rab1A stimulates

S6K1 phosphorylation compared with GFP (Figure 7A) and the

growth and colony formation of NIH 3T3 cells (Figures 7B and

7C; Figure S6A). These cells also form large foci in confluent cul-

ture and exhibit anchorage-independent growth (Figures 7D and

7E; Figure S6B). In contrast, the H-RasV12 mutant does not sig-

nificantly affect mTORC1 signaling or promote oncogenic

growth (Figures 7A–7E; Figures S6A and S6B). Of note, cells

with GFP-Rab1A display similar oncogenic growth in the

absence or presence of H-RasV12, indicating that Rab1A does

not cooperate with H-RasV12 in oncogenic transformation.

Compared with WT Rab1A, Rab1A-GTP further promotes,

whereas Rab1A-GDP and Rab1A-C2S reduce, cell growth (Fig-

ure S6C), which is consistent with their mTORC1-activating

activity.

We further evaluated the oncogenic potential of Rab1A in vivo

by injecting nude mice with NIH 3T3 cells stably expressing

GFP-Rab1A or GFP. Control cells have a low propensity to

form tiny tumors in nude mice (6 out of 12) (Figures 7F and

7G), which is consistent with previously studies (Greig et al.,

1985; Rong et al., 1994). In contrast, GFP-Rab1A cells form large

tumors with 100% efficiency (12 out of 12) (Figures 7F and 7G).

Histologically, GFP-Rab1A tumors display elevated S6K1 phos-

phorylation and malignant phenotypes (e.g., high cell density,

mitotic index, and nuclear variability) (Figure 7H). These results

indicate that Rab1A overexpression is sufficient to transform

immortalized cells.
f Rab1A staining in CRC versus paired non-cancerous tissue.

are representative cases with high, moderate, or negative Rab1A staining and

was evaluated by a nonparametric Spearman test. The number of cases (n), the

of Rab1A and P-S6K1. Red arrowhead, high Rab1A-positive/P-S6K1 staining;

e median value for Rab1A-positive staining. The p value was calculated by log
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RKO is a CRC cell line with low Rab1A expression. GFP-

Rab1A overexpression enhances S6K1 phosphorylation (Fig-

ure 7I) and promotes RKO cell growth and colony formation

(Figures 7J and 7K) and xenograft tumor growth in nude mice

(Figures 7L and 7M). RKO tumors expressing GFP-Rab1A

show elevated P-S6K1 and an elevatedmitotic index (Figure 7N).

Therefore, Rab1A overexpression can also enhance the malig-

nant growth of established tumors. To determine the depen-

dence of Rab1A-mediated transformation on Rheb and Rag

GTPases, we knocked down Rheb or RagA/RagB in RKO cells

overexpressing GFP-Rab1A. Downregulation of Rheb and

Raptor much more significantly attenuates Rab1A-stimulated

mTORC1 signaling, cell growth, and colony formation than

knockdown of RagA and RagB (Figures S6D–S6F). Therefore,

Rab1A is primarily dependent on Rheb for stimulation of

mTORC1 signaling and oncogenic growth.

Rab1A Overexpression Promotes mTORC1-Dependent
Oncogenic Growth and Determines Rapamycin
Sensitivity in CRC
Successful targeted cancer therapy hinges on hyperactivation

of the target signaling pathway (Shawver et al., 2002). Cancer

cells become dependent on, or ‘‘addicted to’’ such ‘‘growth

driver’’ pathway, rendering these cells prone to the targeted

treatment. We therefore investigated the relationship between

Rab1A overexpression and rapamycin sensitivity. Indeed,

there is a strong correlation between Rab1A expression and

growth inhibition in the panel of CRC cell lines, with the highest

rapamycin sensitivity for DLD1 and CACO2 and the lowest for

RKO and COLO205 (Figure 8A). To verify this finding in vivo,

we generated DLD1 and RKO xenograft tumors, representing

CRC with high and low Rab1A expression, respectively. After

tumors were established, the animals were treated with rapa-

mycin or a control vehicle. Rapamycin completely blocks the

growth of DLD1 tumors but has no discernible effect on RKO

tumors (Figure 8B), despite strong on-target inhibition of

mTORC1 signaling by rapamycin (Figure 8C). Moreover, rapa-

mycin abrogates the elevated mTORC1 signaling, growth,

and colony formation of NIH 3T3 and RKO cells driven by

Rab1A overexpression (Figures 8D and 8E), indicating that

the oncogenic growth by Rab1A overexpression is indeed

mediated by mTORC1. Together, these results demonstrate

that Rab1A overexpression drives mTORC1-dependent onco-

genic growth and determines drug sensitivity to mTORC1-

targeted therapy in CRC.
Figure 5. Rab1A Overexpression Is a Driver for CRC Growth

(A) A panel of human CRC cell lines were analyzed for the level of Rab1A, P-S6K1(

the level of Rab1A and the level of P-S6K1(T389) was determined (bottom panel

(B) Rab1A was knocked down in three pairs of CRC cell lines representing h

P-S6K1(T389), S6K, P-AKT(S473), and AKT was analyzed by immunoblot.

(C–E) Rab1A was knocked down in human CRC cell lines expressing high (C), m

was analyzed by sulforhodamine B (SRB) assay. Data represent means ± SD of

(F–H) Rab1A was knocked down in human CRC cell lines expressing high (F), m

determined. Data represent means ± SD of three independent experiments (colo

(I and J) Quantification results of tumor growth (I) and representative images o

knockdown on the growth of DLD-1 xenograft tumors. Data represent means ±

(K) DLD1 xenograft tumors were analyzed by hematoxylin and eosin (H&E) stain

mitotic nuclei per high power field (HPF). Scale bar, 50 mm.

See also Figure S4.

Can
DISCUSSION

Rab1 is a small GTPase previously known for its role in vesicle

transport from the ER to the Golgi. Here we describe a Rab1

function that mediates AA signaling to activate mTORC1.

Downregulation of Rab1 inhibits mTORC1 activation by AA in

yeast and humans, indicating that this Rab1 function is well

conserved. Mechanistically, AA stimulates Rab1A GTP binding

and the GTP-dependent interaction with mTORC1 in the Golgi.

Rab1 does not directly activate mTORC1 kinase activity (data

not shown). Instead, it regulates Rheb interaction with mTORC1

in the Golgi. Together, these observations show that Rab1 uses

the Golgi as an anchor to regulate mTORC1 activation by Rheb

in response to AA sufficiency.

Rab1A and Rag both interact with mTORC1 in response to AA

sufficiency and promote the colocalization of mTORC1 with

Rheb. However, they are anchored on two distinct endomem-

brane systems, with Rag on the lysosomes and Rab1A on the

Golgi. Rab1A knockdown blocks Rheb-mTORC1 interaction on

the Golgi but not the lysosomes (Figure 8F). Rab1A overexpres-

sion rescues the ability of AA to activate mTORC1 in the absence

of RagA/RagB, whereas overexpression of the hyperactive

RagBGTP/RagCGDP complex partially restores AA activation of

mTORC1 when Rab1A is knocked down. In addition, Rab1A

requires Rheb, but not Rag, to stimulate mTORC1 signaling

and oncogenic growth in CRC cells. These observations suggest

that Rab1A and Rag operate as two independent axes of AA

signaling to mTORC1. Interestingly, constitutively activated

Rag GTPases in humans, but not in yeast, partially rescue

mTORC1 activation by AA in the absence of Rab1A, suggesting

that Rag gains a bigger role in AA signaling during evolution.

Because AAs are essential for cell growth and metabolism, it

makes sense for eukaryotic cells to add redundant signaling

modules, Rab1 and Rag, to transduce AA signals, which ensures

the reliable transmission of this crucial mitogenic signal. In addi-

tion, it is possible that the two signaling branches have distinct

functions to provide finer control of the signaling process (e.g.,

engaging in external versus internal AA signals or a different

type of AA).

Small GTPases such as Ras, Rho, Rac, and Ral are known for

their roles in cancer initiation and development. Rab proteins

constitute one of the largest subfamilies of small GTPases

and are generally regarded as housekeeping proteins involved

in intracellular membrane dynamics. To date, their roles in

carcinogenesis remain obscure. Only until recently were select
T389), and P-AKT(473) by immunoblot (top panel), and the correlation between

, shown as in Figure 2E).

igh, moderate, and low Rab1A expression, as indicated, and the effect on

oderate (D), or low (E) levels of Rab1A, and the relative growth of these cells

three independent experiments. NC, control shRNA.

oderate (G), or low (H) levels of Rab1A, and their ability to form colonies was

ny number/well in 12-well plates).

f tumors dissected at the end of the study (J) showing the effect of Rab1A

SD.

ing and by IHC as indicated. The mitotic index is expressed by the number of
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Figure 6. Rab1A, Rather Than Activated PI3K or MEK, Is Crucial for mTORC1 Signaling and Oncogenic Growth in CRC

(A) DLD1 and HCT116 parental cells, cells with Rab1A knockdown, or cells with deletion of the WT or mutant (MT) PIK3CA allele were analyzed for levels of P-

S6K1, S6K1, P-AKT, and AKT.

(B–E) Parental, Rab1A knockdown, or WT or MT PIK3CA allele-deleted DLD1 (B and C) and HCT116 (D and E) cells were analyzed for cell growth (B and D) and

colony formation (C and E). Data represent means ± SD of three independent experiments.

(F–H) The growth of CRC cell lines with differential Rab1A expression was assayed in culture media containing varied amounts of AA (F), serum (G), or glucose (H)

(13, 0.753, 0.53, or 0.253 normal). Data represent means ± SD of three independent experiments.

See also Figure S5.
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members of this subfamily (e.g., Rab25) implicated in human

cancer (Cheng et al., 2004). Interestingly, Rab1A has been re-

ported previously to be highly overexpressed in human tongue

squamous cell carcinomas (Shimada et al., 2005). Here we

report that Rab1A is overexpressed in CRC. In addition, Rab1A

is overexpressed in breast and liver tumors (unpublished data).

These results indicate that aberrant Rab1A expression is a gen-

eral phenomenon in human malignancies. Although PI3K acts

upstream of mTORC1, surprisingly, activating PI3K mutations

in CRC do not promote mTORC1 signaling or oncogenic growth.

Moreover, the expression of several other mTORC1 activators

such as Rheb and Rag is not correlated with mTORC1 activity.
764 Cancer Cell 26, 754–769, November 10, 2014 ª2014 Elsevier Inc
These observations suggest that tumors selectively activate

Rab1A-dependent mTORC1 signaling through Rab1A overex-

pression to gain an oncogenic advantage.

Although Rab1A expression has been reported to be elevated

in tongue cancer, the significance of Rab1 overexpression

remained unclear. Here we show that Rab1A overexpression is

sufficient to transform immortalized fibroblasts and promote

malignant growth of established tumor cells, suggesting that

Rab1A is capable of promoting both oncogenic transforma-

tion and growth. Although Rab1A is universally required for

TORC1 signaling, only CRC cells with high Rab1A expression

are strongly dependent on Rab1A for growth, indicating that
.
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Figure 7. Rab1A Overexpression Promotes Oncogenic Transformation and Oncogenic Growth

(A) NIH 3T3 or NIH 3T3/H-RasV12 cells stably expressing GFP or GFP-Rab1A were analyzed for P-S6K1(T389).

(B) The growth of NIH 3T3 or NIH 3T3/H-RasV12 cells overexpressing Rab1A. Data represent means ± SD of three independent experiments. Shown are arbitrary

units.

(C) Representative images (top) and quantification results (bottom) of colony formation of NIH 3T3 or NIH 3T3/H-RasV12 cells overexpressing Rab1A (means ± SD

of three independent experiments). Shown is the number of colonies per well (12-well plate).

(D) Representative images of the focus formation assays of NIH 3T3 or NIH 3T3/H-RasV12 cells with or without overexpression of Rab1A. Scale bar, 100 mm.

(legend continued on next page)
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Rab1A overexpression is a driver for these CRC cells. Remark-

ably, CRC cells with Rab1A overexpression are highly depen-

dent on AA, suggesting that elevated AA signaling renders can-

cer cells addictive to AA. AA signaling is increasingly recognized

as a key mitogenic event, but its role in cancer remains relative

obscure. A recent study implicated GATOR, the GTPase-acti-

vating protein (GAP) for Rag A/RagB as potential tumor suppres-

sor (Bar-Peled et al., 2013). However, genomic mutation of

GATOR components appears to be relatively rare. In contrast,

Rab1A overexpression is widespread in human malignancies,

suggesting that aberrant AA signaling as a result of Rab1 over-

expression is a common mechanism to promote oncogenic

transformation and growth.

mTOR is a major cancer therapeutic target (Bjornsti and

Houghton, 2004; Tsang et al., 2007), with two rapalogs (temsiro-

limus and everolimus) presently used in the clinic. Although

upstream regulators of mTORC1 such as PI3K and PTEN are

commonly mutated in human tumors, such mutations have not

correlated well with clinical responses (Don and Zheng, 2011).

This is consistent with the observations that PI3K mutant is not

responsible for mTORC1 activation and that it promotes survival

rather than oncogenic growth in CRC (Samuels et al., 2005).

Our data indicate that Rab1A overexpression is a driver for

mTORC1-dependent growth, which is correlated with CRC

sensitivity to rapamycin. Further research in this area could

lead to a predictive biomarker for improving mTORC1-targeted

therapy. In addition to cancer, Rab1A is upregulated in a dilated

cardiomyopathy model, and heart-specific Rab1A transgenes

are sufficient to cause cardiac hypertrophy in a gene dosage-

dependent manner in mice (Wu et al., 2001). It is noteworthy

that rapamycin is effective to regress established cardiac

hypertrophy (McMullen et al., 2004). Our findings here provide

a mechanistic explanation for the pathological role of Rab1A in

cancer and cardiac hypertrophy.
EXPERIMENTAL PROCEDURES

Plasmids and Site-Directed Mutagenesis

The human Rab1A plasmid was a gift from Dr. Marci A. Scidmore (Rzomp

et al., 2003). The plasmids expressing HA-GST-Rheb1, HA-GST-Rap2A,

HA-GST-RagB(Q99L), (RagBGTP), and RagC(S75L) (RagCGDP) (Sancak

et al., 2008) were acquired from AddGene. To generate Rab1A-GFP and

Rab1A-HA, Rab1A cDNAs were subcloned into the EcoRV and NotI sites of

pEGFP-C1 and the SalI and NotI sites of pRK5, respectively. Raptor and

Rictor cDNAs were subcloned into the AscI and MluI sites of pCMV6-AN-

Myc. Rab1AGTP (Q70L), Rab1AGDP (S22N), and Rab1AC2S (C202, 203S) were

generated by PCR site-directed mutagenesis and confirmed by sequencing.
(E) Representative images of the anchorage-independent growth of NIH 3T3 or N

(F and G) NIH 3T3 cells stably expressing GFP or GFP-Rab1A were injected subc

every 3 days. Representative images of dissected tumors at the end of the experi

bottom Figure 7F show the number and percentage of xenograft tumors formed

(H) Representative xenograft NIH 3T3/GFP-Rab1A tumor tissue sections with ind

10 random HPFs) (400 3 ) for each tumor. Data represent the mitotic index (p <

(I) RKO cells stably expressing GFP or GFP-Rab1A were analyzed for mTORC1

(J) The growth of RKO cells overexpressing GFP or GFP-Rab1A was determined

(K) RKO cells overexpressing GFP or GFP-Rab1A were determined for colony fo

(L andM) RKO cells stably expressing GFP or GFP-Rab1A were injected subcutan

3 days. Representative images of dissected tumors at the end of the experiment (L

(N) H&E staining of RKO xenograft tumor tissues and IHC staining for Rab1A and

See also Figure S6.
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The GM130-GFP plasmid was generated by cloning GM130 cDNA into

pEGFP-C1.

Immunological Reagents, Chemicals, Cell Extracts, Western Blot,

and Immunoprecipitation

Immunological reagents were obtained from the following sources. The Tor1-

specific antibody has been described previously (Li et al., 2006). Horseradish

peroxidase-labeled secondary antibodies were from Santa-Cruz Biotech-

nology. Antibodies for mTOR (catalog no. 2983), Raptor (catalog no. 2280),

Rheb (catalog no. 4935), RagA (catalog no. 4537), RagB (catalog no. 8150),

RagC (catalog no. 5466), RagD (catalog no. 4470), Lamp1 (catalog no.

9091), Rictor, P-S6K1(T398), S6K1, P-AKT(S473), AKT, P-4E-BP1(T37/46),

4E-BP1, ERK, P-ERK(T202/Y204), a-tubulin, and the Myc-epitope were from

Cell Signaling Technology. The antibody for the HA epitope was from Bethyl

Laboratories. The antibodies for Rab1A and P-S6K1(T398) for IHC and the

Lamp2 antibody (catalog no. ab25630) were from Abcam. The antibody for

Rab1A (catalog no. 11671 for western blot and immunoprecipitation IP) and

Rab1B were from Proteintech Group. The Rab1A antibody for immunofluo-

rescence (IF) (catalog no. H00005861-M07A) was from Abnova. Protein G-

Sepharose was from GE Healthcare. EDTA-free complete protease inhibitor

cocktail and PhosSTOP were from Roche. Rapamycin and PD98059 were

from Selleck Chemicals. Cell lysis and western blot (Drenan et al., 2004; San-

cak et al., 2008) and immunoprecipitation (Sancak et al., 2008) were performed

as described previously. For determining whether Ratpor or mTOR mediates

the interaction with Rab1A, anti-Rab1A immunoprecipitates were washed

with cell lysis buffer containing 0.25% or 0.50% TX-100.

Xenograft Tumors and Drug Therapy in Athymic Nude Mice

To generate xenograft tumors, a total of 53 106 to 13 107 cells in 100 ml PBS

were injected subcutaneously into 4-week-old female BALB/c nude mice. The

tumor volume was measured using a Vernier caliper and calculated according

to the formula tumor volume (mm3) = (shorter diameter23 longer diameter) / 2.

The tumor volume was measured every other day and is presented as

means ± SD. At the endpoint, mice were sacrificed, and tumors were removed

and photographed. For drug therapy experiments, DLD-1 and RKO cells

were injected subcutaneously into nude mice to establish a xenograft model.

After tumors were established, rapamycin was administered with 5 mg/kg

rapamycin dissolved in DMSO and sterile saline by daily intraperitoneal injec-

tions for 10–12 days. Drug vehicle-treated mice received a daily injection

of identical solution without rapamycin. At least six mice were included in

each treatment group. Animal experiments were approved by Rutgers and

Shanghai Jiaotong University School of Medicine (SJTUSM) Animal Care

and Use committees.

CRC Tissue Array and Immunohistochemistry

Ninety pairs of deidentified malignant infiltrating CRC tumors with paired

noncancerous samples (cutting edge of surgical excision beyond 5 cm

from the cancer areas) were randomly obtained from July 2006 to August

2007. The CRC tissue array was prepared by Shanghai OUTDO Biotech

(Shanghai, China). The survival time was calculated from the day of operation

to the end of the follow-up or the date of death because of the recurrence and

metastasis. This study was carried out according to the provisions of the Hel-

sinki Declaration of 1975 and was reviewed and approved by the SJTUSM
IH 3T3/H-RasV12 cells with or without overexpression of Rab1A.

utaneously into the flanks of nude mice, and the tumor volume was measured

ment (F) and quantification of tumor growth (G) are shown. The numbers at the

. Data represent means ± SD.

icated staining. The mitotic index was obtained by morphological evaluation of

0.001 by Student’s t test). Scale bar, 50 mm. Inset scale bar, 10 mm.

signaling.

by SRB assay. Data represent means ± SD.

rmation. Shown are representative images.

eously into the flanks of nudemice, and the tumor volumewasmeasured every

) and quantification of tumor growth (M) are shown. Data represent means ± SD.

P-S6K1 levels. Scale bar, 50 mm.
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Figure 8. Rab1A Overexpression Promotes mTORC1-Dependent Oncogenic Growth and Determines Rapamycin Sensitivity

(A) Relative growth inhibition of CRC cells treated with 10 nM rapamycin for 48 hr.

(B) DLD-1 or RKO tumor-bearing animals were treated with rapamycin or a drug vehicle (NS) and measured for tumor growth. Shown are representative tumors

dissected at the end of treatment. Data represent means ± SD.

(legend continued on next page)
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Ethics Committee. The streptavidin-biotin complex method was used in

immunohistochemistry to detect Rab1A and P-S6K1(T389). Primary anti-

bodies against Rab1A and P-S6K1(T389) were used at a concentration of

1:400 and 1:50, respectively. To score a tumor cell as positive, both cyto-

plasmic and nuclear staining were counted. For the quantitative analysis, a

Histo score (H score) was calculated based on the staining intensity and per-

centage of stained cells using the Aperio ScanScope systems. The intensity

score was defined as follows: 0, no appreciable staining in cells; 1, weak

staining in cells comparable with stromal cells; 2, intermediate staining; 3,

strong staining. The fraction of positive cells was scored as 0%–100%. The

H score was calculated by multiplying the intensity score and the fraction

score, producing a total range of 0–300. A cutoff of 30 was used for P-

S6K1 positivity and 90 for Rab1A positivity. Tissue sections were examined

and scored separately by two independent investigators blinded to the clini-

copathologic data.

Statistical Analysis

Statistical analyses were carried out using SAS 9.13 software. The statistical

analysis of numeration data was done using Pearson’s chi-square test or

Fisher’s exact chi-square test. The comparisons of continuous data be-

tween groups were performed using Student’s t tests or Wilcoxon signed

rank test. A nonparametric Spearman correlation test was performed to

analyze the correlation between Rab1A and P-S6K1 expression levels. For

survival analysis, data collection was locked on August 16, 2011. Kaplan-

Meier plots and log rank tests were applied to determine the significance

of differences in cumulative survival. All statistical tests were conducted at

a two-sided significance level of 0.05. For additional methods, see Supple-

mental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.ccell.2014.09.008.
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(C) DLD-1 and RKO tumors treated with rapamycin or a drug vehicle were analy

(D) NIH 3T3 cells overexpressing GFP or GFP-Rab1A were treated with 10 nM ra

means ± SD of three independent experiments.

(E) RKO cells stably expressing GFP or GFP-Rab1A were treated with 10 nM rapam

means ± SD of three independent experiments.

(F) Model comparing Rab1- and Rag-mediatedmTORC1 activation by AA. Rab1 a
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