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1. Introduction and statement of the results

Our results will be about sets of real numbers and how they are re-
lated to Borel sets of real numbers, and to sets of real numbers which
are in the classical projective hierarchy. In order to facilitate our treat-
ment we shall deal with the space “w of all number theoretic functions
rather than with the space R of all real numbers. All our results will be
proved about the space “w, but they will apply equally well to the space
R since R is homeomorphic to the open unit interval (0, 1), “w is ho-
meomorphic to the set [ of all irrational numbers in (0, 1) and (0, 1)
and / differ only by the set of rationals in (0, 1), which is a countable
set. Bearing these facts in mind the reader will have no difficulty in
transfering our results about “w to the corresponding results about R.
The reader can look in {8, 3.5] for some of the details. In the light of
what was said till now, we shall take the liberty of exclusively using the
term real numabers for the members of “w.

* The research of the authors was partially supported by the National Science Foundation of
the U.S., Grants GP-29218 and GP-24352, respectively.
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«, 3, v will vary over real numbers. We shall use the standard nota-
tions £} and I1{ for the classes of the classical projective hierarchy over
“Yw.

We shall say that a set A of reals has the decomposition property if it
is the union of 8; Borel sets. If we assume the continuum hypothesis
2M0 = R, then every set of reals is of cardinality < X, and hence has,
trivially, the decomposition property. As a consequence we shall devote
our attention to the decomposition property in the set theory ZF for
those cases where 270 # 8. These will be: the case where we have also
the axiom of choice, and 280 = ¥, for some a > 1, and the case where
2%0 is not an aleph at all (in which case the axiom of choice does not
hold).

It is by now a classical result in ZF that every I} set is the union of
8, Borel sets. Since the authors know-of no place in the literature (ex-
cept [4, §3]) where this is explicitly proved, we shall outline the proof
here. Given a E%-set A, it is a projection of a planar l'l} -set B. We unifor-
mize B by the Novikoff—Kondo—Addison uniformization theorem [7,
p. 188] obtaining thereby a uniform planar I'I} -set C whose projection
is 4 (by C being uniform we mean that(x, )€ CA (x,2) € C >y =1z).
By the theorem that every H{-set is the union of 8, Borel sets ([3, p. 521,
[8, §1]) we can write C = Ua<w1Ca’ where the C,’s are Borel sets. Let
A, be the projection of C, then, since 4 is the projection of C and C =
Upcwo, Cor We get A = U, 4, Since C, CCfora< w;,alsoC, isa
uniform set. By a theorem of Lusin [3, p. 59] the projection of a uni-
form Borel set is a Borel set, hence A, is a Borel set. Since 4 = Ua<wlAa,
A has the decomposition property.

The result that every E%-set has the decomposition property cannot
be improved to hold also for H%-sets. It is shown in [5, §3] that it is
consistent with ZFC to assume that the union of ¥, Borel sets is always
a E%-set (this follows also from the axiom of determinacy (see [6,
(8.2.4)]1)), but this means that it is exactly the Zi-sets that have the de-
composition properts, and those H%-sets which are not Eﬁ-sets (such as
any universal H%-set) do not have the decomposition property. Decom-
position results for sets higher up in the projective hierarchy than the
Eé-sets are proved in Martin [4]. One of his results is that if there is a
measurable cardinal than every E}-set is the union of %, Borel sets.



§ 1. Introduction and statement of the results 3

We shall now prove in ZFC that if 270 > & , then there are sets which
do not have the decomposition property (where ZFC is ZF with the
axiom of choice).

By a theorem of Alexandroff and Hausdorff every Borel set is count-
able (i.e., finite or denumerable) or of the cardinality 280 [3, p- 29].
Therefore every set of reals which has the decomposition property is of
cardinality < 8, or 20, As a consequence, if 20 > K, then no set A
of reals such that 8, < 141< 2 R0 (where 141 denotes the cardmahty of
A) has the decomposition property. To cover also the case where 2 Mo =
R, , we prove the following theorem.

Theorem. There is a set A of cardinality 280 such that every Borel set
which is a subset of A is countable. Hence every decomposable subset
of A is of cardinality < 8|, and if 280 > R then A itself, in particular,
does not have the decomposition property.

Proof. Let 2™0 = 8, . Since there are 20 uncountable Borel sets let
{C,la < w,} be the set of all uncountable Borel sets. We define se-
quences {a, | a < w,) and (b, | a < w,) of real numbers by transfinite
induction as follows:

aa,baECa~{aﬁ,bﬁIB<a}, a, #b, .
Since C, is an uncountable Borel set its cardinality is 250 = N, and
therefore there are a, and b, as required. Let A ={a,la < w,}.Let C
be a Borel set which is a subset of 4. If C were uncountable then C = C,

for some a < w,, but this is a contradiction since b, € C, but
bygA2C. O

The sets A which were proved above not to have the decomposition
property were obtained in a very non-constructive way, since their con-
struction essentially involved a well ordering of the set of all real num-
bers. The following Theorem 1 will assert that one cannot prove in ZFC
the existence of sets which do not have the decomposition property and
which are constructive in any meaningful sense.
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Theorem 1. If ZF is consistent with the existence of an inaccessible car-
dinal then ZFC is consistent with 270 > 8| together with the statement
“every set of reals definable from a countable sequence of ordinals has
the decomposition property”.

In fact, we can replace here Mo > R by 2%0 = 8, where A is any
“reasonably’’ defined ordinal (see [9, Th. 3, Remark 1]).
Abandoning the axiom of choice we get the following theorem.

Theorem 2. If ZF is consistent with the existence of an inaccessible car-
dinal then ZF is consistent with DC (the axiom which admits countably
many dependent choices) together with “every well-ordered set of reals
is countable” and “‘every set of reals has the decomposition property.”

2. Proof of Theorem 1

We shall use here the model and methods used by Solovay in the proof
of [9, Th. 3]. There a model is constructed in which 270 hasa prescribed
value and in which every set of real numbers which is definable from a
countable sequence of ordinals is Lebesgue measurable, has the Baire
property, and is either countable or includes a perfect set. We shall show
here that in the same model also every set of reals which is definable
from a countable sequence of ordinals has the decomposition property.

From now on we shall use, without further mention, the terminology
and notation of [9].

Let M be a countable transitive model of ZFC which contains an or-
dinal £ which is inaccessible in 9, and such that 27 = 8 «+1 holdsin
n for « = . Such a model is usually obtained by taking a countable
transitive model of ZFC + GCH with £ an inaccessible cardinal of the
model. Let © be a cardinal of M with cofinality 2> £ in . Let P be
the partially ordered set appropriate to collapsing all cardinals of M
below §, i.e., f€? ¢ .iff fis a function whose domain is a finite subset
of £ X w and such that f(a, n) is an ordinal < a whenever defined. Let
P, be the partially ordered set appropriate to adding © generic subsets
of w,i.e., ?é is the set of all functions from finite subsets of ® X w
into {0, 1}. Let ? be P X ? ¢, and let G be anM -generic filter on ?.
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By [9, I, Lemma 2.3], G =G’ X G'', where G' is a generic filter on 2%
and G" is a generic filter on P, . F'=UG’ is a function on £ X w such
that for a < , {{n, F(a, n)) In < w} is a (generic) map of w on a.

F'" =UG" is a function on ® X w into {0, 1} such that {{rn € w!
F'"(a,n) =1} la < O} is a set of © (generic) subsets of w. Let AN, be
M[G]. In the model N, we have 8; =, 270 =0 [9, 11I,3.3]. We
quote now two lemmas from {9, I1I, 3.4 and 3.6].

Lemma 3. Let f: w - OR, f € N,. Then there is a £ < S and a subset A
of © such that:

(a) A €m, and card™ (A) < Q (where card™ (A) denotes the cardi-
nality of A inm).

(D) fEM[G N (PE X PY)] (Where Py is the partially ordered set
appropriate for adding generic subsets of w corresponding to the ordinals
inA, ie, ?, ={fe Pyl domain () € 4 X w}).

Lemma 4. Let f: w - OR, f € N,. Then there is an M| f]-generic filter
G, on P such that M [f1[G,] =N ,.

We shall prove first that the following Lemma 5 implies Theorem 1,
and then we shall turn to the proof of this lemma.

Lemma S. In N, every M-definable set of reals (i.e., every set of reals
of N, which is definable in ‘N, by means of constants taken from W)
is the union of ¥ Borel sets.

Proof of Theorem 1 from Lemma 5. In order to get Theorem 1 we need
the result of the lemma to hold not only for every 9-definable set of
reals but for every set of reals M -definable from a countable sequence
of ordinals in 9 , . Suppose E € X, is a set of reals definable from mem-
bers of M and from f: w - OR which is in % ,. By Lemma 4

N, =M [f11G, ], where G, is an 9 [ f]-generic filter on P. E is ob-
viously an 97 [ f]-definable set in N ,. Since N, = M[f1[G,; ] we can
substitute M [f] for M and G, for G in Lemma 5 without replacing
N,, and the lemma will assert that £ is the union of X Borel sets. In
order to justify this substitution of M [f] for 9 in the lemma we still
have to show that all the assumptions we made concerning 97, £2 and ©
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hold also for M| f];i.e., we have to show that £ is inaccessible in Mif],
that 9| f] satisfies the generalized continuum hypothesis from £ up-
wards and that ¢f(®) = Q in M [f].

By Lemma 3, f€ M[G N (P£ X ?4)] for some & and A as required
there. By [9, I, Lemma 2.3], G n (?* X ?),) is an M-generic filter
over P¥ X P/, (since P is isomorphic to (P* X 2/, )X (REX Py y);
where RE ={p € P | domain(p) N (£ X w) = P}). Since the set
P X P is of cardinality < € inM we get, by [9, ], Lemma 1.11],
that  is inaccessible in M[G N (PE X ?/4)] and therefore £ is also
inaccessible in M [ f] which is a submodel of M[G N (PE X ?4)]1. The
fact that card ™ { P% X P4 ) < & implies also, by the standard arguments,
that the cardinals of M above § are also cardinals of W[G N (P& X P01,
that for every X € WM if cf M(A) = Q then cf ™ (A) is the cofinality of A
also in M[G N (PE X P)], and that also inM[G N (PE X P)] we
have 2%« =R _,, fora > Q. Since that M S M[f] SM[G N (PEX P)]
this proves that the cardinals of 9 above 2 are also cardinals of M| f],
that if cf ™(\) =  then cf ™ () is the cofinality of X\ also in M [f] and
that also in M [ f], 2 = 8,41 for a = . This completes the proof of
Theorem 1 from Lemma 5.

We shall now show that Lemma 5 follows rather easily from the fol-
lowing Lemma 6, with the proof of which we shall be concerned for the
rest of the present section.

Lemma 6. Let U be an M-definable set of reals in N, and let s € U.
Then there is a Borel set W with a code in M[G'] such thatse W< U
(G' is the M -generic filter on P obtained from G).

Proof of Lemma 5 from Lemma 6. It follows directly from Lemma 6
that an 9n-definable set U of reals in N, is the union of Borel sets of
reals with codes in M[G']. Since G' is an M-generic filter on P we
have, by [9, I, Corollaries 3.3 and 3.4}, that the set of all reals of M[G']
is of cardinality 8, (= ) in M[G'], and hence is of cardinality <R, in
M[G]. Thus U is the union of (at most) 8, Borel sets of reals in N, .

Proof of Lemma 6. Let s € U. By Lemma 3 there is a £ < §2 and a sub-
set A €M of O such that card ™ (4) < Q and s €M [G N (PF X P )].
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Without loss of generality we can assume that £ is a successor ordinal
and that £ is greater than the order type of 4 (in the natural order of
the ordinals), since otherwise £ can be replaced by an ordinal u > £
which satisfies these requirements and which is still < §2 (since
card ™ (A4) < Q); we have sE WM [G N (PE X P S MG N (P*X PY)]
since G N (PE X P4 ) is obviously a member of M[G N (P* X P )].
Since ¢ is now a successor ordinal let £ = n+ 1. Throughout the rest of
this section we shall write Q for ¢ X 2. By [9, 1, Lemma 2.3] (and
our remarks above in the proof of Theorem 1 from Lemma 5), G N Q is
an M-generic filter on Q. Let g be any M -generic filter on Q which be-
longs to 9N, . We shall first show that there is a real r : w - 2 such that
Mlg] = M[r]. For this purpose we code g by 7 in such a way that each
one of g and r is obtainable from the other by means of absolute opera-
tions. Let F' be the union of the first components of the members of g
(€ 2t X Py )and let f= {(n, B)I F'(n, n) =B}, where n + 1 = £. Since g
is M -generic on Q, fis a mapping of wonn ([9, I, Lemma 3.2]). Leth
be the function on n defined by A(\) = the least k such that f(k) = A.
Let j be the function on 4 given as follows: If « is the AR member of 4
then j(a) = A(7). Take now r to be the characteristic function of the set

(3. 5k, 1€ w, fk) S F(D} U
{2:3#M. 5n . FREOMI N < £ n< WU
{22-3/@-5"la € 4, F"(a,n) = 1},

where F"' is the union of the second components of the members of g
(€ 2 X ?',). It is clear that r is defined by absolute operations from &
and A, which are in , and from g; therefore r €M [g]. An inspection
of our definition of r will immediately show that from r and A we can
reconstruct, by absolute operations, the generic filter g, and hence
g € MIr]; therefore Mmig] = M[r], which is what we set out to prove
at this point. By Lemma 4 there is an 9 [r]-generic filter H on ? such
that m [7] [H] = N, . Since M[g] = M [r] we have that H is also M [g]-
generic and thatm [g] [H] = N, . Since, as we mentioned above, G N Q
is M -generic over Q, we have an M [G N Q ] -generic filter H* on ? such
that N, = M[G N Q | [H*].

Since U is an M -definable set of reals there is a formula I'(x) of .2
which mentions no constants other than ones denoting members of M
such that in %,
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(nH forevery £, I'(t) — tc U,

The forcing language £' (9,1, 1.91) over any countable transitive mod-
el M* of ZF contains an individual constant ¢ for every member ¢ of M *;
let us assume that ¢ is formally defined as (7, #). Thus the constant for s
in the forcing language £’ over M[G N Q] is(7, 5, and we have there-
fore MG N Q J[H} =N, ET({7, ). '((7, s)) does not contain a sym-
bol which stands for H*, therefore, by the usual symmetry arguments
(asin [9, 1, 3.5]) we get that

(2) 0l T(K7,s)).

Since forcing is absolute, (2) is true also in M[G N Q). By [9,1, 1.7]
there is a formula ®(x, y, z) of £’ such that for every member ¢ of
MG N Q] there is a u €M such that ¢ is the unique member of
MG N Q] such thatu, G N Q, ¢ satisfy ®(x, y, z) in N,. u should be
thought of as a name, in9(, for ¢ which is in M[G N Q]. Since
SEM[IG N QY] letu € M be aname for s and thus, since (2) is true in
M[G N Q] we get that

AsV( P, GNQ, )« t=5)A 0 T'(7,sN] .
Since “whatever holds is forced”, we use (7, u) as a name for u and g as
a name for the 9M-generic filter on Q and we get that thereisapy € G NQ
such that

3) po F IsVIl(®UT,u), g, )<= t=5) A O = T(7,s0)],

where the two I symbols refer to forcing over @ and ?, respectively.
Let g be an 9 -generic filter on Q which contains p,. By (3) we have

4 Mg) EIAsVet[(P(u,g, t)<>t=5)A O I+ T'(7,5)] .

Let s(g) be the unique s which satisfies ®(u, g, s) inM [g], then by (4)
we have in M [g]

(5) 0= TE7,s(gN) .
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We have shown above that there is an 9 [g]-generic filter H such that
N, = Mgl [H], therefore, by (5), we have N, F I'(s(g)). By (1) every
such s(g) isin U, i.e.,

s€{s@)lgE€N,,gis M-genericover Q,py €Eg} S U.
We denote the set
{s(g)| g € N,, g is M-generic over Q, p, € g}

by T'; we have s € T € U. It can be shown that T is a £, -set with a code
in M[G'], which establishes Lemma 6 with W a £ -set instead of a
Borel set. From this version of Lemma 6, Lemma 5 follows as above,
except that now we have to use also the classical theorem that every
I, -set is the union of X, Borel sets. We choose however to prove direc-
tly, by a somewhat longer proof, that T is the union of ¥; Borel sets,
using the method of [9, I, 4.4], since we shall need this proof anyway
for the proof of Theorem 2.

Let Q* be the set of all members (v, z) of Q such that for some
n < w we have

dom(») =({n} v {y(n, D) y(n, k) >0Ak<nphXn,
where £=n+ 1, and
dom(z) = {the y(n, k)™ memberof Al k< n,y(n, k)< p} X n,

where p is the order type of A. n is, obviously, uniquely determined by
(v, z) and we call it the length, 1h({y, 2)), of (v, z). As easily seen, every
member of Q can be extended to a member of Q* of arbitrarily large
length and of any two compatible members of Q* the one with the
greater length, if any, is > the other, and if they are of equal length they
are equal. A

Let S be the set of all pairs (p, w) such that

(6) p € Q*and w: lh(p) » «w,



10 A. Levy, R.M. Solovay, On the decomposition of sets

(7 p is compatible with pg,

(8) if k <1lh(p),! < wand p - Vx(®(u, g, x) > x(k) =) then
w(k) =1 (i.e., the information concerning s(g) forced by p
is compatible with w).

It is clear that S € M since it is defined from Q* which is in M (since
A €M) in terms of forcing which is defined in M. It is easily seen that

(9) if {p, w), (p', w') are two pairs as in (6) and {p’, w') is an ex-
tension of (p, w) in the sense that p' 2 p and w' 2 w and if
(p', w € S then also {p, w) € S.

Let g be an 97-generic filter on Q. Since every member of Q can be
extended to a member of Q* of length 2 », and every member of Q*
of length 2 n is an extension of a member of Q* of length n, the set of
members of Q which are = than a member of Q* of length # is a set of
M dense in Q. Therefore g, being M-generic over Q, contains a member
q' such that for some g € Q* of length 1, ¢' 2 q. Since ¢' = ¢q and
q' € g also g € g. q is uniquely determined by g and » as the member of
g N Q* of length n, since any other member ¢"' of g must be compatible
with ¢ and if ¢’ is also a member of Q* of length # it is equal to ¢, as
we saw above. Therefore we can denote this g by g*n. We have, by the
definition of g*n, g N Q* ={g*nln € w}. If D is a dense subset of Q in
M then we shall see that for some n, g*n € D. Since {p € D
3geDNQ*)(p=2q)} €M is a dense set, and as g is generic there are
peEDandgqeDNQ*suchthatp 2gandp€g. Since p 2 q also g € g,
and g, being in Q *, is of the form g*n.

g*0 = (0, O, for the sake of convenience we denote the condition <0, 0}
of Q with O.

Lemma 7. In N, we have

T={te“wl(3gEN,)Ng is an M-generic filter on Q
A (Yn € w)(g*n, tTme SN} .

Proof. Let T’ be the right-hand side of the equality in Lemma 7, and let
us start by proving T € T'. Let t € T, then ¢ = s(g) for some M-generic
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filterg € N, on Q, with py € g. In order to prove ¢ € T it will suffice
to show that for every n € w, (g*n, t 1n)€E€ S. (g*n, t1n) obviously satis-
fies (6). (7) holds since both p, and g*n are members of g. To see that
(8) holds notice that if g*n I~ Vx(®(u, g, x) > x(k) = ) then, since

g¥n € g, we have M [g] F Vx(®P(u, g, x) » x(k) =1) hence t(k) =

s(g)(k) = I (s(g) being the unique x such that ®(u, g, x) holds inM [g]).
Therefore (¢ 1n)(k) =1 as required in (8).

To prove that 7' S T, let t € T' and let g € N, be an NM-generic filter
on @ such that (Vn € w)({(g*n, t1n) € S). In order to prove ¢ € T it suf-
fices to show that p, € g and that s(g) = ¢. The set of all p € Q such that
the domains of the two components of p include the respective domains
of the components of pg is obviously a dense subset of Q in M and
hence it contains some g*n. Since by our assumptions about ¢ and g and
by (7), g*n is compatible with p, and since the domains of the compo-
nents of g*n include those of p, we have g*n = p, and hence also
po € & To prove s(g) = ¢ we shall show that for every k € w, s(g)(k) =
t(k). Suppose that for some k, s(g)(k) = [, while t(k) # [. Since the set
of conditions p € Q which decide the statement vx(P(u, g, x) ~ x(k) =)
is dense, and since the statement is true in [g], there is an n > k such
that g*n I+ Vx(P(u, g, x) > x(k) = 1). Since we assumed #(k) # [ we have
(g*n, t1n) & S, since requirement (8) fails for this pair, but this contra-
dicts our assumptions about ¢ and g. 0

Forp €Q * and ¢ € “w we define ¥, (p, t) by induction on 7 as fol-
lows:

(10) ¥y (p, 1) iff (p, t11h(p)) &€ S.

(11) Fory> 0, \Ify(p, t) iff there is a dense subset D of @ in M such
that whenever p' € Q* N D and p’ 2 p then ¥, (p', t) holds for some
A< .

It is very easy to see that if § <y then ¥, (p, ) > V., (p, 1) (for
6 =0take Din (11) to be Q*).

Lemma 8. For every t € “w N N,, t € T iff for no vy does ‘Ify (0, 1) hold.
Proof. Assume 7 € T, and let g € 9, be an WM-generic filter on Q as in

Lemma 7. We have to prove that \IIV(O, t) holds for no =, so let us assu-
me, in order to get a contradiction, that \117(0, t) holds for some 7. Let ¥
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be the least ordinal such that ‘I’v (p, t) holds for some p € g N Q* (there
is such a y since 0 € g N Q *). v cannot be O since by Lemma 7,

(p, t1lh(p)) € S, p € Q* being one of the g*n’s, and thus (10) fails.
Since now y > 0 and \I/,r (p, t) holds, there is, by (11) a dense subset D
of Q inM such that if p' € Q* N D and p' 2 p then ¥, (p’, ) for some
6 < v. By what we said above about Q%*, right before Lemma 7, there is
an # such that g*n € D. Let p' = g*max(n, lh(p)). p’ is obviously in

Q* N g, and since p' extends g*n we have p’' € D. Therefore we have

W, (p', t) for some p’' € g N Q* and some & < v, contradicting the mini-
mality of v.

To prove the other direction of Lemma 8 let us first prove:

(12) For every p € Q*, if for every y we have 71 ¥ (p, 1), then for every
dense subset D of Q* in M thereisap’ € DN Q* such thatp' 2 p
and for every v we have 7 \Ify(p’, 1.

Let D be a dense subset of @Q* inM . By definition of \Il.y (p, t), since

Y, (p, 1) there is a p' € Q* N D, p’ 2 p, such that &, (p’, ¢) holds for

no A < v. Let us denote this p' with p'(7y), since it depends on v. Since

Q* N Disaset thereisap' € Q* N D such that p’ = p'(y) for an un-

bounded class of y’s. For this p' we have for every X, 7 ¥, (p’, t), which

establishes (12).

Let us now prove the other direction of Lemma 8. Let r € “w be
such that for no v, \II.Y(O, t). Using (12) we shall now construct an M-
generic filter g on Q¥ asin Lemma 7. Since §2 is inaccessible in W, the
cardinality in M of Q* € P& X P/, is < Q and also the cardinality of
its power set in M is < . Since ordinals < £ are countable in N, there
are in 9, only R, dense subsets of Q* which are in M ;let Dy, D,, ...
be a sequence in 9, of all these subsets. We shall now define in N, a
sequence {q, | n < w} of members of Q* as follows. g, = 0; by our as-
sumption we have for every v, 7 \117 (qq, t). We assume, as an induction
hypothesis, that for every v, 7 ‘va(qn, ). By (12) there is a q,, 41 24,
such that q,,,; € Q* N D, and every v, 1 W¥_(q,., ). Thus
{q, ! n < w} is an ascending sequence of members of Q* such that for
everyn,n>0->gq, €D,, and forall v, 7 ‘Ily(qn, t). Let

(13) g = {q € Q| g is compatible with every q,)} .

We shall now prove that g is as required in Lemma 7, and first we shall
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prove that g is an M -generic filter over Q. By (13)ifgegandq' <gq
then also q' € g. If ¢, ¢’ € g then the set of all members p of Q such
that the domains of two components of p include the respective domains
of the components of ¢’ and q"' is a dense subset of Q in, and is there-
fore D,, for some 0 < m < w. Since q,, € D,,, the domains of the com-
ponents of ¢,, include the respective domains of the components of ¢’
and ¢'' and since q’, q'’ are, by (13), compatible with ¢,, we have

q,q9" <q, €g. Sinceg 2 {q,!|n < w}, g has a common member with
each D, , and thus g is WM-generic. We still have to prove that for every
n< w,{(g*n, t1n) € S. As we saw above with respect to ¢’ and ¢"’, since
g*n € Q* there is a q,, such that q,, 2 g*n, and then Ih(q,, ) = n. If
(g*n, t1n) & S then by (9) also (q,, , t11h(q, )’ &€ S. By (10) we have
¥,(q,,, t), contradicting our proof above that for all # and v,

7 \Ify(q,,, ).

Lemma 9. If -y is such that
(Vp € QNI (p, ) > BN VYT, (p, )] then
Va(Yp € Q¥)[ Y, (p, 1) > BA ¥, (p, N].

Proof. The conclusion of the lemma has to be proved for § > +y since it
is obvious for 8 < v, and for 6 =y it is our assumption. We shall prove
it by induction on §, thus our induction hypothesis is

(14) (Vp € Q9)[¥;(p, ) > GAL Y, (p, )] for <3,

Assume ¥, (p, 1). Since § > v 2 0 we have, by (11) that there is a dense
subset D of QinM such that for every p' € Q* N D if p' > p then

v, (p', t) for some A < 8. By (14), if ¥, (p', ¢) for A < § then there is a
A < v such that ¥, (p', £). Thus we have now that for every p' €Q * n D
if p’ 2 p then W, (p', t) for some A < v. By (11) we have \Ify(p, 1), and
hence by the hypothesis of the lemma (I X < ¥)¥, (p, ?).

Lemma 10. For every t € “w N N, there is ay < Q such that
(VpEQ M)[A8¥,(p, 1) > (38 < V¥, (p, 1)].

Proof. Let ¢ be given. By Lemma 3 there is an ordinal { > £ and a subset
B of ©, B €M such that t €M [G N (PF X P ). As we saw in the
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proof of Theorem 1 from Lemma S, 2 is still inaccessible in

MG N (P¥ X Pp)]. Hence if we take vy to be the first uncountable
ordinal in M[G N (P X Py)] theny < Q. Since £ < ¢, £ is countable
inMIGn (P¥ X ? )] and hence also Q, and Q@ * are countable in
MG (PEXP 5)1. To show that + satisfies the requirements of the
lemma we shall prove

(15) V. (p, > 35<MY;(p, 1).

By Lemma 9, (15) implies Lemma 10. To prove (15) assume \I/.Y(p, 1),
then, by (11), there is a dense subset D of Q* in M such that
(Vp'EDNQ¥)(p' 2p-> BN Y, (P, 1) Forevery p' € D n Q*
such that p' 2> p let A(p") be the least ordinal A such that ¥, (p’, 1).

The set {A\(p)Ip'€EDNQ* A p 2 p}isaset of M[GNPF X Pyl
(being obtained from ¢, together with S, Q and M, by absolute defini-
tions) and is in that model a countable set of countable ordinals (since

Q is countable there and «y is the 8 of that model). Therefore the set
A@HIp'€eDNQ* A p = p}hasastrict bound § which is countable

in that model, i.e., § < v. By (11) we have ¥, (p, ¢), and thus (15) holds.

Lemma 11. Forall t€“w N N,, t € Tiff

(16) Ay <QUvp e Q*)¥,(p, D)~
AAL I, P, D)) A (VA< Y)Y, (0, 0] .

Proof. Assume first that (16) holds. We claim that for all A 71 ¥, (0, ¢)
and hence, by Lemma 8, f € T. Let v be as in (16). Suppose ¥, (0, #)
holds, then by the first part of (16) and Lemma 9, there is a A < vy such
that ¥, (0, 7), but this contradicts the second part of (16).

For every t € “w NN, there is, by Lemma 10, a v < 2 such that
(VpeQ*)W,(p, ) > BN NV, (p, N). [ also ¢ € T then by Lemma 8,
VAT, (0, ). (16) follows trivially from these two facts. O

We set now

(17) B, ={te“wnM,I(¥peQ*)(¥,(p, 1)~
EXNE (P, ) A (VA< Y) TP, (0,0} .
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By Lemma ll, T= U7<QB7. Since s, of Lemma 6, is a member of 7, it
is a member of some B, . We shall now prove that each B, is a Borel set
with a code inM[G'].

By a description of a set C < “w, C €N , we shall mean a pair (/, a),
where / is one of 0, 1, 2, 3, 4, 5 and such that the following recursive
conditions hold:

(a). If n € wand h:n - w then (0, k) describes the set
{fe“wnMN,lf2h}.

(b). If ¢ describes C then (1, ¢) describes “w NN, ~ C.

(c). If ¢, ¢, describe C;, C, then(2, {c;, c,}) describes C; U C,
and (3, {c;, c,}) describes C; N C,.

(d). If C and A are functions on the same domain such that for every
x in their domain A(x) describes C(x), then (4, k) describes
U, cdom(cy C(x) and (5, h) describes N, ¢ gom () C(X)-

By the history H(d) of a description d we mean the set of all functions
h as in (d) which belong to the transitive hull of d. We can define H(d)
inductively as follows:

0 ifd =<0, hy,

H(c) ifd=<(1,c¢),

H(cy) Y H(cy) ifd=<2,{c;,cy})or¢3,{c;,c, P,
{h U U chgommH(x))  ifd=(4,h)or(5,h) .

H(d) =

It can be easily shown, by induction on the description d, that for
every transitive model M’ of ZF, if H(d) €M ' thend €M '. Another
fact, which can again be shown by induction on d, is that if the domains
of all the members of H(d) are countable then d describes a Borel set.
Moreover, if the domains of all members of H(d) are w or finite ordinals
then d can be translated by means of an absolute function to a Borel
codé for the set of reals described by d, as given in [9, II, 1.1] (Here we
have to use a slightly different definition since [9] deals with Borel sets
of genuine reals, while we deal with Borel subsets of “w. All we have to
do is replace (1) of [9, II, Definition 1.1] by: (1) Ifh:n > w thena
codes {x € “wlx 2 h} if a(0) = 3n, and for all k < n a(k + 1) = h(k).)

We shall now obtain descriptions of the sets B, asin (17) and by
means of these descriptions we shall show that they are Borel sets with
codes in M [G']. We shall first define a function wy(p) in 97 such that



16 A. Levy, R M. Solovay, On the decomposition of sets

¥, (p) will be a description in %, of {x € “w NN, | ¥, (p, x)}.
Vo@) =<4, {<h, €0, hN| h:lh(p) > w A {p, h) & S})
since by (10)

{x € “wn AN ¥y, )} =Vpppy»wn pmes {* €

YN MN,ylx2h},
and
V() = (4, (D, (5, ', (4, {0, Y (PNIN< YD)

pPEQR*NDAP ZpHIDEM A Disadense
subset of Q})
since by (11)

{xe“’wﬂ%zl\l’y(p,x)} =

u U U {x&€“wna, ¥, @, x)}.
Dea pee*nD A<y
D isadense p=zp
subset of Q

By (17) the following b7 is a description of 37

b, =<3, {¢5, {p, <2, (<1, ¥ (0N, <4, {N, ¥, (WD A< AP DI
peEQ*DH, (5, {N(1, ¢, (OMIA< YD) .

The definition of by is thus an absolute definition in M (since 4, Q,
Q* €M ). It can also easily be seen from the definition of by that the
domains of all functions in H(,) are the following:

{h:lth(p) > wlp, )& S}, forpe Q*;8,for8§ < y;{DeMIDisa
dense subset of Q};{p' € Q* n DIp' 2 p}, where D is a dense subset
of QinM and p € Q*. As we have already seen, the inaccessibility of
£ in M implies that all these sets are of cardinality < £ inM, and are
therefore countable inM [G'] and in N,. Since in N, the domain of
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each function in H(b7) is countable, b7 is a Borel set in 9,. Since the
domains of these functions are already countable in M [G'] we can re-
place, inM [G'], these functions by functions on w and on finite ordi-
nals (with the same values) and thus obtain in M [G'] a description Cy
for B, such that the domains of all functions in H(c,,) are w or finite
ordinals. Since, as remarked above, such a ¢, can be translated in an ab-
solute way, to a code of the Borel set described by it, we get such a code
for B, inside M [G'], which is what we set out to prove.

3. Proof of Theorem 2

In order to prove Theorem 2 we look first at the model N = M[G]
asin [9, I, §31, where G is an M -generic filter over the set 2 of all
functions p from finite subsets of £2 X «w into £2 such that p(a, n) < «
for (a, n) € dom(p). We pass now to the submodel N; of N which con-
sists of all the members of N which are hereditarily M -definable in N
from a sequence of ordinals. What we did here is slightly different from
what was done in [9, III, §2] since there N, is taken to be the sub-
model of N consisting of all members of N which are definable in N
from a sequence of ordinals, whereas we replace “definable” by “W-
definable”, i.e., we allow also constants for members of M in the defi-
nition. Everything said in [9] about 9; holds also for our %; by the
same proof. In particular, %, is a model of ZF + DC, in N, every set
of reals is Lebesgue measurable and has the Baire property, and also
other statements hold in ; as given in [9, Theorem 1]. A proof that
every well-ordered set of reals in N is countable in 9 is given in
[2, §4] (That proof has to undergo trivial modifications owing to the
slightly different definitions which we use here).

All which we still have to prove is that in N every set U of reals is
the union of X, Borel sets. This will follow from the following lemma,
which will be proved later.

Lemma 12. Every set U of reals in W, which is M-definable in N is the
union of 8, Borel sets in N, .

If Uis a set of reals in % then U is M -definable in N from a sequence
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of ordinals, hence U is M| f]-definable inN . As we saw in the proof of
Theorem 1 from Lemma 5, M [ f] satisfies all our assumptions about
hence we can replace W by M [ f] in Lemma 12. This replacement will
not change 9, since N is, trivially, also the class of all members of N
which are hereditarily 9 [ f]-definable in A from a sequence of ordinals.
Therefore, by the conclusion of Lemma 12, U is the union of &, Borel
sets in ;.

Proof of Lemma 12. In9, U is a union of &, Borel sets as shown in the
proof of Theorem 1. In the proof of Theorem 1 we worked with the
model M[G] where G was an WM-generic filter on, P% X P, whereas
now G is an M -generic filter on P * . However, the method used there
to decompose U works equally well in our case, since the addition of
the factor ?, did not facilitate the proof at any point; it only resulted
in a slightly longer proof because there was one extra thing to take care
of. All the Borel sets of reals in N are also Borel sets of reals in 9,
{9, III, Lemma 2.5 and II, Theorem 1.4]. To show that the set Z of
Borel sets which we constructed and into which U decomposes is indeed
in N, and has cardinality 8 in 9, it is enough to prove that Z has a
well ordering in 9 . If fis a one-one map of Z on some cardinal Rt
of N, fis also a one-one map of Z on 8} inN (since R¥1 = ¥X for
every a, because of the following facts: M C N ; CN, all the cardinals
of M which are > £ are also cardinals of 9 (and, a fortiori, of N ; ) and
the cardinals of M which are < §2 are countable ordinals in N and N );
but since Z is of cardinality 8, in%, we have @ = 1, and Z is also of car-
dinality 8; in %, . Let us notice that even though we shall well-order Z
in N; we cannot well-order any set of codes for members of Z in 9,
since in N ; every well ordered set of reals is countable.

To prove that Z has a well-ordering in 9%, we have to show that Z has
a well-ordering which is M -definable in N from a sequence of ordinals.
Our construction of the sets B7 at the end of §2 depends only, except
for om itself, on the sets Q and S of M (Q* is defined directly from Q).
S was defined using the members #, Q and py of M. Q was defined in
M using the parameters £ and A, but A does not occur in our present
setup. Thus the sequence B, of length £ which we defined was defined
inN by refering to M (by means of a unary predicate) and by using the
parameters u, p,, £ which belongs to M, and therefore we write B7 as
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B%Po’uﬂ' Since N is a model of ZF, and all the B’s are members of the
power set of “«w in N one can easily see that there is an ordinal u such
that all the B, Po 4 § are obtained for u’s with set-theoretical rank < u.
Since the axiom of choice holds in M , M contains a well-ordering w of
the set R(u) of all members of W of rank < u. u can be defined as the

a™ member of w for an appropriate a. Thus we can write B p o uy 35

W, £,pg. 0,7+ WE define a well-ordering of the Borel subsets By, E0g Y

of U, with w fixed, by a lexicographic ordering of <(§, p,, a, v) (it is easy
to define a well-ordering of the members p, of Q by some lexicographic
method). This well ordering is definable in the parameter w €M .
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