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1. Introduct ion and statement of  the results 

Our results will be about  sets of  real numbers and how they are re- 

lated to Borel sets of  real numbers, and to sets o f  real numbers which 
are in the classical projective hierarchy. In order to facilitate our  treat- 
ment we shall deal with the space woo of  all number theoretic functions 

rather than with the space R of  all real numbers. All our results will be 
proved about  the space o~w, but they will apply equally well to the space 
R since R is homeomorphic  to the open unit interval (0, 1), '°6o is ho- 
meomorphic to the set I o f  all irrational numbers in (0, 1) and (0, 1) 
and ! differ only by the set of  rationals in (0, 1), which is a countable 
set. Bearing these facts in mind the reader will have no difficulty in 
transfering our results about  '°w to the corresponding results about  R. 
The reader can look in [8, 3.5] for some of  the details. In the light of  
what was said till now, we shall take the liberty of  exclusively using the 
term real numbers for the members of  '~co. 

* The research of the authors was partially supported by the National Science Foundation of 
the U.S., Grants GP-29218 and GP-24352, respectively. 
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a, 3, 3' will vary over real numbers. We shall use the standard nota- 
tions l; 1 and rl I for the classes of  the classical projective hierarchy over 
°9  (,aO. 

We shall say that a set A of  reals has the decomposition property if it 
is the union of  ~ 1 Borel sets. If  we assume the continuum hypothesis 
2~° = ~ 1 then every set of  reals is of  cardinality <_ ~ 1, and hence has, 
trivially, the decomposit ion property.  As a consequence we shall devote 
our attention to the decomposit ion property in the set theory ZF for 
those cases where 2 ~° 4: b~ 1' These will be: the case where we have also 
the axiom of choice, and 2 s0 = ~a for some a > 1, and the case where 
2 ~0 is not an aleph at all (in which case the axiom of  choice does not 
hold). 

It is by now a classical result in ZF that every I ~  set is the union of  
1 Borel sets. Since the authors k n o w o f  no place in the literature (ex- 

cept [4, §3] ) where this is explicitly proved, we shall outline the proof  
here. Given a ~ l - se t  A, it is a projection of  a planar l'I~-set B. We unifor- 
mize B by the N o v i k o f f - K o n d o - A d d i s o n  uniformization theorem [7, 
p. 188] obtaining thereby a uniform planar I l l-set  C whose projection 
is A (by C being uniform we mean that (x, y)  ~ C ^ (x, z) ~ C ~ y --- z). 

By the theorem that every l'I~-set is the union of  ~ 1 Borel sets ([3, p. 521, 
[8, § 1] ) we can write C = Ua<,olC~, where the Ca's are Borel sets. Let 
A~ be the projection of  C a then, since A is the projection of  C and C --- 

I.Ja<tJ1Ca, we ge tA = IJa<~lA a. Since C a c_C_ C f o r a  < w l ,  also C a is a 
uniform set. By a theorem of  Lusin [3, p. 59] the projection o f  a uni- 
form Borel set is a Borel set, hence A a is a Borel set. Since A = I.la<wlAa, 

A has the decomposit ion property.  
The result that every I~-se t  has the decomposit ion property cannot 

be improved to hold also for II~-sets. It is shown in [5, § 3] that it is 
consistent with ZFC to assume that the union of  S 1 Borel sets is always 
a ~ ~-set (this follows also from the axiom of determinacy (see [6, 
(8.2.4)1)), but  this means that it is exactly the Zlz-sets that have the de- 
composit ion propertg, and those ll~-sets which are not I;~-sets (such as 
any universal ll~-set) do not  have the decomposit ion property.  Decom- 
position results for sets higher up in the projective hierarchy than the 
X~-sets are proved in Martin [4].  One of  his results is that if there is a 
measurable cardinal than every ~ - s e t  is the union of  S2 Borel sets. 



§ 1. Introduction and statement o f  the results 

We shall now prove  in ZFC that  if  2 s° > 1¢ 1 then  there  are sets which 

do no t  have the decompos i t ion  p rope r ty  (where  ZFC is ZF  with the 

axiom o f  choice) .  

By a t he o r em of  A l e x a n d r o f f  and H a u s d o r f f  every  Borel  set is count-  

able (i.e., f inite or denumerab le )  or  o f  the  cardinal i ty  2 s° [3, p. 291. 

The re fo re  every  set o f  reals which has the decompos i t i on  p r o p e r t y  is o f  

cardinal i ty  <_ ~ 1 or  2 s° .  As a consequence ,  if  2 ~° > ~ 2 then  no set A 

o f  reals such that  ~2 <- IAI<  2 ~0 (where  IAI denotes  the cardinal i ty  o f  

A) has the decompos i t i on  p rope r ty .  To  cover  also the case where  2 s° = 

t¢ 2, we prove the fol lowing theorem.  

The o re m.  There is a set A o f  cardinality 2 ~° such that every Borel set 
which is a subset o f  A is countable. Hence every decomposable subset 

o f  A is o f  cardinality <_ ~ 1, and i f  2 s°  > ~ 1 then A itself, in particular, 
does not  have the decomposit ion property. 

Proof .  Le t  2 s0 = Nx" Since there  are 2 s° uncoun tab l e  Borel  sets let 

{C a I u < a~x} be the set o f  all uncoun tab le  Borel  sets. We def ine  se- 

quences  (a~ I a < wx) and (b a I a < w x) o f  real number s  by t ransf ini te  

induc t ion  as follows: 

aa ,  b a E C a ~ {ate, broil3< u } ,  aa vs ba . 

Since C a is an uncoun t ab l e  Borel set its cardinal i ty  is 2 s° = ~x  and 

the re fo re  there  are a a and b~ as required.  Le t  A = {a a I a < eoa}. Le t  C 

be a Borel  set which is a subset o f A .  I f  C were uncoun tab le  then  C = C a 

fo r  some a < w a, bu t  this is a con t rad ic t ion  Since b a ~ C a bu t  

b~ d~ A ~ C. [] 

The sets A which were proved  above no t  to  have the decompos i t i on  

p r o p e r t y  were ob ta ined  in a very  non-cons t ruc t ive  way,  since the i r  con- 

s t ruc t ion  essentially involved a well order ing o f  the set o f  all real num-  

bers. The  fo l lowing T h e o r e m  1 will assert tha t  one  canno t  prove  in ZFC 

the exis tence  o f  sets which do no t  have the decompos i t i on  p r o p e r t y  and 
which are cons t ruc t ive  in any meaningful  sense. 
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Theorem 1. I f  ZF is consistent with the existence o f  an inaccessible car- 
dinal then ZFC is consistent with 2 ~0 > ~ t together with the statement 

"every set o f  reals definable f rom a countable sequence o f  ordinals has 
the decomposit ion property '" 

In fact, we can replace here 2 ~° > N1 by 2 s° = ~A, where A is any 
"reasonably" defined ordinal (see [9, Th. 3, Remark 1 ] ). 

Abandoning the axiom of  choice we get the following theorem. 

Theorem 2. I f  ZF is consistent with the existence o f a n  inaccessible car- 
dinal then ZF is consistent with DC (the axiom which admits countably 

many dependent  choices) together with "every well-ordered set o f  reals 
is countable" and "every set o f  reals has the decomposition property. " 

2. Proof of Theorem 1 

We shall use here the model and methods used by Solovay in the proof 
of  [9, Th. 3].  There a model is constructed in which 2 ~° has a prescribed 
value and in which every set of real numbers which is definable from a 

countable sequence of  ordinals is Lebesgue measurable, has the Baire 

property, and is either countable or includes a perfect set. We shall show 

here that in the same model also every set of  reals which is definable 

from a countable sequence of ordinals has the decomposition property. 

From now on we shall use, without further mention, the terminology 

and notation of [9]. 
Let 9t~ be a countable transitive model of ZFC which contains an or- 

dinal ~2 which is inaccessible in ct/t, and such that 2 ~ = Na+l holds in 

cr/t for u >- ~ .  Such a model is usually obtained by taking a countable 
transitive model of ZFC + GCH with ~2 an inaccessible cardinal of  the 
model. Let ® be a cardinal ofgrL with cofinality >_ ~2 inC~. Let ~c~ be 
the partially ordered set appropriate to collapsing all cardinals of  91Z 
below ~2, i.e., f ~ ~ ~ i f f f  is a function whose domain is a finite subset 
of ~2 X co and such that f (a ,  n) is an ordinal < ~ whenever defined. Let 
9 ~  be the partially ordered set appropriate to adding O generic subsets 

f of ~o, i.e., ~ e  is the set of all functions from finite subsets of ® X ~o 
t into {0, 1}. Let ~ be ~ X 9 e ,  and let G be anC#t -generic filter on ~ .  
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By [9, I, Lemma 2.3], G = G' × G", where G' is a genetic filter on 9 s~ 

' F '  and G" is a generic filter on 9 0 . = IJ G' is a function on ~2 × w such 
that for a < ~ ,  {(n, F(o~, n)) In < co} is a (generic) map of  co on a. 
F "  = IJ G" is a function on 0 × co into {0, 1} such that {{n 6 ~1 

F " ( a ,  n) = 1} Is < O} is a set of  O (generic) subsets of ~ .  Let c~ 2 be 
crtt[G]. In the model 9t 2 we have b~ 1 = ~"~, 2 ~0 = 0 [9,  III, 3.3].  We 

quote now two lemmas from [9, III, 3.4 and 3.6]. 

Lemma 3. Let  f :  co ~ OR, f ~  c~ 2. Then there is a ~ < ~2 and a subset A 

o f  0 such that: 
(a) A ~ c ~ ,  and card ~ (A) < ~2 (where card ~ (A) denotes the cardi- 

nality o f  A in crlt ). 

(b) f E g g  [G n (9  ~ × 9~1 )] (where 9'4 is the partially ordered set 
appropriate for  adding generic subsets o f  w corresponding to the ordinals 

t in A, i.e., 9,~ = { f ~  9 o I domain ( f )  c A × w}). 

Lemma 4. Let  f :  6o -~ OR, f ~  Q'~2" Then there is an q/Z[f]-genericfilter 

G 1 on  9 such thatgf£ [f]  [G 1 ] =c~ 2. 

We shall prove first that the following Lemma 5 implies Theorem 1, 

and then we shall turn to the proof of  this lemma. 

Lemma 5. In c~ 2 every crlt-definable set o f  reals (i.e., every set o f  reals 

o f  g~ 2 which is definable in c~ 2 by means o f  constants taken f rom cltt) 
is the union o f  ~ 1 Borel sets. 

Proof of  Theorem 1 from Lemma 5. In order to get Theorem 1 we need 
the result of  the lemma to hold not only for every crg-definable set of 

reals but for every set of  reals qg-definable from a countable sequence 

of  ordinals in ~ 2. Suppose E E cK 2 is a set of  reals definable from mem- 
bers of  qg and from f :  co ~ OR which is in 9Z 2. By Lemma 4 

c/~ 2 =c/,~ [ f ]  [G 1 ], where G 1 is an cr/t [ f]  -genetic filter on 9 .  E is ob- 

viously an cr/~ I f  l-definable set in 9Z 2. Since Q~2 = Q ~ [ f ]  [G1 ] we can 
substitute crg I f ]  for crg and G l for G in Lemma 5 without replacing 
qZ2, and the lemma will assert that E is the union of ~ 1 Borel sets. In 
order to justify this substitution of  qg I f ]  for crg in the lemma we still 
have to show that all the assumptions we made concerning or/t, ~ and O 
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hold also for ctg [ f ]  ; i.e., we have to show that ~ is inaccessible in -Tg[f], 
that 9~ [f ]  satisfies the generalized continuum hypothesis from ~2 up- 
wards and that cf(®) >- £Z in c'tg I f ] .  

By Lemma 3 , f ~  crg[G n ( ~  × 9~4 )] for some ~ andA as required 
there. By [9, I, Lemma 2.3],  G n (9~ × :9~ ) is an cgL-generic filter 

r r over 5 ~ X ~ (since 5~ is isomorphic to (5 ~ × 5~ A ) × ( c~  X ~o~A ); 
where c ~  _-{p ~ 5~a I domain(p) n (~ x co) = gl}). Since the set 
~ × ~ is of  cardinality < ~2 inC~ we get, by [9, I, Lemma 1.1 1 ], 
that ~2 is inaccessible in cllt[G n (5~ X ~ )] and therefore ~2 is also 
inaccessible inQg [ f ]  which is a submodel of  clg[G n (5 D~ × 79~ )1. The 
fact that card ~ (5~ X 5D~ ) < ~2 implies also, by the standard arguments, 
that the cardinals of  Crg above ~2 are also cardinals of  c/g[G n (5~ X 5 ~  )],  
that for every ~ ~ cgt if cf ~ (k) >- ~2 then cf ~ (k) is the cofinality of  
also in C~[G n ( ~  × ~ )],  and ~hat also inC#t [G n (5 ~ × 5 ~  )] we 
have 2 r~ = ~ + z  f o r a  >_ ~2. Since that ctg c__ c~[ f ]  c__ qg [G n (5 ~ X 9~ )] 
this proves that the cardinals of  clg above ~2 are also cardinals of  crg[f],  
that if c f ~ ( X )  >_ gZ then cf ~ (X) is the cofinality of  X also in c~ [ f ]  and 

that also in 9g [ f ] ,  2 s~ = S~+~ for a >_ ~2. This completes the proof  of 

Theorem 1 from Lemma 5. 

We shall now show that Lemma 5 follows rather easily from the fol- 

lowing Lemma 6, with the proof  of  which we shall be concerned for the 

rest of  the present section. 

Lemma 6. L e t  U be an C~-definable set o f  reals in q~2 and  let  s E U. 

Then there is a Borel  set W wi th  a code in cr/~[G'] such that  s E W c__ U. 

(G' is the erR-generic f i l ter  on  9 ~z ob ta ined  f ro m  G). 

Proof of  Lemma 5 from Lemma 6. It follows directly from Lemma 6 
that an 9g-definable set U of reals in c~ 2 is the union of  Borel sets of  
reals with codes in C~[G'].  Since G' is an q~-generic f l t e r  on 9 n  we 
have, by [9, I, Corollaries 3.3 and 3.4] ,  that the set of  all reals of  ~ [ G ' ]  
is of  cardinality ~ 1 (= £Z) in cttt [G'] ,  and hence is of cardinality <- b~ 1 in 
crtt [G ]. Thus U is the union of  (at most) ~ l Borel sets of  reals in 9~ 2 . 

Proof of  Lemma 6. Let s ~ U. By Lemma 3 there is a ~ < ~2 and a sub- 
set A ~'Tg of  O such that card ~ (A) < ~2 and s ~cr/Z [G n (:9~ x 9~ )].  
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Without  loss o f  generali ty we can assume tha t  ~ is a successor ordinal  

and that  ~ is greater than  the order  type  o f  A (in the natural  order  o f  
the ordinals), since otherwise ~ can be replaced by an ordinal/a > 
which satisfies these requirements  and which is still < ~ (since 
card ~ (A) < I2); we have s ~ clg [ G n ( :9~ × :9~t ) ] c_ crg [ G n (:9 u × :9~ ) ] 

since G n (9 D~ x 9~  ) is obviously a member  of  crg[G n (:gu X :9~ )1. 

Since ~ is now a successor ordinal let ~ = r /+  1. Th roughou t  the rest o f  

this section we shall write Q for  :9~ x :9~t • By [9, I, L e m m a  2.31 (and 
our  remarks above in the p roo f  o f  Theorem 1 f rom L e m m a  5), G n Q is 

an crg-generic filter on  q .  Let  g be any 9It-generic filter on Q which be- 

longs to 9g 2 . We shall first show that  there is a real r : 60 ~ 2 such that  

qg[gl  = 9It[r] .  Fo r  this purpose we code g by r in such a way that  each 

one o f g  and r is obtainable f rom the o ther  by means o f  absolute opera- 

tions. Le t  F '  be the union  of  the first componen t s  o f  the members  o f g  

(c_ :9~ X :9~t ) and let f =  {(n,/3)1F'07, n) = t3}, where 7"/+ 1 = ~. Since g 
is qg-generic on Q , f i s a  mapping o f w  on rl ([9,  I, L e m m a  3.21 ). Le t  h 

be the func t ion  on r /de f ined  by h(X) = the least k such tha t f ( k )  = X. 
Let  ] be the func t ion  on A given as follows: I f  a is the ~,th member  o f  A 

then  j(a) = h(X). Take now r to  be the characteristic func t ion  o f  the set 

{3 k .  5tl k, l E w, f ( k )  <- f( l)} u 
{ 2 . 3  h(x). 5 n • 7h(F'(h'n))l ~, < ~, n < W} W 

{2 2.  3 ]('~). 5 n I a E A, F"(a ,  n) = 1 } ,  

where F "  is the un ion  of  the second componen t s  of  the members  o f g  
(~  :9 ~ × :9~ ). It  is clear that  r is def ined by absolute opera t ions  f rom 

and A, which are inC/g, and f rom g; therefore r Egt t  [g] .  An inspection 
of  our  def ini t ion of  r will immedia te ly  show that  f rom r and A we can 
reconstruct ,  by absolute operations,  the generic filter g, and hence 
g ~ ~ [ r ]  ; therefore  9?~[g] = cttt[r], which is what  we set ou t  to  prove 
at this point .  By L e m m a  4 there is an 9it [r] -generic filter H on ~ such 
that  91~ [r] [H] = ~ 2 -  Since crtt[g] = 9t~ [r] we have that  H is also Oft [g] - 

generic and tha t  c~ [g] [H] = cE 2 . Since, as we ment ioned  above, G n q 
is cOt-generic over Q, we have an 9?t [ G n Q ] -generic fi l ter H* on ~ such 
tha t  ~ 2  = crg[G n Q ] [H*] .  

Since U is an 9g-definable  set of  reals there is a formula  F(x)  o f / 2  
which ment ions  no constants  o ther  than  ones denot ing members  o f  crg 

such tha t  in 9f 2 
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(1) for every t, F( t)  ~ t ~ U ,  

The forcing l anguage /? '  ([9, I, 1.9] ) over any countable  transitive mod- 
el c ~ .  of  ZF contains an individual constant  t for every member  t of  crg*; 
let us assume that  t is formally defined as (7, t). Thus the cons tant  for s 
in the forcing l anguage /? '  over crg[G n Q ] is (7, s), and we have there- 

fore cr~[G n O ] [H] = Q~2 ~ P((7, S)). P((7, S)) does not  conta in  a sym- 

bol which stands for H*, therefore,  by the usual symmet ry  arguments  
(as in [9, I, 3.5] ) we get that  

(2) 0 It- P((7, s ) ) .  

Since forcing is absolute, (2) is true also in C~[G n Q ]. By [9, I, 1.7] 

there is a formula  qS(x, y ,  z) of  .t?' such that  for every member  t of  
cr/Z[G n Q ] there is a u ~cr~ such that  t is the unique member  of  

crg[G n Q ] such tha t  u, G n Q, t satisfy (I,(x, y ,  z) in c~ 2 . u should be 

though t  of  as a name, inQtt, for t which is in c'~[G n Q ]. Since 
s ~ crt~ [G n Q ] let u ~ crtt be a name f o r s  and thus, since (2) is true in 

[G n Q ] we get that  

3 s Vt[(qS(u, G n Q,  t) ~ t = s) A 0 I~- P((7, s))] . 

Since "whatever  holds is forced" ,  we use (7, u) as a name for  u and g as 

a name for the ct~-generic filter on Q and we get that  there is a P0 e G n Q  
such that  

(3) Po II- 3 s  Vt[(~((7 ,  u),g_ t) ~ t = s )  A 0 II-- F((7, s))] , 

where the two I~- symbols refer to forcing over Q and 9,  respectively. 

Let g be an C~-generic filter on Q which contains P0. By (3) we have 

(4) crg[g] ~ 3 s v t [ ( f f (u ,  g, t) ~ t = s) A 0 II-- P((7, S))] . 

Let  s(g) be the unique s which satisfies O(u, g, s) in eft/[g], then  by (4) 

we have in c~. [gl 

(5) 0 t~- F(<7, s(g)>). 
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We have shown above that there is an 9g [g] -generic filter H such that 
~2  = C~[g] [H] ,  therefore, by (5), we have ~2 ~ P(s(g)). By (1) every 
such s(g) is in U, i.e., 

s E  {s(g)lg E 9~2,g is c/g-generic over Q , p o  Eg}  C_ U.  

We denote the set 

{s(g)l g E Q[2, g is c/g-generic over Q, P0 E g} 

by T; we have s E T c_ U. It can be shown that T is a ~1 -set with a code 
in c~ [ G'] ,  which establishes Lemma 6 with W a I~ 1 -set instead of  a 
Borel set. From this version of /=emma 6, Lemma 5 follows as above, 
except that now we have to use also the classical theorem that every 
I21 -set is the union of  t~ 1 Borel sets. We choose however to prove direc- 
tly, by a somewhat longer proof, that T is the union of  t~ 1 Borel sets, 
ttsing the method of  [9, I, 4 .4] ,  since we shall need this p roof  anyway 
for the proof  of  Theorem 2. 

Let Q* be the set of  all members (y, z) of  Q such that for some 
n < co we have 

dom(y)  = ({r/} u {y(r~, k)l y(r/, k) > 0 A k < n}) X n ,  

where ~ = r /+ 1, and 

dom(z) = {the y(r/, k) th member  o f A  I k < n, y(r~, k) < O} X n ,  

where p is the order type o f A .  n is, obviously, uniquely determined by 
(y, z) and we call it the length, lh((y, z)), of  (y, z). As easily seen, every 
member  of  Q can be extended to a member  of  Q* of arbitrarily large 
length and of  any two compatible members of  Q* the one with the 
greater length, if any, is > the other, and if they are of  equal length they 
are equal. 

Let S be the set o f  all pairs (p, w) such that 

(6) p ~ Q* and w : lh(p) --, co, 
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(7) 
(8) 

p is compatible with P0, 
if k < lh(p), l < co and p IF- Yx(~b(u, g, x) ~ x(k) = / )  then 

w ( k )  = l (i.e., the information concerning s(g) forced by p 
is compatible with w). 

It is clear that S ~ c~ since it is defined from Q* which is in cr/t (since 

A ~ c~t ) in terms of forcing which is defined in cY/t. It is easily seen that 

(9) i f (p,  w), (p', w') are two pairs as in (6) and (p', w') is an ex- 

tension of (p, w) in the sense that p' >_ p and w' 3 w and if 

(p', w') ~ S then also (p, w) ~ S. 

Let g be an 9~-generic filter on Q. Since every member of  Q can be 

extended to a member of Q* of length >__ n, and every member of  Q* 

of length >- n is an extension of a member of Q* of  length n, the set of 

members of  Q which are >- than a member of  Q* of length n is a set of 

c/g dense in Q. Therefore g, being c?tt-generic over Q, contains a member 

q' such that for some q ~ Q* of length n, q' >- q. Since q' >- q and 

q' ~ g also q ~ g. q is uniquely determined by g and n as the member of  

g n Q* of length n, since any other member q" o f g  must be compatible 

with q and if q" is also a member of  Q* of length n it is equal to q, as 
we saw above. Therefore we can denote this q by g*n.  We have, by the 

definition o f g * n , g  n Q* = {g*nl n ~ co}. I f D  is a dense subset of  Q in 
c/lt then we shall see that for some n, g*n ~ D. Since {p ~ DI 
(3 q 6 D n Q *)(p >_ q)} ~c~  is a dense set, and asg is generic there are 

p ~ D and q G D c~ Q * such that p >- q and p ~ g. Since p >- q also q Eg, 

and q, being in Q *, is of the form g*n. 

g*0 = (0, 0); for the sake of convenience we denote the condition (0, 0) 

of Q with 0. 

I_emma 7. In ~ 2 we  have 

T = { t ~ ~ w l  (3 g ~ c~ 2 )(g is an cTg-generic f i l ter  o n Q 

^ (Vn E 6o)((g*n, t'l n) ~ S))} . 

Proof. Let T' be the fight-hand side of the equality in Lemma 7, and let 
us start by proving T c_ T'. Let t ~ T, then t = s(g) for some crtt-generic 
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filter g ~ c~ 2 on Q, with P0 E g. In order to prove t E T' it will suffice 
to show that for every n E co, (g ' n ,  tq n ) ~ S .  (g 'n ,  t'l n) obviously satis- 
fies (6). (7) holds since both P0 and g*n are members ofg .  To see that 
(8) holds notice that i fg*n IF Vx(q~(_u, g, x) ~ x(__k) = l_) then, since 
g*n E g, we have c~ [g] ~ V x ( ~ ( u ,  g, x )  -* x ( k )  = l) hence t (k)  = 

s(g)(k) = l (s(g) being the unique x such that qS(u, g, x) holds in c?g [g] ). 

Therefore (t  1 n) (k)  = l as required in (8). 
To prove that T' c_ T, let t ~ T' and let g ~ ~ 2  be an 9g-generic filter 

on Q such that (Vn E co)((g*n, tq n) E S). In order to prove t ~ T it suf- 

fices to show that P0 ~ g and that s(g) = t. The set o f  all p ~ Q such that 
the domains of  the two components  o f p  include the respective domains 

of  the components  of  P0 is obviously a dense subset of  Q in 9it and 
hence it contains some g*n. Since by our assumptions about  t and g and 

by (7), g*n is compatible with P0 and since the domains of  the compo- 

nents o fg*n  include those of  P0 we have g*n >- Po, and hence also 
P0 ~ g- To prove s(g) = t we shall show that for every k ~ co, s(g)(k)  = 

t(k) .  Suppose that for some k, s(g)(k) = l, while t (k)  4= l. Since the set 
of  conditions p ~ Q which decide the statement Vx(rb(u ,g ,  x )  -~ x ( k )  = l) 

is dense, and since the statement is true inCrg [g], there is an n > k such 

that g*n IF Vx(~(U , g, x )  -* x ( k )  = l). Since we assumed t (k)  ~ l we have 
(g 'n ,  t l  n) ~ S, since requirement (8) fails for this pair, but  this contra- 
dicts our assumptions about  t and g. [] 

F o r p  ~ Q * and t ~ ~oco we define ~.y(p, t) by induction on 3  ̀as fol- 
lows: 

(10) ~0(P ,  t) iff (p, t l  lh(p)) ~ S. 
(11) For  3' > 0, q~  (p, t) iff there is a dense subset D of  Q in 9g such 

that whenever p'  E Q* n D and p' >- p then xI%,(p', t) holds for some 
X<3`.  

It is very easy to see that i f6  < 3  ̀then ~I% (p, t) -* ~I,~(p, t) (for 

6 = 0 t a k e D  in (11) to be Q*). 

Lemma 8. For every t ~ ~oco n c~2, t ~ T i f f  for  no 3  ̀does qz (0, t) hold. 

Proof. Assume t ~ T, and let g ~ 9Z 2 be an crg-generic filter on Q as in 
Lemma 7. We have to prove that ~v (0 ,  t) holds for no 3`, so let us assu- 
me, in order to get a contradiction, that q~(0 ,  t) holds for some 3 .̀ get  3  ̀
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be the least ordinal such tha t  , I~(p,  t) holds for some p ~ g n Q* (there 
is such a 3' since 0 ~ g n q *). 3" cannot  be 0 since by L e m m a  7, 
(p, t l  lh(p)) ~ S, p ~ Q* being one of  the g*n's, and thus (10) fails. 

Since now 3' > 0 and ~ (p, t) holds, there is, by (11) a dense subset D 
of  Q inC~ such that  i f p '  E Q* n D and p'  >- p then ~ (p', t) for  some 

6 < 3'. By what  we said above about  q* ,  right before L e m m a  7, there is 
an n such that  g*n ~ D. Let  p' --- g ' m a x ( n ,  lh(p)), p'  is obviously in 

Q* n g, and since p'  extends g*n we have p' ~ D. Therefore we have 

~s  (P', t) for some p'  ~ g n Q* and some ~ < 3', contradict ing the mini- 
mali ty o f  3'. 

To prove the other  direction of  L e m m a  8 let us first prove: 

(12) For  every p E Q*, if for every 3' we have -1 ~ v  (P, t), then for every 
dense subset D of  Q* in ctt/ there is a p '  ~ D n Q* such tha t  p '  >- p 

and for every 3" we have 7 xI,  (p',  t). 
Let  D be a dense subset of  Q* in c~ .  By defini t ion of  ~ (p, t), since 

q xI, (p, t) there is a p '  ~ Q* n D, p' >- p, such that  ~ , ( p ' ,  t) holds for 

no X < 3'. Let  us denote  this p'  with p'(3'), since it depends on 3'. Since 

Q* n D is a set there is a p '  c Q* n D such that  p'  = p'(3') for an un- 

bounded  class of  3"s. For  this p'  we have for every X, 7 ~x (P ' ,  t), which 

establishes (12). 
Let  us now prove the other  direction of  L e m m a  8. Let  t E ~°co be 

such that  for no 3", ~ v ( 0 ,  t). Using (12) we shall now construct  an 9g- 

generic filter g on Q* as in L e m m a  7. Since ~2 is inaccessible in 9g,  the 

cardinali ty in ctlt of  Q* c ~ x 9~4 is < ~2 and also the cardinal i ty of  
its power  set inCrg is < ~2. Since ordinals < ~2 are countable  in c~ 2 there 

are in 9Z 2 only S0 dense subsets of  Q* which are in crg; let D 1 , D 2 . . . .  
be a sequence in 9( 2 of  all these subsets. We shall now define in c~ 2 a 

sequence {qn I n < co} of  members  of  Q* as follows, q0 = 0; by our  as- 
sumpt ion we have for every 3", -7 ~-~(q0, t). We assume, as an induct ion  

hypothesis ,  that  for every 3', q ,I'~(qn, t). By (12) there is a qn+l >- qn 
such that  qn+l E Q* (3 Dn+ 1 and every 3", -3 xlt.r(qn+l, t). Thus 
{qn I n < co} is an ascending sequence of  members  of  Q* such that  for 

every n, n > 0 --, qn E Dn, and for  all 3', -3 ~v(qn, t). Let  

(13) g = {q ~ Q I q is compatible  with every  qn} • 

We shall now prove tha t  g is as required in Lemma 7, and first we shall 
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prove that g is an c?g-generic filter over Q. By (13) if q E g and q' <- q 
then also q' ~ g. If  q', q"  ~ g then the set of  all members p of  Q such 
that the domains of  two components  of  p include the respective domains 
of  the components  o f q '  and q"  is a dense subset of  Q inCr/t, and is there- 
fore D m for some 0 < m < w. Since qm E Din,  the domains of  the com- 
ponents of  qm include the respective domains of  the components  of  q' 
and q"  and since q', q"  are, by (13), compatible with qm we have 
q', q"  <-- qm E g. Sinceg ~_ {qn I n < ~o} , g has a common member  with 
each D n , and thus g is or/t-generic. We still have to prove that for every 
n < w,  (g 'n ,  tq n) E S. As we saw above with respect to q' and q",  since 

g*n E Q* there is a qm such that qm >- g ' n ,  and then lh(qm ) >- n. If  
(g 'n ,  t l  n) ~ S then by (9) also ~qm, tq lh(qn)) ~ S. By (10) we have 
9 o  (qm, t), contradicting our proof  above that for all n and 3", 

-1 9.r(q n , t). 

Lemma 9. I f  3" is such that  

(Vp E Q*)[9 . r (p ,  t) ~ (3 ~ < 7 )gx (p ,  t)] then 

¥6(¥p  ~ Q*) [9~(p ,  t) ~ (3 X <  3")gx(p, t )] .  

Proof. The conclusion of  the lemma has to be proved for 6 > 3" since it 
is obvious for 6 < 3', and for 6 = 3' it is our assumption. We shall prove 
it by induction on 6, thus our induction hypothesis is 

(14) (VpE Q * ) [ 9 o ( p , t ) ~ ( ~ X < 3 " ) 9 x ( p , t ) ]  for / 3 < 6 .  

Assume 96 (p, t). Since 6 > 3" >_ 0 we have, by (11) that there is a dense 
subset D of  Q in ~ such that for every p' E Q * n D i fp '  >_ p then 
9~,(p', t) for some ;k < 6. By (14), if 9x (p ' ,  t) for X < 6 then there is a 

< 3' such that 9x (p ' ,  t). Thus we have now that for every p'  ~ Q * n D 
i fp '  >__p then 9x (p ' ,  t) for some X < 3'. By (11) we have 9~(p ,  t), and 
hence by the hypothesis o f  the lemma (3 X < 3")9a(p, t). 

Lemma 10. For every t E ~ w n 9~ 2 there is a 7 < ~2 such that 

(Vp ~Q *)[3 6 9 ~ ( p ,  t) ~ (3 6 < 3 ')96( p, t)] .  

Proof. Let t be given. By Lemma 3 there is an ordinal ~" > ~ and a subset 
B o f O ,  B ~gfg such that t c c ~  [G n ( ~ r  × 9 ~ ) ] .  As we saw in the 
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proof of Theorem 1 from Lemma 5, ~2 is still inaccessible in 
ctg[G n (5 ~t X ~ ) ] .  Hence if we take 3' to be the first uncountable 
ordinal in 9giG n (5~ ~" X ~ ) ) ]  then 3  ̀< ~ .  Since ~ < ~', ~ is countable 
in C~[G n (5~ X ~ ) ) ]  and hence also Q, and Q* are countable in 
9g[G n (5~ t X ~ ) ] .  To show that 3' satisfies the requirements of the 
lemma we shall prove 

(15) ~ ( p , t ) . - ,  (36  < ~,)~I,~(p,t). 

By Lemma 9, (15) implies Lemma 10. To prove (15) assume ~v(p ,  t), 
then, by ( 11 ), there is a dense subset D of Q* in 9g such that 
(Vp' 6 D n Q *)(p' >_ p ~, (3 X < 7)xI, x(p ', t)). For every p' c D n 0.* 
such that p' >_ p let X(p') be the least ordinal X such that ~x(P ' ,  t). 
The set {X(p')lp' ~ D n Q * A p' >_ p} is a set ofCtg[G n ~ t x 5~)] 
(being obtained from t, together with S, Q andeS ,  by absolute defini- 
tions) and is in that model a countable set of  countable ordinals (since 
Q is countable there and 3  ̀is the S 1 of that model). Therefore the set 
{X(p')l p' ~ D n Q * ^ p' >_ p }has a strict bound 6 which is countable 
in that model, i.e., 6 < 3 .̀ By (1 1) we have ~6 (P, t), and thus (15) holds. 

Lemma 11. For all t ~ '%o n 9Z 2, t e T i f f  

(16) (33" < ~2)[(Vp ~ Q *)0I'~(p, t) 
(3 X< 3")xI, x(p, t)) ^ (VX< 3`) 7 ~I,x(0, t)] . 

Proof. Assume first that (16) holds. We claim that for all X 7 ~x  (0, t) 
and hence, by Lemma 8, t ~ T. Let 3' be as in (16). Suppose q~x(0, t) 
holds, then by the first part of (16) and Lemma 9, there is a X < 3' such 
that q~x(0, t), but this contradicts the second part of  (16). 

For every t ~ ~o~ nC~ 2 there is, by Lemma 10, a 3' < ~ such that 
(Vp ~ Q *)(xp~ (p, t) --, (3 X< 3")q~(p, t)). If  also t E T then  by Lemma 8, 
VX 7 qJ~,(0, t). (16) follows trivially from these two facts. [] 

We set now 

(17) B~ = { t ~  '°co N c~ 2 ] (V p E Q * ) ( ~ ( p ,  t) --, 
(-q X < 3`),I~,(p, t)) A (VX < 3') 7 xI,~,(0, t)} . 
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By L e m m a  1 1, T =  Ll~<s~ By. Since s, o f  L e m m a  6, is a member  of  T, it 

is a member  o f  some By. We shall now prove tha t  each By is a Borel set 

with a code in q~ [ G ' ] .  

By a description of  a set C c ~ w ,  C ~q~ 2 we shall mean a pair (l, a), 

where l is one o f  0, 1, 2, 3, 4, 5 and such tha t  the fol lowing recursive 
condi t ions  hold: 

(a). I f n  ~ co and h :n + co then  (0, h) describes the set 
{ r E  o, co Nc~ 2 I f  D-- h}. 

(b). I f c  describes C then  (1, c) describes ~co ncE  2 ~ C. 

(c). I f  Cl, c 2 describe C1, C 2 then  (2, {Cl, c2}) describes C 1 o C 2 
and (3, {Cl, c2}) describes C 1 n C 2. 

(d). I f  C and h are funct ions  on the same domain  such tha t  for  every 
x in their  domain  h(x) describes C(x), then  (4, h) describes 

Ux~dom(C) C(x)  and (5, h) descr ibes  [lx~dom(c)C(x ). 
By the history H(d) of  a description d we mean the set of  all func t ions  

h as in (d) which belong to the transitive hull o f  d. We can define H(d) 
induct ively as follows: 

0 i f d = ( O , h ) ,  
H(c) if  d = ( 1, c ) ,  

H ( d ) =  H(Cl)UH(c2) i f d = ( 2 ,  { C l , C 2 } ) o r ( 3  , {Cl ,C2}}  , 

• {h} u I.Ix~dom(h)H(h(x)) if d = (4, h) or (5, h) . 

It  can be easily shown, by induct ion  on the description d, that  for 

every transitive model  ctg' of  ZF,  if H(d)  Ecrg ' then  d ~9?~ '. An o t h e r  

fact, which can again be shown by induc t ion  on d, is tha t  if  the domains  

o f  all the members  o f  H(d) are countable  then d describes a Borel set. 

Moreover, if the domains  of  all members  of  H(d) are co or f ini te  ordinals 
then  d can be translated by means of  an absolute funct ion  to a Borel 

code for the set o f  reals described by d, as given in [9, II, 1.1 ] (Here we 
have to use a slightly di f ferent  def ini t ion since [9] deals with Borel sets 
of  genuine reals, while we deal with Borel subsets of  ~oco. All we have to 

do is replace ( 1 ) o f  [9, II, Defini t ion 1.1 ] by: (1) I f  h : n ~ co then  a 
codes {x E wo01 x D h} if  a(0)  = 3n, and for all k < n a(k + 1) = h(k).) 

We shall now obtain descriptions o f  the sets By as in (17) and by 
means o f  these descriptions we shall show that  they  are Borel sets with 
codes in q~ [G ' ] .  We shall first define a funct ion  f ly(p) in qtt such tha t  
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ff~(p) will be a description inCgz of  {x e toO9 n ~21  qty(p, x)}. 

Co(P) = {4, { (h, (0, h))l h " lh(p) -~ co ^ (p, h) ~ S} ) 

since by ( 1 O) 

{x E tooo n cg21 qto(P, x)} = Uh:lh(p)._,w^ {p,h)~_S {X 

and 

woo C~ c~21x D h} , 

~y(s) = 14, {(D, (5, {(p', (4, {(X, ffx(p'))l  ~, < 3"}))1 

p ' E Q * n D A p ' > _ p } ) l D ~ C r / t  A D is a dense 

subset of 0 } 

since by (11) 

{X E toO90  c'~ 2 I xI-ty ( p ,  X)} = 

U U U 
D E ~  p' E Q *  n D  h < y 

D is a dense p' _> p 
subset of 0 

By (17) the following by is a description of  By 

{x ~ '%0 n~21 ~x(p ' ,  x)} . 

by = (3, {(5, {(p, (2, {( 1, ~y(p)}, (4, {(X, ~x(p))l  X <  3'})})1 

p c  Q*}),(5, {<x, (1, ~x(0)))J x<  3'})}). 

The definit ion of by is thus an absolute definition in ctg (since A, Q, 
Q* ~ crg ). It can also easily be seen from the definit ion of  by that  the 
domains of all funct ions in H(bv) are the following: 
{h:lh(p)-+ col (p, h ) ~  S}, f o r p  c Q*;  6, fo r8  <- 3';{D~C/g ID is a 
dense subset of Q};{p'  c Q * n D I p '  >_ p}, where D is a dense subset 
of Q in 9/t and p 6 Q *. As we have already seen, the inaccessibility of 
g2 in -'Tg implies that  all these sets are of cardinality < ~ inCrg, and are 
therefore countable inC/g [G'] and in ~ 2 .  Since in c~ 2 the domain  of 
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each function in H(b~) is countable, b. r is a Borel set in 9Z 2. Since the 

domains of  these functions are already countable in c~ [G'] we can re- 
place, inCUr [G'I ,  these functions by functions on co and on finite ordi- 

nals (with the same values) and thus obtain in 91~ [G'] a description c~ 

for B~ such that the domains of  all functions in H(cv)  are w or finite 

ordinals. Since, as remarked above, such a c~ can be translated in an ab- 

solute way, to a code of  the Borel set described by it, we get such a code 

for B~ inside qft [G'] ,  which is what we set out to prove. 

3. Proof of  Theorem 2 

In order to prove Theorem 2 we look first at the model 9t = 9g [G] 
as in [9, I, § 3],  where G is an 9It -generic filter over the set 9 n of all 

functions p from finite subsets of  ~2 × 6o into ~2 such that p(a, n) < a 

for Ca, n) E dom(p). We pass now to the submodel qZ 1 ofgZ which con- 
sists of all the members of  9t which are hereditarily 9g -definable in 9t 

from a sequence of ordinals. What we did here is slightly different from 

what was done in [9, III, §2] since there qZ 1 is taken to be the sub- 

model of  9Z consisting of  all members of  9t which are definable in 
from a sequence of  ordinals, whereas we replace "definable" by "or/t- 

definable", i.e., we allow also constants for members of  9It in the defi- 

nition. Everything said in [9] about 9Z 1 holds also for our °gl by the 

same proof. In particular, 9t 1 is a model of  ZF + DC, in 9t 1 every set 
of reals is Lebesgue measurable and has the Baire property, and also 

other statements hold in 9t 1 as given in [ 9, Theorem 1 ]. A proof  that 

every well-ordered set of reals in 9t 1 is countable in 9t 1 is given in 

[2, §4] (That proof has to undergo trivial modifications owing to the 

slightly different definitions which we use here). 

All which we still have to prove is that in 9t 1 every set U of  reals is 

the union of  ~ 1 Borel sets. This will follow from the following lemma, 
which will be proved later. 

Lemma 12. Every set U o f  reals in ~ 1  which is cgt-definable in 9Z is the 
union o f  ~ 1 Borel sets in 9~ 1" 

If  U is a set of reals in ~ 1 then U is C~_definable in ~ from a sequence 
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of ordinals, hence U is ctg [f]  -definable inq~. As we saw in the proof of 
Theorem 1 from Lemma 5,e#g I f ]  satisfies all our assumptions about c'~, 

hence we can replace crg by cr/t [ f]  in Lemma 12. This replacement will 

not change ~ 1 since ~ 1 is, trivially, also the class of  all members of 
which are hereditarily cgd I f ]  -definable in c~ from a sequence of  ordinals. 

Therefore, by the conclusion of Lemma 12, U is the union of  S 1 Borel 

sets in ~ 1. 

Proof of  Lemma 12. Inq~, U is a union of N 1 Borel sets as shown in the 

proof of  Theorem 1. In the proof of Theorem 1 we worked with the 
t model crg[G] where G was an ctg-generic filter o n ~  a × 5~ o ,  whereas 

now G is an qg-generic filter on 7' ~ . However, the method used there 

to decompose U works equally well in our case, since the addition of 

the factor ~ o  did not facilitate the proof at any point; it only resulted 
in a slightly longer proof because there was one extra thing to take care 
of. All the Borel sets of  reals in c~ are also Borel sets of reals in ~ 1 

[9, III, Lemma 2.5 and II, Theorem 1.4]. To show that the set Z of 

Borel sets which we constructed and into which U decomposes is indeed 

in qZ 1 and has cardinality N 1 in 9Z 1, it is enough to prove that Z has a 

well ordering in 9Z 1. If f is a one-one map of Z on some cardinal b ~  
o f ~  1 , f i s  also a one-one map of Z on b~ inQt (since N ~  = N~ for 

every 5, because of  the following facts: c-~ c 9t 1 c Qt, all the cardinals 

of ~ which are >- ~ are also cardinals o f ~  (and, afort iori ,  ofQZ 1 ) and 

the cardinals of crg which are < ~2 are countable ordinals in QZ and ~ 1 ); 

but since Z is of cardinality b~ 1 i n ~ ,  we have a = 1, and Z is also of car- 

dinality N 1 in ~ 1. Let us notice that even though we shall well-order Z 

in ~1 we cannot well-order any set of codes for members of Z in ~ 1, 

since in ~ 1 every well ordered set of  reals is countable. 
To prove that Z has a well-ordering in ~ 1 we have to show that Z has 

a well-ordering which is crg-definable in qZ from a sequence of ordinals. 
Our construction of  the sets By at the end of  § 2 depends only, except 
for qt~ itself, on the sets Q and S of GOt (Q* is defined directly from Q ). 

S was defined using the members u, Q and P0 ofqlt .  Q was defined in 
cr~ using the parameters ~ and A, but A does not occur in our present 
setup. Thus the sequence B. r of  length ~ which we defined was defined 
in Qt by refering to q/Z (by means of a unary predicate) and by using the 
parameters u, P0, ~ which belongs to egg, and therefore we write By as 
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B~,Po, u,.,/. Since 9t is a mode l  o f  ZF, and all the B's are members  of  the  

power  set o f  ~°co in 9t one  can easily see that  there is an ordinal  # such 
that  all the B~,po, u,v's are obta ined  for u's wi th  set-theoretical  rank < / a .  
Since the ax iom o f  choice  holds  in crtt, crtt contains  a well-ordering w o f  
the set R ( # )  o f  all members  o f  cttt o f  rank < / ~ .  u can be def ined as the 

a th member  o f  w for an appropriate a. Thus  we can write B~, P0, u,v as 
r • t 

B w, ~, P0, ~, ~" We define a well-ordering o f  the Borel subsets Bw, ~, Po, ~, 
o f  U, with w f ixed,  by  a lexicographic  ordering o f  (~, P0,  a,  "),) (it is easy 

to define a well-ordering o f  the members  P0 o f  Q by some lexicographic  
method) .  This well ordering is definable in the parameter w ~ c - ~ .  
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