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A dominating set in a graph G=(V,E) is a set of  vertices D such that every vertex in V - D  
is adjacent to at least one vertex in D.  A cutvertex in a connected graph G is a vertex whose 

removal results in a disconnected graph. A block in a graph G is a maximal connected subgraph 

of G having no cutvertices. A cactus is a graph in which each block is either an edge or a cycle. 

In this paper we present a linear time algorithm for finding a minimum order dominating set in 

a cactus. 

1. Introduction 

We consider undirected graphs G = (V, E) without loops or multiple edges. A 
dominating set in G is a set D of vertices such that every vertex in V - D  is adjacent 
to at least one vertex in D. The domination number of a graph G, denoted y(G), 
is the minimum number of vertices in a dominating set. 

Although the notion of dominating sets of queens on chessboards dates back to 
the 1800's [1], the modern study of domination can be attributed initially to Ore [11] 
and Berge [2]. For a survey of results on domination see Cockayne and Hedetniemi 
[6], Cockayne [4] or Laskar and Walikar [9]. 

For arbitrary graphs the problem of finding a minimum dominating set is NP- 
complete [8]. For the special case of trees, Cockayne, Goodman and Hedetniemi [5] 
presented a linear time algorithm, which was generalized by Natarajan and White 
[10] for weighted trees. 

A graph G is chordal if every cycle of length greater than 3 has a chord (i.e. an 
edge joining two non-consecutive vertices of the cycle). Booth and Johnson [3] 
established that the problem of finding minimum dominating set in chordal graphs 
is NP-complete. However, Farber [7] has shown that for strongly chordal graphs, 
a subclass of chordal graphs, the domination problem is linear. A block of a graph 
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is a maximal nonseparable (i.e. connected, nontrivial, and has no cut vertices) 
subgraph. A graph G is chordal if and only if each block of G is chordal. On the 
other hand, if each block of G is complete, then G is a block graph. Block graphs 
are strongly chordal, and hence the domination problem for block graphs is linear. 
A graph G is a cactus if each block is either an edge or a cycle. Thus, a tree is a 
cactus in which block is an edge. An endblock of a cactus is a block containing at 
most one cut vertex. 

This paper presents a linear time algorithm, called MCACTUS, for finding a 
minimum dominating set (y-set) in a cactus, which in turn uses an algorithm called 
MCYCLE for finding a y-set in a cycle. 

2. A linear algorithm for finding a y-set in a cycle 

Let V(G) be partitioned into three subsets F, B, and R, where F consists of free 
vertices, B consists of bound vertices, and R consists of required vertices. Following 
Cockayne, Goodman and Hedetniemi [5], a mixed dominating set D in G is defined 
as follows: 

(1) R C D .  
(2) If u e B, then u is either in D or adjacent to some vertex in D. 
Free vertices need not be dominated by D, but may be included in D in order to 

dominate bound vertices. We define ym(G), the mixed domination number of G, 
to be the order of a smallest mixed dominating set in G; such a set is also called 
a ym-Set of vertices of G. 

Let C be a cycle. The construction and correctness of Algorithm MCYCLE is 
based on the following theorem. The proof  of this theorem is straightforward and 
is omitted. 

Theorem 1. Let C be a cycle having free, bound and required vertex sets F, B and 
R, respectively. 

(i) Let x be a vertex o f  C which is labeled with R. Let P be the path formed by 
labeling each B-neighbor o f  x (if there are any) with F, and deleting x. Then 
Y m ( C )  = y m ( P )  + 1. 

(ii) Let x and y be adjacent vertices o f  C which are labeled with F. Let P be the 
path formed by deleting the edge (x, y ) f r o m  C. Then Ym(C)= Ym(P). 

(iii) I f  all vertices o f  C are labeled with B, and i f  x is any vertex o f  C, and C" is 
the cycle obtained f rom C by relabeling x with R, then Ym(C)= Ym(C'). 

(iv) Let the vertices o f  C be alternately labeled with B, F, B, ..., and let x be label- 
ed with F. Let C' be the cycle obtained from C by relabeling x with R. Then 

Ym(C) -- Ym(C'). 
(v) Let x, y and z be three consecutive vertices o f  C labeled with B, B, and F, 

respectively. I f  D is a fro-set with y ~ D, then D -  { y} 13 {x} is also a fro-set. 
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Algorithm MCYCLE finds a ym-Set D of a cycle or an isolated edge C, whose 
vertices are labeled with F, B, and R. This algorithm calls two subroutines; 
CREATEPATH(C,  x, P )  takes a cycle C and a vertex x (labeled with R) and relabels 
all B-neighbors of x with F, deletes x, and returns the resulting path P;  
DOMSET(T) is the Cockayne, Goodman, Hedetniemi [5] algorithm for finding a 
Ym-Set of a tree T. 

Algorithm MCYCLE 
if C is an edge 

then D ~- DOMSET(C) 
else case [C]: 

[there is a vertex x in C labeled R]; 
call CREATEPATH(C, x, P )  
D ~ DOMSET( P ) U { x} 

[there are adjacent vertices x and y labeled F] :  
P * - C - ( x , y )  

D~-DOMSET(P)  
[all vertices are labeled B]: 

label any vertex x with R 
call CREATEPATH(C, x, P )  
D,-- DOMSET(P) U {x} 

[vertices are labeled alternately F, B, F, . . .  ]: 
label any F vertex x with R 
call CREATEPATH(C, x, P )  
D'-DOMSET(P)O{x}  

[there are consecutive vertices x, y, z labeled B,B,F, resp.]: 
label vertex x with R 
call CREATEPATH(C, x, Px) 
relabel vertex x with B, label vertex z wi th  R 
call CREATEPATH(C,  z, Pz) 
if ]DOMSET(Px) I _< IDOMSET(Pz) ] 

then D 4- DOMSET(Px) U {x} [Note that x ~ Px] 
else D~-DOMSET(Pz) O {z} [Note that z ~ Pz] 
fi 

fi; 
stop 

3. A linear algorithm for finding a y-set in a cactus 

Let K be a cactus. Let C be an endblock of K and let x be the unique cutvertex 
of  K in C. Let CF and C R denote the block C with x relabeled with F and R, 
respectively. Note that Ym(CF) <-- Ym(C) <- Ym(CR) < Ym(CF) + 1. Let K~, K~, and K~ 
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denote the cactus obtained from K by deleting all vertices only in C, and relabeling 
x with F, B, or R, respectively. With this notation we state the following theorem, 
the proof of which guarantees the correctness of Algorithm MCACTUS. Again, the 
proof of this theorem is straightforward. We include only the proof of case (v); the 
other cases have similar proofs. 

Theorem 2. Let K be a cactus having free, bound and required vertices F, B, and 
R, respectively, and let x be the unique cutvertex o f  the endblock C. 

(i) I f  x is labeled with R, then Ym(K) = ym(K~) + Ym(C) - 1. 
(ii) I f  x is labeled with F and Ym(C)< Ym(CR), then Ym(K)= Ym(C)+ Ym(K~). 

(iii) I f  x is labeled with F and Ym(C)= Ym(CR), then Ym(K)= Ym(K'R) + Ym(CR) -- 1. 
(iv) I f  X is labeled with B and Ym(CF)< Ym(C), then Ym(K)= Ym(K~)+ ym(CF). 
(V) I f  X is labeled with B and ~m(CF):~m(C)<Ym(CR), then Ym(K)= 

Ym(Ktr) + ~m(C).  

(vi) I f  x is labeled with B and Ym(CF)= Ym(CR), then Ym(K) = ym(K'g)+ Ym(CR) -- 1. 

Proof. (v) Let D be a Ym-Set of K. 
Case 1: x is not in D. Then x is adjacent to some vertex y in D. 

Subcase la: y is in C. Then D N C  is a mixed dominating set of C, and D - C  
is a mixed dominating set of K,~. Thus we have 

ym(K)= [DI= I O - C [  + l O N G  I 

>- Ym(K~)+ YmfC). 

Subcase lb: y is not in C. Then since D CI C must contain a mixed dominating 
set of CF, we let A be a ym-set of CF, which is also a Ym-set of C. Let D'= 
( D - C ) U A .  Since ]D' I = ]D], we now have a ym-set D '  of K such that x is 
dominated by a vertex in D'UC,  as in the previous subcase. Thus, Ym(K)- 

ym(KD + ym(C). 
Case 2: x is in D. In this case, we know [DOC]>Ym(C).  Let A be any Ym-Set 

of C, and let D'= ( D - C ) O A  O {x}. Now ]D'] = [D I, A is a mixed dominating set 
of C, and D - A  is a mixed dominating set of K'F, so Ym(K)> y,,,(K,~)+ Ym(C). Con- 
versely, let D be a Ym-Set of  K,~, and let D '  be a ym-Set of C. DUD" is clearly a 
mixed dominating set of K, so 

y,,,(K)~ IDUD'I ~ IDI + ID'I 

= ym(K') + ym(C). []  

Algorithm MCACTUS finds a Ym-Set D of a cactus K with vertices labeled with 
F, B, or R. This algorithm calls MCYCLE as a subroutine. 
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Algorithm MCACTUS 
D,---0 
while K ¢ 0 do 

if K is a 
then 
else 

block 
D ~ D  LI MCYCLE(K); K ~ 0  

let C be an endblock, x its unique cutvertex 
Case [x]: 
[labeled R]: 

D ~ D  U MCYCLE(C) 
[labeled F]: 

U,--MCYCLE(C); V,---MCYCLE(CR) 

if IUI<IVI 
then D,-Dt.J U 
else D,---Dt3V and label x with R 

[labeled B]: 
U,--MCYCLE(Cp); V~MCYCLE(C) ;  W~MCYCLE(CR) 

if IuI < Iv1 
then D~Dt.J U 

else [IuI = IVll 
if IVI< tWI  

then D,---DU V 
label x with F 

else D,-DU W 
label x with R 

end case 
K,--(K-C)O{x} 

4. Complexity analysis 

Let a cactus K have m blocks o f  order ai, for i between 1 and m. K has p ver- 
tices, where p =  1 + ~iml(ai - 1). Since Algorithm DOMSET is linear, it is im- 
mediate that Algorithm MCYCLE is linear. Algorithm MCACTUS calls MCYCLE 
at most three times per block, so Algorithm MCACTUS is also linear. This 
algorithm has been implemented in FORTRAN in [12]. One of several different data 
structures that can be used to represent a cactus is illustrated in Fig. 1. By pro- 
ceeding from right to left across the 2 x N array CACTUS we can easily recognize 
endblocks (e.g. 18-17-16; 16-4; 15-11; 14-13-9; 12-11-10-2; 9-3; 8-7-5; and 
6-5-4-3-2-1).  This representation can easily be achieved in linear time from a list 
of the edges of G using a standard O(e) algorithm for finding the 2-connected com- 
ponents of a graph (cf. Algorithm 5.3, p. 185 in the textbook The Design and 
Analysis o f  Computer Algorithms by Aho, Hopcroft, and Ullman, Addison- 
Wesley, 1974). Since e is linear in p for cacti, Algorithm MCACTUS is O(p). 
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Fig. 1. A cactus and its representation. 
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