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Abstract

We �rst generalize the Schur congruence for Legendre polynomials to sequences of poly-
nomials that we call ‘d-Carlitz’. This notion is more general than a similar notion introduced
by Carlitz. Then, we study automaticity properties of double sequences generated by these se-
quences of polynomials, thus generalizing previous results on the double sequences produced by
one-dimensional linear cellular automata. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical Schur congruence for Legendre polynomials modulo an odd prime p
(see [38]) reads: for all n¿0 and all v ∈ [0; p− 1],

Ppn+v ≡ Pn(Xp)Pv(X )modp:
This property is similar to the well-known theorem of Lucas for the binomial
coe�cients modulo a prime number. We recall Lucas property: for p prime, u and
v in [0; p− 1], and any integers m; n¿0,(

pm+ u
pn+ v

)
≡
(m
n

)(u
v

)
modp:

This property can also be written as

(1 + X )pn+v ≡ (1 + Xp)n(1 + X )vmodp:
A similar congruence holds for the sequence of powers of a given polynomial modulo
p. For the case v=0 it was called the p-Fermat property in [5,4], and was one of the
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tools we used to study automaticity properties of two-dimensional sequences generated
by one-dimensional linear cellular automata.
This congruence property has been generalized by Carlitz [10], and the de�nition

we give below of what we call ‘d-Carlitz sequences of polynomials’ is a general-
ization of his notion. (The de�nition of Carlitz essentially corresponds to what we
call ‘simple d-Carlitz sequences of polynomials’.) If, for all prime numbers p, a se-
quence of polynomials is p-Carlitz when reduced modulo p, then, the coe�cients of
these polynomials form a double sequence, that has under some conditions the Lucas
property: one or two-dimensional sequences having the Lucas property have been in-
troduced by McIntosh [29]. The simplest example is precisely given by the sequence
of binomial coe�cients (

(m
n

)
)m;n¿0.

In what follows we investigate more closely the notion of d-Carlitz sequences of
polynomials. In particular we study classical polynomials such as Legendre, Gegen-
bauer, Jacobi, Chebishev, Hermite, and modi�ed Laguerre polynomials. We recall
known results for simple d-Carlitz sequences of polynomials. We also prove results
for the more general notion of d-Carlitz sequences of polynomials.
We furthermore address the question whether the double sequence generated by a

d-Carlitz sequence of polynomials is automatic, i.e., is generated by a �nite automaton.
(For de�nitions and properties of automatic sequences, see [15,11,12,36,37].) Our tools
are a ‘slice lemma’ (generalizing the one we gave in [4]), and Cobham’s theorem [13]
on sequences that are both a and b-automatic. Our results are related to, but di�erent
from those in [27,5,4]. In particular, a sequence of polynomials (Pn(X ))n¿0 that has
the p-Carlitz property can be seen as a generalization of the time evolution of a
one-dimensional linear cellular automaton over Z=pZ: this case namely corresponds to
Pn(X ) = Rn(X ) for some �xed polynomial R(X ).
Are these notions closely related to combinatorial properties of orthogonal poly-

nomials, or to the hypergeometric function? We think the answer to this question
is no, and we give other sequences of polynomials (Meixner, Charlier, continuous
dual Hahn) that are not simple d-Carlitz sequences of polynomials, although they
have a combinatorial background and are related to the hypergeometric function. For
these sequences of polynomials we also give automaticity and non-automaticity
results.
Note that some of our results have been announced in the survey [3].

2. d -Carlitz sequences of polynomials: de�nition and �rst properties

We give here a de�nition, the second part of which is essentially the de�nition
given by Carlitz in [9]. Our de�nition is thus a generalization of Carlitz. We then
make some observations on the properties of these sequences of polynomials. Most are
straightforward. We also state a proposition (Proposition 2.2) that will prove useful in
what follows.



J.-P. Allouche, G. Skordev /Discrete Mathematics 214 (2000) 21–49 23

De�nition 2.1. Let R be a �nite commutative ring with unit. Let d be an integer ¿2.
A sequence of polynomials (Pn(X ))n¿0 with coe�cients in R is called a d-Carlitz
sequence of polynomials if there exists a �nite set of sequences of polynomials
{(P(k)n (X ))n¿0; 16k6r} such that
∗ the sequence (P(1)n (X ))n¿0 is equal to the sequence (Pn(X ))n¿0,
∗ ∀k ∈ [1; r], ∃‘ = ‘(k) ∈ [1; r], ∀(k; j) ∈ [1; r] × [0; d − 1], ∃m = m(k; j) ∈ [1; r],
such that

(#) ∀k ∈ [1; r]; ∀n¿ 0; ∀j ∈ [0; d− 1]; P(k)dn+j(X ) = P
(‘(k))
n (X d)P(m(k; j))j (X ):

If the number r above is equal to 1, i.e., if the sequence (Pn(X ))n¿0 satis�es

∀n¿ 0; ∀j ∈ [0; d− 1]; Pdn+j(X ) = Pn(X d)Pj(X );

then, the sequence (Pn(X ))n¿0 is called a simple d-Carlitz sequence of polynomials.

Observations. 1. Let (Pn(X ))n¿0 be a simple d-Carlitz sequence of polynomials. If
n=

∑s
j=0 njd

j, with 06nj6d− 1 and ns 6= 0, is the base-d expansion of the integer
n, then

Pn(X ) =
s∏
j=0

Pnj (X
dj):

In particular, this sequence is uniquely determined by the d polynomials P0(X ); : : : ;
Pd−1(X ). Conversely, any d polynomials P0(X ); : : : ; Pd−1(X ) determine a unique sim-
ple d-Carlitz sequence of polynomials.
Note that, to avoid problems with possible leading zeroes in the base-d expansion

of n, we only consider the shortest expansion of n. We could also have restricted
ourselves to sequences of polynomials such that P0(X ) = 1. In this case the condition
for simple d-Carlitz sequences reads: ∀j ∈ [0; d−1], ∀n¿0, Pdn+j(X )=Pn(X d)Pj(X ).
For the general de�nition, the examples below furthermore satisfy: P(k)0 (X )=1 for each
k ∈ [1; r], and m(k; j) = k for all (k; j). Hence, these polynomials satisfy Equality (#)
with n¿0 instead of n¿ 0 (and k instead of m(k; j)).
If (Pn(X ))n¿0 is a d-Carlitz sequence of polynomials, then, there exists a sequence

of positive integers (mk)k ∈ [1; r]N such that, if n=
∑s

j=0 njd
j, with 06nj6d− 1 and

ns 6= 0, then

Pn(X ) =
s∏
j=0

P(mj)nj (X d
j
):

2. We recall that a polynomial P(X ) is called d-Fermat if P(X d)=P(X )d, (see [5]).
Then, it is easy to check that the sequence (P(X )n)n¿0 is a simple d-Carlitz sequence
of polynomials if and only if the polynomial P(X ) is d-Fermat. In particular, if q=pa

is a nonzero power of a prime number, and if R=Fq, the Galois �eld with q elements,
then, for any polynomial P(X ) ∈ Fq[X ], the sequence (P(X )n)n¿0 is a simple q-Carlitz
sequence of polynomials. Note that, for any ring R, and any polynomial P ∈ R[X ], the



24 J.-P. Allouche, G. Skordev /Discrete Mathematics 214 (2000) 21–49

sequence (P(X )n)n¿0 is the orbit of a linear cellular automaton with initial condition
equal to 1, see [5,4] and the references quoted there. We also say that a sequence of
polynomials (Pn(X ))n¿0 is a generalized d-Fermat sequence of polynomials if ∀n¿ 0,
Pnd(X )=Pn(X d). Of course a simple d-Carlitz sequence of polynomials is a generalized
d-Fermat sequence of polynomials. Note that this notion resembles (but is di�erent
from) the notion of Honda sequence of polynomials: a sequence (Hn(X ))n¿0 of p-adic
polynomials, i.e., of polynomials with coe�cients in Zp, is called a Honda sequence
(see [6,43] for example) if for all n¿0, Hnp(X ) ≡ Hn(Xp)mod npZp[X ]. (For related
works see [19,32–34,40–42].)
3. We recall that a sequence (un)n¿0 of elements in a ring R is called strongly

d-multiplicative (see for example [30]) if

∀n¿0; ∀j ∈ [0; d− 1]; udn+j = unuj:

It is easy to see that if a sequence of polynomials (Pn(X ))n¿0 is a simple d-Carlitz
sequence of polynomials, such that P0(X ) = 1, then, the sequences (Pn(0))n¿0 and
(Pn(1))n¿0 (in RN) are strongly d-multiplicative.
4. If (Pn(X ))n¿0 is a d-Carlitz sequence of polynomials, then, there exists a constant

C¿ 0 such that, for every n, the inequality degPn(X )6Cn holds.
De�ne indeed

C′ = max
16k6r

max
06i6d−1

degP(k)i (X ):

If n=
∑s

j=0 njd
j, with 06nj6d− 1 and ns 6= 0, then, from Observation 1 above,

degPn(X )6C′
s∑
j=0

dj = C′d
s+1 − 1
d− 1 6C′ds+16C′dn= Cn;

where C = C′d.
5. A (simple) d-Carlitz sequence of polynomials is also a (simple) dk -Carlitz

sequence of polynomials, for every k¿1.
6. If (Pn(X ))n¿0 and (Qn(X ))n¿0 are two simple d-Carlitz sequences of polynomials,

their product (Pn(X )Qn(X ))n¿0 is also a simple d-Carlitz sequence of polynomials.
7. The notion of (simple) d-Carlitz sequence of polynomials can be easily extended

to polynomials in several variables. A straightforward property reads: if (Pn(X ))n¿0
and (Qn(Y ))n¿0 are two (simple) d-Carlitz sequences of polynomials, then, the product
(Pn(X )Qn(Y ))n¿0 is a (simple) d-Carlitz sequence of polynomials of two variables.
8. Let (Pn(X ))n¿0 be a (simple) d-Carlitz sequence of polynomials with coe�cients

in a commutative ring R with a 1. Let r(X ) ∈ R[X ] be a polynomial with the d-Fermat
property. Then, the sequence of polynomials (Qn(X ))n¿0 de�ned by

∀n¿0; Qn(X ) = Pn(r(X ))

is a (simple) d-Carlitz sequence of polynomials.
9. Several generalizations of the notion of d-Carlitz sequences of polynomials are

possible. We restrict ourselves to generalizations of simple d-Carlitz sequences of poly-
nomials. Let R1 be a (D; d)-semiring in the sense of Allouche et al. [2], let R2 be a
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commutative ring with 1, and let � : R2 → R2 be a homomorphism. A map f : R1 → R2
is called a ((D; d); �)-Carlitz map if, for all u ∈ D and all r ∈ R1\{0},

f(rd+ u) = �(f(r))f(u):

Then, for r = rsds + · · ·+ r1d+ r0, rj ∈ D for j = 0; 1; : : : ; s, and rs 6= 0,

f(r) = �s(f(rs)) : : : �(f(r1))f(r0):

Here are some examples.

(a) Let R1 =N, d ∈ N, d¿2, D= {0; 1; : : : ; d− 1}, and let � be the identity map. A
sequence (un)n¿0 ∈ RN2 is strongly d-multiplicative if and only if the map f : N→ R2
de�ned by f(n) = un is a ((D; d); �)-Carlitz map.
(b) Let R1 =N, d ∈ N, d¿2, and D={0; 1; : : : ; d−1}. Let R be a �nite commutative
ring with 1, let R2 = R[X ], let � : R2 → R2 be de�ned by �(r(X )) = r(X d), for
every r(X ) ∈ R2. Let (rn(X ))n¿0 be a sequence of elements in R2. De�ne the function
f : N→ R[X ] by f(n) = rn(X ). Then, the sequence (rn(X ))n¿0 is a simple d-Carlitz
sequence of polynomials if and only if the map f is a ((D; d); �)-Carlitz map.
(c) Take R1 = N × N, d ∈ N, d¿2, D = {0; 1; : : : ; d − 1}, D = D × D, and d =
(d; d). Then, R1 is a (D; d)-ring. Let R be a �nite commutative ring with 1, let R2 =
R[X ], let � : R2 → R2 be de�ned by �(r(X )) = r(X d), for every r(X ) ∈ R2. Then,
a sequence (rm;n(X ))m;n¿0) of polynomials in R2 is a simple d-Carlitz sequence of
polynomials if and only if the map f : N×N→ R2, de�ned by f(m; n) = rm;n(X ), is
a ((D; d); �)-Carlitz map, i.e., for all u; v ∈ D, for all m; n ∈ N

rmd+u;nd+v(X ) = rm;n(X d)ru;v(X ):

(d) In b and c above, one can replace R[X ] by R[[X ]], or by R[X1; : : : ; Xt], or by
R[[X1; : : : ; Xt]].
(e) If R2 has characteristic p, a natural notion is the notion of ((D;p); �)-Carlitz map,
where � : R2 → R2 is given by �(a) = ap, for every a in R2.

We end this section with a proposition giving a characterization of the simple
d-Carlitz sequences of polynomials.

Proposition 2.2. Let d be an integer ¿2 Let (Pn(X ))n¿0 be a sequence of polyno-
mials over the ring R; such that P0(X )=1. De�ne the generating function F(X; Y ) ∈
R[[X; Y ]] by

F(X; Y ) =
∑
n¿0

Pn(X )Y n:

Then; the sequence (Pn(X ))n¿0 is a simple d-Carlitz sequence of polynomials if and
only if there exists a polynomial A(X; Y ) in R[X; Y ]; such that degY A(X; Y )6d − 1
and F(X; Y ) = A(X; Y )F(X d; Y d).
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Proof. If (Pn(X ))n¿0 is a simple d-Carlitz sequence of polynomials, then

F(X; Y ) =
∑
n¿0

Pn(X )Y n

=
d−1∑
j=0

∑
n¿0

Pdn+j(X )Ydn+j

=
d−1∑
j=0

∑
n¿1

Pdn+j(X )Ydn+j +
d−1∑
j=0

Pj(X )Y j

=
d−1∑
j=0

Y j
∑
n¿1

Pn(X d)Pj(X )Ydn +
d−1∑
j=0

Pj(X )Y j

=


d−1∑
j=0

Pj(X )Y j


F(X d; Y d):

Hence, de�ning A(X; Y ) =
∑d−1

j=0 Pj(X )Y
j, we have F(X; Y ) = A(X; Y )F(X d; Y d).

Suppose now that

F(X; Y ) = A(X; Y )F(X d; Y d);

where A(X; Y ) is a polynomial in X and Y with partial degree in Y smaller than or
equal to d− 1. Then, there exist d polynomials A0(X ); A2(X ); : : : ; Ad−1(X ) such that

A(X; Y ) =
d−1∑
j=0

Aj(X )Y j:

Hence we have

∑
n¿0

Pn(X )Y n =


d−1∑
j=0

Aj(X )Y j


(∑

n¿0

Pn(X d)Ydn
)

=
d−1∑
j=0

∑
n¿0

Aj(X )Pn(X d)Ydn+j:

But

∑
n¿0

Pn(X )Y n =
d−1∑
j=0

∑
n¿0

Pdn+j(X )Ydn+j:

Hence, comparing the coe�cients of Y j for j ∈ [0; d− 1], we obtain
∀j ∈ [0; d− 1]; Pj(X ) = Aj(X ):

Then, comparing the coe�cients of Ydn+j, we have, for every n¿ 0 and every
j ∈ [0; d− 1],

Pdn+j(X ) = Aj(X )Pn(X d):
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Hence, we �nally have

∀n¿ 0; ∀j ∈ [0; d− 1]; Pdn+j(X ) = Pj(X )Pn(X d)

and the sequence (Pn(X ))n¿0 is a simple d-Carlitz sequence of polynomials.

Remark 2.3. A similar assertion holds if we replace R[X ] by R[[X ]] both for Pn(X )
and for the Aj(X )’s. The sequence (Pn(X ))n¿0 (with P0(X )= 1) is a simple d-Carlitz
sequence of power series if and only if its generating function F(X; Y ) satis�es the
equation above.

3. Simple p-Carlitz sequences of polynomials and sequences having the Lucas
property

In [29] McIntosh studies sequences that behave like the binomial coe�cients modulo
prime numbers: a double sequence (a(m; n))m;n¿0 with values in Z is said to have the
(double) Lucas property if a(m; n)=0 for m¿n, if a(0; 0)=1, and if, for each prime p,

a(m; n) ≡
max(s; t)∏
i=0

a(mi; ni)modp;

where m =
∑s

i=0 mip
i, with 06mi6p − 1 and ms 6= 0, and n =

∑t
i=0 nip

i, with
06ni6p− 1 and nt 6= 0. As usual a(0; 0) = 1, since this is an empty product.
With a sequence (a(m; n))m;n¿0 such that, for any �xed n, we have a(m; n)= 0 if m

is large enough, we associate a sequence of polynomials (Pn(X ))n¿0 de�ned by

Pn(X ) =
∑
m¿0

a(m; n)Xm:

We prove in this paragraph that, for every prime p, the reduction modulo p of a
sequence of polynomials associated to a double sequence having the double Lucas
property is a simple p-Carlitz sequence of polynomials.

Proposition 3.1. Let (Pn(X ))n¿0 be a sequence of polynomials with coe�cients in
the ring R; such that P0(X ) = 1. De�ne the double sequence (a(m; n))m;n¿0 by

Pn(X ) =
∑
m¿0

a(m; n)Xm

(this implies that a(m; n) = 0 for m¿m0(n)). Then; the sequence (Pn(X ))n¿0 is a
simple d-Carlitz sequence of polynomials if and only if

∀m; n¿0; ∀i; j ∈ [0; d− 1]; a(dm+ i; dn+ j) =
∑
u+v=m

a(u; n)a(dv+ i; j):

In particular; if degPn(X )6n; i.e.; if a(m; n) = 0 for m¿n; then; the sequence
(Pn(X ))n¿0 is a simple d-Carlitz sequence of polynomials if and only if

∀m; n¿0; ∀i; j ∈ [0; d− 1]; a(dm+ i; dn+ j) = a(m; n)a(i; j);
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which implies; if m=
∑s

i=0 mid
i and n=

∑t
i=0 nid

i; with 06mi; ni6d−1 and msnt 6= 0;

a(m; n) =
max(s; t)∏
i=0

a(mi; ni):

Proof. By de�nition of the sequence (a(m; n))m;n¿0,

Pn(X ) =
∑
m¿0

a(m; n)Xm:

Hence, for j ∈ [0; d− 1],
Pdn+j(X ) =

∑
m¿0

a(m; dn+ j)Xm

=
d−1∑
i=0

X i
∑
m¿0

a(dm+ i; dn+ j)X dm:

But

Pn(X d)Pj(X ) =
∑
u¿0

a(u; n)X du
∑
k¿0

a(k; j)X k

=
∑
u¿0

a(u; n)X du
∑
v¿0

d−1∑
i=0

a(dv+ i; j)X dv+i

=
d−1∑
i=0

X i
∑
u;v¿0

a(u; n)a(dv+ i; j)X du+dv

=
d−1∑
i=0

X i
∑
m¿0

X dm
∑
u+v=m

a(u; n)a(dv+ i; j):

Hence, looking at the coe�cient of X dm+i, we obtain

∀n¿0; ∀j ∈ [0; d− 1]; Pdn+j(X ) = Pn(X d)Pj(X );

if and only if

∀m; n¿0; ∀i; j ∈ [0; d− 1]; a(dm+ i; dn+ j) =
∑
u+v=m

a(u; n)a(dv+ i; j)

which is the �rst claim in the proposition above.
Suppose now that degPn(X )6n, i.e., that a(m; n) = 0 for m¿n. Then, if i and j

belong to [0; d− 1], and if v¿1, then,
a(dv+ i; j) = 0:

Hence, the sum
∑

u+v=m a(u; n)a(dv+ i; j) above boils down to a(m; n)a(i; j), and we
are done.

Remark 3.2. McIntosh considered also double sequences (a(m; n))m;n¿0 having
the generalized Lucas property, by removing from the above de�nition the condition
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a(m; n)=0 for m¿n. For such sequences An(X )=
∑

m¿0 a(m; n)X
m is not a polynomial

in general, and the sequence (An(X )modp)n¿0 does not have in general the p-Carlitz
property as a sequence of power series. One example is the sequence

a(m; n) =
(
n+ m
m

)(
n+ 2m
m

)
:

Other interesting examples are given in [29]. Note that our Proposition 2.2 can be used
to prove Lucas lemma, and to prove that the orbit of 1 with respect to a one-dimensional
linear cellular automaton given by a polynomial with integer coe�cients and reduced
modulo, the successive prime numbers has the double Lucas property. It can also be
used to prove Theorems 3 and 4 (Reection Principle) of McIntosh in [29].

4. Examples

In this paragraph we give examples of sequences of polynomials related to classical
orthogonal polynomials and that have the Carlitz property. The essential tool will be
Proposition 2.2. For an integer m¿2, we denote here by Q(m) the set of rational
numbers de�ned by

Q(m) =
{a
b
; a ∈ Z; b ∈ N\{0}; gcd(m; b) = 1

}

4.1. Legendre polynomials

The sequence of Legendre polynomials P=(Pn(X ))n¿0 can be de�ned [17, p. 179]
by the recurrence relations

P0(X ) = 1; P1(X ) = X;

∀n¿1; (n+ 1)Pn+1(X ) = (2n+ 1)XPn(X )− nPn−1(X ):
The sequence (Pn(X ))n¿0 can also be de�ned explicitly [17, p. 180] as

Pn(X ) =
1
2n

bn=2c∑
v=0

(−1)v
(n
v

)(2n− 2v
n− 2v

)
X n−2v:

Each polynomial Pn(X ) belongs to Q(p)(X ) for any odd prime number p. The follow-
ing, known as the Schur congruence (see [38,9]), holds: the sequence (Pn(X )modp)n¿0
is a simple p-Carlitz sequence of polynomials over the ring Z=pZ, for each odd prime
number p.
We give here a quick proof of this result, using Proposition 2.2. The generating

function F(X; Y ) =
∑

n¿0 Pn(X )Y
n has the explicit expression (see [17, p. 182] for

example)

F(X; Y ) =
1√

1− 2XY + Y 2 :
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Hence

F(X; Y )2 =
1

1− 2XY + Y 2 :
This can be viewed as an equality between the formal power series or the rational
functions over Q, hence over Q(p) for every odd prime number p. Let p be such an
odd prime number, then, over Fp

F(X; Y )
F(Xp; Y p)

=
F(X; Y )
F(X; Y )p

=
1

F(X; Y )p−1

=
1

(F(X; Y )2)(p−1)=2
= (1− 2XY + Y 2)(p−1)=2:

We can now apply Proposition 2.2 with

A(X; Y ) = (1− 2XY + Y 2)(p−1)=2:

Remark 4.1. (a) For other proofs of the above congruence the reader can look at
the papers of Wahab, Brylinski and Landweber, [38,8,28]. The property of Legendre’s
polynomials is called the Schur congruence. Landweber [28] preceded his proof by not-
ing that these congruences were mentioned in the Ph.D. Thesis of Ille [24], a student
of I. Schur, and proved by Wahab [38]. Honda [23] and Yui [39] derived new congru-
ences modulo pk (p being an odd prime) for special indices of Legendre polynomials,
that are close to generalizations of the p-Fermat property modulo pk .
(b) McIntosh [29] proved that the double sequence((n

k

)(n+ k
k

))
n;k¿0

has the double p-Lucas property. This can also be proved by noting that
n∑
k=0

(n
k

)(n+ k
k

)
X k = Pn(2X + 1)

where Pn(X ) is the nth Legendre polynomial, and using the Schur congruence for
Legendre polynomials together with Observation 8 with R= Fp.

4.2. Gegenbauer polynomials

The same reasoning as above implies the following assertion.

Theorem 4.2. Let a; b ∈ N\{0}; with a¡b; gcd(a; b) = 1. Let p be a prime number
such that b|p− 1. Let Q(X; Y ) ∈ Z[X; Y ]; with degY Q(X; Y )=d. Suppose Q(X; 0)=1
and d6b=a. De�ne a sequence of polynomials (Qn(X ))n¿0 by

1
Q(X; Y )a=b

=
∑
n¿0

Qn(X )Y n:

Then; (Qn(X )modp)n¿0 is a simple p-Carlitz sequence of polynomials.
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Proof. It is not hard to see that the coe�cients of Qn(X ) are integers modulo p. (This
can also be seen as a consequence of Heine’s proof [22] of the Eisenstein theorem,
announced by Eisenstein in [16].) This theorem is then a consequence of Proposition 2.2.
A special case is given by the Gegenbauer polynomials (C�n (X ))n¿0 (see [17,

p. 177]) de�ned by

(1− 2XY + Y 2)−� =
∑
n¿0

C�n (X )Y
n:

Corollary 4.3. For a; b; p satisfying the above conditions; d = 2; and � = a=b; the
sequence of Gegenbauer polynomials (C�n (X ))n¿0; reduced modulo p; is a simple
p-Carlitz sequence of polynomials.

Remark 4.4. For other congruence properties of Gegenbauer’s polynomials, see [8].

4.3. Hermite polynomials

The sequence of Hermite polynomials H= (Hn(X ))n¿0 can be de�ned [17, p. 193]
by the recurrence relations

H0(X ) = 1; H1(X ) = 2X;

∀n¿1; Hn+1(X ) = 2XHn(X )− 2nHn−1(X ):
Then (see [17, p. 193])

Hn(X ) = n!
bn=2c∑
k=0

(−1)k(2X )n−2k
k!(n− 2k)! :

Carlitz proved [9, Theorem 2] that, for every j¿0 and every d¿2,

Hd+j(X ) ≡ (2X )dHj(X )mod d:
Hence, for every j¿0, every d¿2, and every n¿0,

(∗) Hdn+j(X ) ≡ (2X )ndHj(X )mod d:
De�ning d sequences of polynomials (Q(k)n (X ))n¿0, for k ∈ [0; d− 1], by

Q(k)n (X ) ≡ (kX )nmod d;
Equality (∗) can be rewritten as

Hdn+j(X ) ≡ Q(2d mod d)n (X d)Hj(X )mod d:

Furthermore, for all n¿0 and j ∈ [0; d− 1],
Q(k)dn+j(X ) ≡ Q(k

d mod d)
n (X d)Q(k)j (X )mod d:

Hence we have the following result.

Theorem 4.5. The sequence of Hermite polynomials (Hn(X ))n¿0; reduced modulo d;
is a d-Carlitz sequence of polynomials (and the number r in the de�nition can be
taken equal to d+ 1).
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4.4. Modi�ed Laguerre polynomials

The sequence of Laguerre polynomials L(�) = (L(�)n (X ))n¿0 can be de�ned
[17, p. 189] by the recurrence relations

L(�)0 (X ) = 1; L(�)1 (X ) =−X + �+ 1;

∀n¿1; (n+ 1)L(�)n+1(X ) = (−X + 2n+ �+ 1)L(�)n (X )− (n+ �)L(�)n−1(X ):
Then (see [17, p. 188])

L(�)n (X ) =
n∑
k=0

(
n+ �
n− k

)
(−X )k
k!

:

Following Carlitz [9], de�ne

�(�)n (X ) = n!L
(�)
n (X ):

Then

�(�)n (X ) = n!
n∑
k=0

(
n+ �
n− k

)
(−X )k
k!

:

We will assume that � is an integer modm. Then, the coe�cients of �(�)n (X ) are
integers modm.
Carlitz proved [9, Theorem 3] that, for every integer d¿2 and every j¿0,

�(�)d+j(X ) ≡ (−X )d�(�)j (X )mod d:
This implies, for d¿2, n¿0, and j ∈ [0; d− 1],

�(�)dn+j(X ) ≡ (−X )dn�(�)j (X )mod d:
Hence, if we mimic the proof given for the Hermite polynomials, we obtain the
following result.

Theorem 4.6. The sequence of modi�ed Laguerre polynomials (�(�)n (X ))n¿0; reduced
modulo d; is a d-Carlitz sequence of polynomials (and the number r in the de�nition
can be taken equal to 3).

4.5. A property of J0(X )

Carlitz de�ned in [10] a sequence of polynomials (!n(X ))n¿0 obtained from the
Bessel function J0(X ) (see for example [17, p. 6]) by

J0(2
√
XZ)

J0(2
√
Z)

=
∑
n¿0

!n(X )Zn

(n!)2
:

Carlitz then proved that, for any prime number p, the sequence (!n(X )modp)n¿0
is a simple p-Carlitz sequence of polynomials. He also noted that the sequence
(!nmodp)n¿0, where !n = !n(0), is strongly p-multiplicative (see also Observation
3 above).
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5. Examples of sequences of orthogonal polynomials that are not simple p-Carlitz

We gave above examples of sequences having the d-Carlitz property, that come
from polynomials with a combinatorial background. One of the referees, after reading a
previous version of this paper, asked whether a general combinatorial property could be
hidden behind these results. We think the answer is no, and will give in this section
examples of sequences of polynomials from the Askey scheme of hypergeometric
orthogonal polynomials that are not simple p-Carlitz sequences, for any prime p.

5.1. Chebishev polynomials

The sequences of Chebishev polynomials of the �rst kind T = (Tn(X ))n¿0 and of
the second kind U= (Un(X ))n¿0 satisfy the recurrence equation

∀n¿1; Fn+1(X ) = 2XFn(X )− Fn−1(X )
with the initial conditions T0(X )=1, T1(X )=X , and U0(X )=1, U1(X )=2X (see for
example [17, p. 185]). Hence, they have the generating functions

T(X; Y ) =
∞∑
n=0

Tn(X )Y n =
1− XY

1− 2XY + Y 2 ;

U(X; Y ) =
∞∑
n=0

Un(X )Y n =
1

1− 2XY + Y 2 :

If p is a prime number, it is clear that neither (T(X; Y )=T(Xp; Y p)modp) nor
(U(X; Y )=U(Xp; Y p)modp) are polynomials of degree in Y at most p−1 (take X=0).
Hence, using Proposition 2.2, we see that the sequences of Chebishev polynomials of
the �rst and of the second kind reduced modulo p are not simple p-Carlitz sequences
of polynomials (for any prime p). Note nevertheless that, the sequence of Chebishev
polynomials of the �rst kind modulo any odd prime number p has the generalized
p-Fermat property: this last result is due to Askey (quoted in [8]).

5.2. Jacobi polynomials

De�ne, for a3 6∈ −N,

2F1(a1; a2; a3; a4) =
∑
k¿0

(a1)k(a2)k
(a3)k

ak4
k!
;

where

(a)k = a(a+ 1) · · · (a+ k − 1):
The Jacobi polynomials are de�ned [17, p. 170] by

P(�;�)n =
(�+ 1)n
n! 2F1

(
−n; n+ �+ � + 1; �+ 1; 1− x

2

)
:
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Proposition 2.2 implies that, for � and � in N\{0}, the sequence of Jacobi polynomials,
reduced modulo any odd prime number p, is not a simple p-Carlitz sequence of
polynomials. Namely the generating function is given [17, p. 172] by

F(X; Y ) =
∑
n¿0

P(�;�)n (X )Y n =
2�+�

r(X; Y )(1− Y + r(X; Y ))�(1 + Y + r(X; Y ))� ;

where r(X; Y )=(1−2XY +Y 2)1=2. In particular for X =1, and Y small enough, all the
series converge as real power series, and we have: r(1; Y ) = (1− 2Y + Y 2)1=2 = 1− Y .
Hence

F(1; Y ) = (1− Y )−�−1:
This also holds as an equality between formal power series with rational coe�cients.
Now, if p is an odd prime number, and if (F(X; Y )=F(Xp; Y p)modp) were a poly-
nomial in X and Y , of degree in Y at most (p − 1), then, (F(1; Y )=F(1; Y p)modp)
would be a polynomial in Y of degree at most (p − 1). But this not the case, since
F(1; Y )=F(1; Y p) = (1 + Y + Y 2 + · · ·+ Yp−1)�+1, and � ∈ N\{0}.

5.3. Meixner polynomials

This sequence is de�ned [17, p. 225] with the notations above (for � 6∈ −N and
c 6= 0) by

M̃ n(X; �; c) = (�)n 2F1(−n;−X ; �; 1− c−1):
These polynomials satisfy the recurrence (see [26, p. 38] for example)

M̃ n+1(X; �; c) =
(
c − 1
c
X +

n+ (n+ �)c
c

)
M̃ n(X; �; c)

−n(� + n− 1)
c

M̃ n−1(X; �; c):

We will suppose that � ∈ N\{0} and 1=c ∈ Z\{1}. Then, from a result of Carlitz [9,
Theorem 1], we have for any prime p¿2 (actually this is true even if p is not prime)

∀n¿0; M̃ pn(X; �; c) ≡ M̃p(X; �; c)nmodp:

This implies that, for � ∈ N\{0} and 1=c ∈ Z\{1}, the sequence of Meixner poly-
nomials, reduced modulo any prime number p, is not a simple p-Carlitz sequence of
polynomials. Namely, if this sequence were a simple p-Carlitz sequence of polynomi-
als, we would have

∀n¿0; M̃ pn(X; �; c) ≡ M̃ n(Xp; �; c) ≡ M̃ n(X; �; c)pmodp:

Hence

M̃ n(X; �; c)p ≡ M̃p(X; �; c)nmodp:

Taking n prime to p, and di�erentiating with respect to X , this would imply that
M̃

′
p(X; �; c) is zero modulo p. This is not the case, since it is easy to compute from

the above de�nition M̃p(X; �; c) ≡ (1− c−1)(Xp − X )modp.
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5.4. Charlier polynomials

The Charlier polynomials can be de�ned [26; p: 40; 17; p: 226] (for a 6= 0) by

Cn(X; a) =2F0(−n;−X ; ;−1=a) =
∑
k¿0

(−n)k(−X )k
k!

(−1
a

)k
:

Hence

Cn(X; a) =
n∑
k=0

(−1)k
(n
k

)
X (X − 1) · · · (X − k + 1) 1

ak
:

They satisfy the recurrence [17, p. 227]

aCn+1(X; a) = (n+ a− X )Cn(X; a)− nCn−1(X; a):
In particular if we take 1=a ∈ N, we can apply the result [9, Theorem 1] of Carlitz
and the remark that Cp(X; a) ≡ 1 − (1=a)(Xp − X )modp, to conclude, as for the
Meixner polynomials in Section 5.3 above: for 1=a ∈ N, the sequence of Charlier
polynomials, reduced modulo any prime number p, is not a simple p-Carlitz sequence
of polynomials.

5.5. Continuous dual Hahn polynomials

The continuous dual Hahn polynomials Sn(X; a; b; c) are de�ned (see [26, p. 27] for
example) by Sn(X 2; a; b; c)= (a+b)n(a+ c)n 3F2(−n; a+iX; a− iX ; a+b; a+ c; 1), i.e.,

Sn(X 2; a; b; c) = (a+ b)n(a+ c)n
∞∑
k=0

(−n)k(a+ iX )k(a− iX )k
(a+ b)k(a+ c)k k!

:

Hence

Sn(X; a; b; c) =
n∑
k=0

(−1)k
(n
k

) k−1∏
j=0

((a+ j)2 + X )
n−1∏
‘=k

((a+ b+ ‘)(a+ c + ‘)):

Let us take a; b; c ∈ N \ {0}. It is not di�cult, using the three-term recurrence relation
satis�ed by these polynomials (see [26, pp. 27–28] for example), the result [9, Theorem 1]
of Carlitz again, and the expression Sp(X ) ≡ (−1)p

∏p−1
j=0 ((a+j)

2+X ), which implies
Sp(X )Sp(−X ) ≡ (Xp−X )2 modp, to prove that: the sequence of continuous dual Hahn
polynomials, reduced modulo any odd prime p, is not a simple p-Carlitz sequence of
polynomials.

6. An automaticity theorem

Theorem 6.1. Let R be a �nite commutative ring with unit. Let d¿2. If (Pn(X ))n¿0
is a d-Carlitz sequence of polynomials with coe�cients in R; such that all polynomials



36 J.-P. Allouche, G. Skordev /Discrete Mathematics 214 (2000) 21–49

P(k)0 (X ) of De�nition 2:1 are equal to 1; and if

Pn(X ) =
∑
m¿0

a(m; n)Xm;

then; the sequence (a(m; n))m;n¿0 is d-automatic.

Proof. To prove that the sequence (a(m; n))m;n¿0 is d-automatic, we have to prove
(see [36,37]) that the set

N= {(a(dum+ v; dun+ w))m;n; u¿0; 06v; w6du − 1}
is �nite. Instead of working with subsequences of double sequences of elements of
R, we will work with subsequences of sequences of polynomials of R[X ]. For i ∈
[0; d − 1], the operators �i (sometimes called d-decimation operators) are de�ned on
R[[X ]] (hence on R[X ]) by

�i

(∑
m¿0

cmX m
)
=
∑
m¿0

cdm+iX m:

To prove thatN is �nite, it su�ces to �nd a set of sequences of polynomialsN′ that is
�nite, that contains the sequence (Pn(X ))n¿0, and such that, for any sequence of poly-
nomials (Qn(X ))n¿0 in N′, for every i; j in [0; d−1], the sequence (�i(Qdn+j(X )))n¿0
is also in N′.
Consider the set {(P(k)n (X ))n¿0; k ∈ [1; r]} in the de�nition of the d-Carlitz property

for the sequence (Pn(X ))n¿0. Take also a number C such that, for every sequence
(P(k)n (X ))n¿0; k ∈ [1; r], we have

degP(k)n (X )6Cn:

Such a number exists as we have seen in Observation 4 above. De�ne now the set of
sequences of polynomials N′ by

N′ = {(H (X )P(k)n (X ))n¿0; k ∈ [1; r]; H (X ) ∈ R[X ]; degH (X )6C}:
This set is �nite, as the ring R is �nite. It contains the sequence (Pn(X ))n¿0 =
(1:P(1)n (X ))n¿0. Finally, if (H (X )P

(k)
n (X ))n¿0 is a sequence in N′, then

�i(H (X )P
(k)
dn+j(X )) = �i(H (X )P

(‘(k))
n (X d)P(k)j (X )) = P

(‘(k))
n (X )�i(H (X )P

(k)
j (X )):

But

deg�i(H (X )P
(k)
j (X ))6

1
d
(degH (X ) + degP(k)j (X ))

6
1
d
(C + Cj)6

1
d
(C + C(d− 1))6C:

Hence, the sequence (�i(H (X )P
(k)
dn+j(X )))n¿0 belongs to N′, and our theorem is

proved.

Remark 6.2. If R= Fp, and if (Pn(X ))n¿0 is a simple p-Carlitz sequence of polyno-
mials with P0(X ) = 1, then, Theorem 6.1 follows from the theorem of Salon [36,37],
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since the generating function F(X; Y ) =
∑

n¿0 Pn(X )Y
n is algebraic over the �eld of

rational functions Fp(X; Y ) (see Proposition 2.2).

7. A non-automaticity theorem

Lemma 7.1 (Generalized slice lemma). Let d¿2; and let (Rn(X ))n¿0 be a simple
d-Carlitz sequence of polynomials of Z=dZ[X ] with R0(X ) = 1. We make the as-
sumption that there exists i0 ∈ [1; d − 1] such that Ri0 (X ) is not a monomial. Let
Ri0 (X ) = aX

� + bX � + · · · ; with ab 6= 0mod d; and �¡�. We de�ne the double
sequence (r(n; t))n; t¿0 mod d by Rt(X ) =

∑
n; t¿0 r(n; t)X

n.
Let C be a constant such that degRn(X )6Cn (see Observation 4 above). Let ‘

be an integer such that (� + Ci0d−‘)=(� + �d‘)¡ 1=(d‘ + 1) and such that d‘ ¿ i0.
De�ne the unidimensional sequence u= (u(n))n¿0 by

u(n) = r((�+ �d‘)n; i0(d‘ + 1)n):

Then; the sequence u is not ultimately periodic.

Proof. We will �rst prove that there are in�nitely many integers n ∈ N such that
u(n) 6= 0. Then, we will prove that for any t there exists an nt such that u(nt)=u(nt+
1) = · · ·= u(nt + t) = 0. This will imply that the sequence (u(n))n¿0 is not ultimately
periodic.
(a) Since (Rn(X ))n¿0 is a simple d-Carlitz sequence of polynomials with R0(X )=1,

we have, for every n¿0 and for every j ∈ [0; d− 1],
Rdn+j(X ) = Rn(X d)Rj(X ):

In particular, for every n¿0,∑
m¿0

r(m; dn)Xm = Rdn(X ) = Rn(X d) =
∑
m¿0

r(m; n)X dm:

Hence, r(dm; dn) = r(m; n) holds for all m; n¿0. (Of course we also have r(dm +
u; dn) = 0 for 0¡u6d− 1.) This yields for all n

u(dn) = u(n):

Take now i0 ∈ [0; d− 1] given by the hypothesis, such that Ri0 (X ) is not a monomial.
Let Ri0 (X ) = aX

� + bX � + · · · (this is of course a �nite sum) with ab 6= 0mod d and
�¿�. Then, for ‘ such that d‘ ¿ i0, we have∑

m¿0

r(m; i0(d‘ + 1))Xm = Ri0d‘+i0 (X )

= Ri0d‘(X )Ri0 (X )

= Ri0 (X
d‘)Ri0 (X )

= (aX �d
‘
+ bX �d

‘
+ · · ·)(aX � + bX � + · · ·)
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= aX �d
‘
(aX � + bX � + · · ·)

+bX �d
‘
(aX � + bX � + · · ·) + · · · :

As (�+ �d‘)¿ (�+ Ci0d−‘)(d‘ + 1)¿�d‘ + Ci0¿�d‘ + degRi0 (X ), then

u(1) = r((�+ �d‘); i0(d‘ + 1)) = ab 6= 0
and, for all k ∈ N,

u(dk) = u(1) = ab 6= 0:
(b) We will prove that, if k¿‘, and if n is such that

dk

d‘ + 1
¡n¡

�dk

�+ �d‘
;

then u(n)=0. Note that the length of this interval goes to in�nity as k goes to in�nity.
Let n be as above, then

dk ¡ (d‘ + 1)n¡
�dk(d‘ + 1)
�+ �d‘

¡dk + dk−‘

for k¿‘. Hence, there exists jn such that

0¡jn¡dk−‘ and (d‘ + 1)n= dk + jn:

Now (remember that d‘ ¿ i0, hence i0jn ¡dk)∑
m¿0

r(m; i0(d‘ + 1)n)Xm =
∑
m¿0

r(m; i0dk + i0jn)Xm = Ri0dk+i0jn(X )

= Ri0dk (X )Ri0jn(X ) = Ri0 (X
dk )Ri0jn(X )

= (aX �d
k
+ bX �d

k
+ · · ·)Ri0jn(X )

= aX �d
k
Ri0jn(X ) + bX

�dkRi0jn(X ) + · · · :
Hence, if m=(�+�d‘)n, with dk=(d‘+1)¡n¡�dk=(�+�d‘), we have on one hand,

m¡�dk

and on the other hand,

m¿
(�+ �d‘)dk

d‘ + 1
¿ (�+ Ci0d−‘)dk = �dk + Ci0dk−‘ ¿�dk + Ci0jn

¿ �dk + degRi0jn(X ):

It is now clear that, for such an m, we have r(m; dk + jn)=0. This can also be written

∀n ∈
] dk

d‘ + 1
;
�dk

�+ �d‘

[
; u(n) = r((�+ �d‘)n; (dk + 1)n) = 0

which ends the proof.
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Lemma 7.2 (Monomial slice lemma). Let p be a prime number; and let R =
(Rn(X ))n¿0 be a simple p-Carlitz sequence of polynomials of Fp[X ]. Let

Rn(X ) =
∑
m

r(m; n)Xm:

Assume
• R0(X ) = 1;
• Rj(X ) = �jX s( j); where; for 16j6p− 1; �j 6= 0modp;
• min16j6p−1(s(j)=j)¡max16j6p−1 (s(j)=j) = K .

Let �j = min{j ∈ [1; p − 1]; s(j) = jK} and �s = s( �j). Then; the sequence (a(n))n¿0
de�ned by a(n) = r( �jn; �sn) is not ultimately periodic.

Proof. Let

M=
{
j ∈ [1; p− 1]; s(j)

j
= K

}
∪ {0}:

(Note that M is strictly included in [1; p− 1].)
Assume that the sequence (a(n))n¿0 is ultimately periodic, i.e., that there exist

n0 ∈ N and T ∈ N\{0}, such that
∀n¿n0; a(n+ T ) = a(n):

Let N= {n; a(n) 6= 0}. We �rst claim that

N= {n; �jn= nkpk + · · ·+ n1p+ n0; nj ∈ M for all j ∈ [0; k]}:
Namely, if �jn= nkpk + · · ·+ n1p+ n0 with the nj’s in [0; p− 1], then

R �jn(X ) =
k∏
i=0

(�niX
s(i))p

i
=

k∏
i=0

(�p
i

ni )X
∑k

i=0
s(ni)pi :

Since R �jn(X ) =
∑

m r(m; �jn)X
m, we see that a(n) = r( �jn; �sn) 6= 0 if and only if �sn =∑k

i=0 s(ni)p
i. But �s = s( �j), and s( �j) = �jK . Hence, the condition �sn =

∑k
i=0 s(ni)p

i is
equivalent to the condition K( �jn) =

∑k
i=0 s(ni)p

i. Since M is precisely the set of j’s
such that either j=0 or s(j)=Kj, and its complement the set of j’s such that s(j)¡Kj,
we deduce that the condition holds if and only if s(ni) = Kni for all i ∈ [0; k], which
is exactly saying that ni ∈ M for all i ∈ [0; k].
In other words n is in N if and only if the p-ary digits of �jn belong to the

restricted set of digits M.
Now, the characteristic function � of the set N, de�ned by

�(n) =
{
1 if a(n) 6= 0;
0 otherwise

is also ultimately periodic (we can take the same T and n0). Hence n ∈ N and n¿n0
implies n+ T ∈ N.
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Let now �jT = tlpl + · · ·+ t1p + t0, with tj ∈ [0; p − 1] for j ∈ [0; l], be the p-ary
expansion of �jT . Let n′ ∈ N such that n′¿n0=pl+2. Looking at the p-ary digits of
�jn′ proves that the number n = pl+2n′ is also an element of N, and it is ¿n0. Still
looking at the p-ary digits of the product by �j, we see that n+ T belongs to N, and
hence T belongs to N. Of course this holds for any period, hence for any integer
multiple of T . This last condition is impossible, using the following straightforward
lemma.

Lemma 7.3. Let M be a restricted set of p-ary digits containing 0; where p is
prime. If a non-zero integer has all its digits in M; then; there exists a multiple of
this integer; such that its less signi�cant non-zero digit is not in M.

Theorem 7.4. Let p be a prime number; and let R=(Rn(X ))n¿0 be a simple p-Carlitz
sequence of polynomials of Fp[X ]; with R0(X ) = 1. Let R(X; Y ) =

∑
n¿0 Rn(X )Y

n =∑
m;n¿0 r(m; n)X

mY n.
(1) The double sequence (r(m; n))m;n¿0 ∈ (Fp)N×N has been proved p-automatic

(and hence is pl-automatic; for every l¿1).
(2) If at least one of the polynomials Ru(X ); 16u6p− 1 is not a monomial; and

if the double sequence (r(m; n))m;n¿0 is k-automatic; then k = pl for some l¿1.
(3) If the conditions of the monomial slice lemma are satis�ed; and if the double

sequence (r(m; n))m;n¿0 is k-automatic; then k = pl for some l¿1.

Proof. 1. This follows from Observation 5 and Theorem 6.1.
2. Suppose now that the sequence (r(m; n))m;n¿0 is k-automatic and the assumptions

of (2) are satis�ed. Then, from the slice lemma, there exists a non-ultimately periodic
sequence u = (u(n))n¿0, where u(n) = r((� + �pl)n; i0(pl + 1)n). The sequence u
is k-automatic, in the sense of [11,12], since the double sequence (r(n; t))n; t¿0 is
k-automatic (see [36,37]). But the sequence u is also p-automatic from (1). Since it
is not ultimately periodic, Cobham’s theorem [13] implies that k is a non-trivial power
of p.
3. The proof follows the proof of (2), using the monomial slice lemma instead of

the slice lemma.

8. Automaticity of sequences generated by classical orthogonal polynomials

8.1. Legendre polynomials

We consider the sequence P= (Pn(X ))n¿0 of Legendre polynomials and its gener-
ating function P(X; Y )=

∑
n¿0 Pn(X )Y

n=
∑

m;n¿0 b(m; n)X
mY n. As we already noted,

this generating function has the explicit expression (see [17, p. 182] for example)

P(X; Y ) =
1√

1− 2XY + Y 2 :
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This formula can be either considered as an equality for real functions with Y small
enough, or as an equality of formal power series with rational coe�cients. Note that
it implies

P(X; Y )2 =
1

1− 2XY + Y 2 ;

that can be considered as an equality of formal power series with coe�cients in Q(p)
for any odd prime number p.

Lemma 8.1. Let p be an odd prime number. The sequence (b(n; n)modp)n¿0 is not
ultimately periodic.

Proof. Let a(n) = b(n; n)modp. We have seen that an explicit expression for Pn(X )
is

Pn(X ) =
1
2n

bn=2c∑
v=0

(−1)v
(n
v

)(2n− 2v
n− 2v

)
X n−2v:

Hence, a(n) = b(n; n) = 2−n
(
2n
n

)
. This implies

A(X ) =
∑
n¿0

a(n)X n =
∑
n¿0

(
2n
n

)(
X
2

)n
=

1√
1− 2X :

This equality holds between the formal power series with coe�cients in Q. But the
coe�cients are also in Q(p) for every odd prime number p. Hence, for any odd prime
number p,

(1− 2X )A(X )2 ≡ 1modp:
It is straightforward to see that this equation cannot be satis�ed by a rational function.
Hence, (A(X )modp) is not a rational function, which is equivalent to saying that the
sequence (a(n)modp)n¿0 is not ultimately periodic.

Remark 8.2. We could have given several other non-ultimately periodic subsequences
of the sequence (b(m; n)modp)m;n. We just give another example here. Let z(n) =

b(0; n) = Pn(0). We easily have z(n) = 0 if n is odd, and z(n) = 2−2t(−1)t
(
2t
t

)
if

n= 2t. As previously the formal power series

∑
n¿0

z(n)X n =
1√

1 + X 2

does not reduce modulo any odd prime number p to a rational function. In the case
p= 3; the sequence (z(n)mod 3)n¿0 can take only the values 0 and 1. This sequence
is actually the characteristic function of those integers that have no digit 1 in their
base-3 expansion.
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Note that the sequence (an)n¿0 above, when reduced modulo 3, can be encountered
in various other contexts:

∗ Integers with missing digits. The sequence (a(n)mod 3)n¿0 is the characteristic func-
tion of those integers that have no digit 2 in their base-3 expansion;
∗ In�nite sequences without arithmetic progressions. Consider the minimal (for the
lexicographical order) sequence of integers that does not contain three terms in arith-
metic progression. This sequence begins with

0 1 3 4 9 10 12 13 27 : : :

The characteristic sequence of these integers is precisely (a(n)mod 3)n¿0. For the gen-
eral problem see [18,35,20], see also the survey [25]. For a Toeplitz-transform frame-
work, see [1];
∗ Geometric constructions. A curious geometric construction involving this sequence
occurs in [31].

Theorem 8.3. Let (Pn(X ))n¿0 be the sequence of Legendre polynomials. Let b(m; n)
be de�ned by P(X; Y )=

∑
n¿0 Pn(X )Y

n=
∑

m;n¿0 bm;nX
mY n. Let d be an odd natural

number d¿3. Then; the double sequence (b(m; n)mod d)m;n¿0 is k-automatic if and
only if there exists a prime number p and two integers l1; l2¿1 such that d = pl1

and k = pl2 .

Proof. 1. We �rst prove that, if the sequence (b(m; n)mod d)m;n¿0 is k-automatic, with
d; k¿2, then, d and k must be powers of a same prime number p. Let p be a prime
divisor of d. The sequence (b(m; n)mod d)m;n¿0 is k-automatic, hence its re-reduction
modulo p, i.e., the sequence (b(m; n)modp)m;n¿0, is also k-automatic. We then deduce
from Lemma 7.1, Theorem 7.4, and Lemma 8.1 that k must be a power of p. Now,
if p1 were another prime divisor of d, the number k should also be a power of p1,
which is not possible.
2. We now prove that if d = pl for some odd prime number p, and some l¿1,

then, the sequence (b(m; n)mod d)m;n¿0 is p-automatic (and hence pk -automatic for
any k¿1). If l=1, this is a consequence of Theorem 6.1 and of the p-Carlitz property
of the sequence of Legendre polynomials modulo p that we recalled in Section 4. But
we need a proof for the general case. Remember that we have

P(X; Y )2 =
∑
m¿0

b(m; n)XmY n =
1

1− 2XY + Y 2 :

This equality is a priori true over Q, but it is actually true over Q(p), and hence over
Zp, the p-adic numbers. Then, considered as an element of Zp[[X; Y ]], the formal
power series P(X; Y ) is algebraic over Zp(X; Y ). Hence, from a theorem of Denef and
Lipshitz [14, Theorem 3.1], the sequence (b(m; n)modpl)m;n¿0 is p-automatic, and
hence pk -automatic for any k¿1.
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8.2. Hermite and Laguerre polynomials

8.2.1. Hermite polynomials
We consider here the sequence of coe�cients for the generating function of the

Hermite polynomials. We have the following theorem.

Theorem 8.4. Let H = (Hn(X ))n¿0 be the sequence of Hermite polynomials. Let
h(m; n) be de�ned by H(X; Y ) =

∑
n¿0Hn(X )Y

n=
∑

m;n¿0 h(m; n)X
mY n. Let d be an

integer ¿2. Then; the sequence (h(m; n)mod d)m;n¿0 is k-automatic for every integer
k¿2.

Proof. We proved in Section 4 that, for every d¿2, the sequence of Hermite poly-
nomials modulo d is a d-Carlitz sequence of polynomials. Hence, from Theorem 6.1,
for every d¿2, the sequence (h(m; n)mod d)m;n¿0 is d-automatic.
Fix now d¿2, and let a and b be two di�erent prime numbers that do not divide

d. The sequence (h(m; n)mod ad)m;n¿0 is ad-automatic. Hence, its projection obtained
by re-reducing modulo d, i.e., the sequence (h(m; n)mod d)m;n¿0 is also ad-automatic.
For the same reason this sequence is bd-automatic. Now, ad and bd are clearly multi-
plicatively independent (in other words the equation (ad)x = (bd)y has no solution in
nonzero integers x and y). Hence, by the Cobham–Semenov theorem (see the survey
[7] for example), the sequence (h(m; n)mod d)m;n¿0 is recognizable, and therefore it
is k-automatic for all k¿2.

8.2.2. Modi�ed Laguerre polynomials
Let us consider as previously the sequence of modi�ed Laguerre polynomials

(�(�)n (X ))n¿0. Following the same lines as above we can easily prove the following
theorem.

Theorem 8.5. Let (L(�)n (X ))n¿0 be the sequence of Laguerre polynomials; with � in-
teger. Let (�(�)n (X ))n¿0 = (n!L

(�)
n (X ))n¿0 be the corresponding sequence of modi�ed

Laguerre polynomials. De�ne ‘(m; n) by
∑

n¿0 �
(�)
n (X )Y n=

∑
m;n¿0 ‘(m; n)X

mY n. Let
d be an integer ¿2. Then; the sequence (‘(m; n)mod d)m;n¿0 is k-automatic for every
k¿2.

8.3. Chebishev polynomials

As recalled in Section 5.1, the sequences of Chebishev polynomials of the �rst kind
T=(Tn(X ))n¿0 and of the second kind U=(Un(X ))n¿0 have the generating functions

T(X; Y ) =
∞∑
n=0

Tn(X )Y n =
1− XY

1− 2XY + Y 2 ;

U(X; Y ) =
∞∑
n=0

Un(X )Y n =
1

1− 2XY + Y 2 :
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De�ne the double sequences (t(m; n))m;n¿0 and (u(m; n))m;n¿0 by

T(X; Y ) =
∞∑
n=0

Tn(X )Y n =
∞∑

m;n=0

t(m; n)XmY n;

U(X; Y ) =
∞∑
n=0

Un(X )Y n =
∞∑

m;n=0

u(m; n)XmY n:

Using the equality (
∑

n¿0 X
nY n)T(X; Y ) =U(X; Y ), it is not hard to prove that, for a

given k¿2, the sequences (t(m; n)mod d)m;n¿0 and (u(m; n)mod d)m;n¿0 are simulta-
neously k-automatic or not k-automatic. We will consider the sequence generated by
the Chebishev polynomials of the second kind.
We can, as previously, use the generating function to deduce that

u(m; n) =



2m
( m+n

2

m

)
if m+ n is even and m6n;

0 otherwise:

We can then make the same reasoning as done previously, using the theorem of Denef
and Lipschitz [14], the theorem of Cobham [13], and the property that the sequence
(u(n; 3n)modp)n is not ultimately periodic, for any odd prime p, since∑

n¿0

u(n; 3n)X n =
∑
n¿0

(
2n

n

)
X n =

1√
1− 8X ;

cannot be a rational function modp if p is an odd prime. This leads us to the following
theorem, for which we will give a di�erent proof that directly works for both sequences
of Chebishev polynomials.

Theorem 8.6. Let (Wn(X ))n¿0 be the sequence of Chebishev polynomials of the �rst
or of the second kind. De�ne w(m; n) by W(X; Y )=

∑
n¿0Wn(X )Y

n=
∑

m;n¿0 w(m; n)
XmY n. Then; the following automaticity properties hold.
• If d= 2kpl; where p is an odd prime number; k¿0; and l¿1; then; the sequence
(w(m; n)mod d)m;n¿0 is pa-automatic for any a¿1 and not r-automatic for r 6∈
{pa; a¿1}.

• If d has two di�erent odd prime divisors; then; the sequence (w(m; n)mod d)m;n¿0
is not k-automatic for any k.

• If d=2l; with l¿1; then; the sequence (w(m; n)mod d)m;n¿0 is k-automatic for all k.

Our proof will make use of a recent result of von Haeseler and Petersen [21].

Theorem 8.7 (Haeseler and Petersen [21]). Let P(X; Y )=Q(X; Y ) =
∑

m;n a(m; n)X
mY n

be a formal power series over Z=dZ that is equal to the quotient of two polynomials
in Z=dZ[X ]; with Q(0; 0) invertible in Z=dZ. Let � be the set of prime divisors p
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of d for which there does not exist a polynomial S(X; Y ) in Z=dZ[X; Y ] and �nitely
many monomials ajX �jY �j ; j = 1; 2; : : : ; s such that

S(X; Y )Q(X; Y ) =
s∏
j=1

(1− ajX �jY �j)modp;

and let � be the cardinality of �.
• If �¿2; then; the sequence (a(m; n))m;n¿0 is not k-automatic for any k¿2.
• If � = 1; then; the sequence (a(m; n))m;n¿0 is pa-automatic; where p is the only
element of �; and a any integer ¿1; and this sequence is not k-automatic for any
k 6∈ {pa; a¿1}.

• If � = 0; then; the sequence (a(m; n))m;n¿0 is k-automatic for any k¿2.

Proof of Theorem 8.6. In view of Theorem 8.7 we consider the denominators of the
generating functions for the Chebishev sequences of polynomials, Q(X; Y )=1−2XY +
Y 2. For p=2, we clearly have Q(X; Y )=1+Y 2 mod 2, hence 2 6∈ �. In order to prove
our theorem it su�ces to prove that, for every odd prime number p, there does not
exist a polynomial S(X; Y ) and �nitely many monomials ajX �jY �j , j= 1; 2; : : : ; s, such
that

S(X; Y )Q(X; Y ) =
s∏
j=1

(1− ajX �jY �j)modp:

Suppose it were the case. De�ne K = Fp(X ) (K is the �eld of rational functions with
coe�cients in Fp). Let g be an element such that g2 = X 2 − 1. We know that there
exists a quadratic extension of K containing such a g: the fact that g cannot belong to
K immediately follows from the fact that p 6= 2 and hence +1 6= −1modp.
Now, the element X + g is a root of the polynomial Q(X; Y ) over K(g). Hence, this

is a root of the polynomial
∏s
j=1(1− ajX �jY �j) over K(g). Hence, there exist an a in

Fp\{0}, and two integers � and �, not both equal to 0, such that

(X + g)� =
1
aX �

(in K(g)):

We then expand the left-hand term

1
aX �

= (X + g)� =
�∑
j=0

(
�
j

)
X �−jgj

=
∑
j6�=2

(
�
2j

)
X �−2jg2j + g

∑
j6(�−1)=2

(
�

2j + 1

)
X �−2j−1g2j

=
∑
j6�=2

(
�
2j

)
X �−2j(X 2 − 1)j + g

∑
j6(�−1)=2

(
�

2j + 1

)
X �−2j−1(X 2 − 1) j:

Since g does not belong to K = Fp(X ), we have∑
j6�=2

(
�
2j

)
X �−2j(X 2 − 1) j = 1

aX �
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and ∑
j6(�−1)=2

(
�

2j + 1

)
X �−2j−1(X 2 − 1) j = 0:

Looking at the degrees in the �rst equality proves that �= 0, hence

(X + g)� =
1
a
:

Putting X = 1 in the second equality gives � = 0modp. Hence � = p�′, and(
(X + g)�

′ − 1
a

)p
= (X + g)� − 1

ap
= (X + g)� − 1

a
= 0:

This implies

(X + g)�
′
=
1
a
;

Iterating the process, we obtain that � = 0 and the desired contradiction.

8.4. Other examples

Automaticity of sequences associated to some of the sequences of orthogonal poly-
nomials given in Section 5 that are not simple p-Carlitz can be addressed using the
following proposition. This proposition is an easy consequence of a result of Carlitz
[9, Theorem 1] and of the theorem of von Haeseler and Petersen quoted above
(Theorem 8.7, see also [21]).

Proposition 8.8. Let (Un(X ))n¿0; (fn(X ))n¿0; and (gn(X ))n¿0 be three sequences of
polynomials with integer coe�cients; such that
• U0(X ) = 1;
• U1(X ) = f0(X );
• g0(X ) = 0;
• the following relation holds for all n¿1:

Un+1(X ) = fn(X )Un(X ) + gn(X )Un−1(X ):

Suppose that for each prime number p; the polynomial (Up(X )modp) is not a
monomial. De�ne the double sequence of integers (z(m; n))m;n¿0 by

∑
n¿0Un(X )Y

n=∑
m;n¿0 z(m; n)X

mY n. Let d¿2 be an integer. Then;
• if d = pa for some prime number p and some integer a¿1; then; the sequence
(z(m; n)mod d)m;n¿0 is pb-automatic; for any integer b¿1; and not r-automatic
for any r 6∈ {pb; b¿1};

• if d has two di�erent prime divisors; then; the sequence (z(m; n)mod d)m;n¿0 is not
k-automatic for any k¿2.

Proof. Using [9, Theorem 1] we �rst see that

∀j ∈ [0; d− 1]; ∀n¿0; Udn+j(X ) ≡ Ud(X )nUj(X )mod d:
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Hence∑
n¿0

Un(X )Y n ≡
∑d−1

j=0 Uj(X )Y
j

1− Ud(X )Yd mod d:

Now, to obtain the conclusion of our Theorem we only need, using Theorem 8.7, to
prove that, for any prime number p dividing d, there does not exist a polynomial
S(X; Y ) ∈ Z=dZ[X ] and �nitely many monomials ajX �jY �j , j = 1; 2; : : : ; s such that

(∗) S(X; Y )(1− Ud(X )Yd) =
s∏
j=1

(1− ajX �jY �j)modp:

If such an equality were satis�ed, let K =Fp(X ) and let g be a root of Td=Ud(X ) in
an extension K ′ of K . Considering equality (∗) as an equality between polynomials in
K ′(X )[Y ], we see that the left-hand side cancels out for Y =1=g. Hence, the right-hand
side also cancels out. In other words, there exist a, �, �, such that

1− aX �

g�
= 0;

i.e.,

g� = aX �:

Take now the dth power, and remember that p divides d, say d = pd′. Then, using
[9, Theorem 1] again, but modulo p, we have

Up(X )d
′� = Upd′(X )� = Ud(X )� = gd� = adX d� (in K ′):

But this equality also holds in K , hence (Up(X )modp) should be a monomial, which
is not the case.

Corollary 8.9. The above result applies
• to the Meixner polynomials; with the conditions � ∈ N\{0}; c 6= 0 and
1=c ∈ Z \ {1};

• to the Charlier polynomials; with the conditions a 6= 0 and 1=a ∈ N;
• to the continuous dual Hahn polynomials; with the conditions a; b; c ∈ N\{0}.

It su�ces to use the results given in Sections 5.3–5.5 to see that Proposition 8.8
above can be applied to the sequence of Meixner polynomials, to the sequence of
Charlier polynomials, and to the sequence of continuous dual Hahn polynomials, with
the restrictions on parameters given in the statement of the corollary.
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