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Abstract

We show that there exists k ∈ N and 0 < ε ∈ R such that for every field F of characteristic zero and for
every n ∈ N, there exist explicitly given linear transformations T1, . . . , Tk :Fn → Fn satisfying the follow-
ing: For every subspace W of Fn of dimension less or equal n

2 , dim(W + ∑k
i=1 TiW) � (1 + ε)dimW .

This answers a question of Avi Wigderson [A. Wigderson, A lecture at IPAM, UCLA, February 2004]. The
case of fields of positive characteristic (and in particular finite fields) is left open.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A finite k-regular graph X = (V ,E) with n vertices is called ε-expander (for 0 < ε ∈ R) if for
every subset of vertices W ⊂ V with |W | � |V |

2 , |N(W)| � (1 + ε)|W | where N(W) = {y ∈ V |
distance(y,W) � 1}.

Most k-regular graphs X (when k is even then all graphs) are obtained as Schrier graphs of
groups (see e.g. [Lu2, (5.4)]) so there is a finite group G and a symmetric set S of generators of
it of size k acting on V such that the graph structure of X is obtained by connecting x ∈ V to sx,
s ∈ S. An expander graph can be thought of as a permutational representation of a group G, with
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a set of generators S = {s1, . . . , sk}, acting on a set V and satisfying for every subset W of size

at most |V |
2 , |W ∪ ⋃k

i=1 siW | � (1 + ε)|W |.
Motivated by some considerations from theoretical computer science, a notion of dimension

expanders was suggested by [BISW] where linear representations replace permutational repre-
sentation.

Definition 1.1. Let F be a field, k ∈ N, ε > 0, V a vector space of dimension n over F and
T1, . . . , Tk F -linear transformations from V to V . We say that the pair (V , {Ti}ki=1) is an ε-dimen-

sion expander if for every subspace W of dimension less or equal n
2 , dim(W + ∑k

i=1 TiW) �
(1 + ε)dimW.

It is not difficult to prove that whenever there is a meaningful measure/probability on F (and
hence also on Mn(F) and GLn(F )) a random choice of T1, . . . , Tk will give ε-dimension ex-
panders for suitable k and ε (see [Lu1, Proposition 1.2.1, p. 5] for an analogue result for graphs).

In [W], Wigderson posed the problem of finding, for a fixed field F and for some fixed k and ε,
ε-dimension expanders of arbitrarily large dimension. He suggested there that the set of linear
transformations defined by any irreducible representation evaluated at expanding generators of
the underlying finite group, gives rise to a dimension expander over the complex numbers and
possibly over finite fields as well.

Our main result is:

Theorem 1.2. There exist k ∈ N and 0 < ε ∈ R such that for every field F of characteristic zero
and for every n, there are explicitly given Ti :Fn → Fn, i = i, . . . , k such that (F n, {Ti}ki=1) is
an ε-dimension expander.

In fact we confirmed Wigderson’s suggestion over the complex numbers but we also show
that over finite fields the situation is more delicate. To put it on a wider perspective let us recall
that the standard method to get explicit constructions of expander graphs is by showing that
the induced unitary representation of the group G on the space �2

0(V ) is “bounded away from
the trivial representation” in the sense of the Fell topology of the unitary dual of G (see [Lu1,
§3]). Here �2

0(V ) is the space of all functions from the set of vertices V to C. We will show in
Section 2, that the complex vector space V = Cn becomes a dimension expander with respect
to a set of generators S of G, when G acting unitarily and irreducibly on V , if the adjoint
(unitary) representation of G on S�n(C) = {A ∈ Mn(C) | traceA = 0} is bounded away from the
trivial representation. This crucial observation enables us to use the known results and methods
developed to construct expander Cayley graphs, to construct also dimension expanders over C.
The extensions to an arbitrary characteristic zero field F is then standard (see Section 3 below).

The use of unitarity is very unfortunate and is the main obstacle for extending our results to
positive characteristic. In fact, Example 4.4 below implies that there are expander groups whose
linear representations over finite fields are not dimension expanders. We still should mention that
the finite examples one may deduce from Example 4.4 are of groups whose order is divisible by
p and the representations are over Fp . It may still be that in the “non-modular” case, i.e., the
order of the group is prime to the characteristic, Wigderson suggestion holds even over finite
fields.

As of now, the only results over finite fields we are aware of are of Dvir and Shpilka [DS]
who constructed explicit dimension expanders (of constant expansion) over GF(2) in dimen-
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sion n with O(logn) transformations. They can also expand the dimension by a smaller factor
1 + O(1/ logn) explicitly using a constant number of transformations.

Finally, let us relate the results of this note to our work on “algebras with property τ” [LuZa]:
Recall that a group Γ generated by a finite set S is said to have property τ if there exists ε > 0
such that whenever Γ acts transitively on a finite set V the resulting graph (when x ∈ V is
connected to sx, s ∈ S) is an ε-expander. The notion of dimension expanders calls for defining
an F -algebra A with a finite set of generators S to have property τ if there exists ε > 0 such that
for every irreducible representation ρ on a finite dimensional F -dimension V , the pair (V ,ρ(S))

is ε-dimension expander. We should note however that we do not know in general that for a
group Γ with property τ (or even T ) the group algebra C[Γ ] has τ (and it looks unlikely—
see Examples 4.5 and 4.6). We know this only with respect to representations of C[Γ ] which
are unitary on Γ . So we do not know whether C[SL3(Z)] has τ . We do know, though, that
C[SL3(Fp[t])] has τ . But to see the delicacy of the issue we show that Fp[SL3(Fp[t])] does not
have τ , while we do not know the answer for F�[SL3(Fp[t])] for a prime � different than p. We
elaborate on this in Section 4, leaving the full treatment to [LuZa] where connections with the
Golod–Shafarevich theory and some questions originated in 3-manifold theory are studied.

2. The adjoint representation

Let Γ be a group generated by a finite set S and (H, ρ :Γ → U(H)) a unitary representation
of Γ . The Kazhdan constant K = KS

Γ ((H, ρ)) is defined as:

inf
0�=v∈H

max
s∈S

{‖ρ(s)v − v‖
‖v‖

}
.

Recall that the group Γ is said to have property T if KS
Γ = inf(H,ρ)∈R0(Γ ) K

S
Γ ((H, ρ)) > 0

when R0(Γ ) is the family of all unitary representations of Γ which have no non-trivial Γ -fixed
vector. In this case, KS

Γ is called the Kazhdan constant of Γ with respect to S. Similarly Γ is

said to have property τ if KS
Γ (τ) = inf

(H,ρ)∈Rf
0 (Γ )

KS
Γ (H, ρ) > 0 when Rf

0 (Γ ) is the subset

of R0(Γ ) of all representations for which ρ(Γ ) is finite. The number KS
Γ (τ) is the τ -constant

of Γ .
If H is a finite dimensional space, say H = Cn and ρ a unitary representation ρ :Γ →

U(H) = Un(C), then it induces a representation adjρ on Hom(H,H) 	 Mn(C) defined by
adjρ(γ )(T ) = ρ(γ )Tρ(γ )−1 for γ ∈ Γ and T ∈ Mn(C). The subspace S�n(C) of all the lin-
ear transformations (or matrices) of trace 0 is invariant under adjρ. If ρ is irreducible then by
Schur’s Lemma, S�n(C) does not have any non-trivial adjρ(Γ )-fixed vector.

The space Hom(H,H) is also a Hilbert space when one defines for T1, T2 ∈ Hom(H,H),
〈T1, T2〉 = trT1T

∗
2 , and adjρ is a unitary representation on it and on its invariant sub-

space S�n(C).

Proposition 2.1. If ρ :Γ → Un(C) is an irreducible unitary representation, then V = Cn is an

ε-dimension expander for ρ(S) where ε = κ2

12 , κ = KS
Γ (S�n(C), adjρ).

Proof. Let W � V be a subspace of dimension m � n
2 . Let P be the linear projection from V

to W . As P ∗ = P , we have that 〈P,P 〉 = tr(P 2) = tr(P ) = m. The right-hand equality is seen
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simply by considering a basis which is a union of a basis of W and of W⊥. Consider Q = P − m
n
I

where I is the identity operator. Then

trQ = trP − tr

(
m

n
I

)
= 0, so Q ∈ S�n(C).

The norm of Q is:

‖Q‖2 = tr

((
P − m

n
I

)(
P − m

n
I

)∗)

= tr

(
P 2 − 2

m

n
P + m2

n2
I

)
= m − 2

m2

n
+ m2

n2
n = m − m2

n
.

It follows now that there exists s ∈ S such that ‖ρ(s)(Q) − Q‖2 � κ2‖Q‖2. Notice that

ρ(s)(Q) = ρ(s)Qρ(s)−1 = ρ(s)Pρ(s)−1 − m
n
I = P ′ − trP ′

n
I where P ′ = ρ(s)Pρ(s)−1 is the

projection of V onto the subspace W ′ = ρ(s)(W), so trP ′ = m as well.

Lemma 2.2. If W,W ′ are two subspaces of V of dimension m and P,P ′ the projections to W

and W ′, respectively, then Re〈P,P ′〉 � 4m − 3 dim(W + W ′).

Proof. Denote U0 = W ∩ W ′,U1 = U⊥
0 ∩ W, and U2 = U⊥

0 ∩ W ′ and di = dimUi . Then V =
U0 ⊕ U1 ⊕ U2 ⊕ (W + W ′)⊥.

Let us choose an orthonormal basis for V compose of {α1, . . . , αd0} an orthonormal basis
for U0, {β1, . . . , βd1+d2} an orthonormal basis for U1 ⊕ U2 and {γ1, . . . , γr}, r = dimV − (d0 +
d1 + d2), an orthonormal basis for (W + W ′)⊥. The operator PP ′ is the identity on U0 and zero
on (W + W ′)⊥. It is a linear transformation of norm � 1, so |〈PP ′βi,βi〉| � 1 and hence:

−1 � Re〈PP ′βi,βi〉 � 1. (∗)

The trace of PP ′ on U0 is dimU0 and it is 0 on (W + W ′)⊥. Together with (∗) we get:

Re tr(PP ′) � dimU0 − dimU1 − dimU2

= dim(W ∩ W ′) − (
dimV − dim(W ∩ W ′) − dim(W + W ′)⊥

)
= 2 dim(W ∩ W ′) − dim(W + W ′)

= 4m − 3 dim(W + W ′).

The last equality follows from the fact that

dim(W ∩ W ′) = dimW + dimW ′ − dim(W + W ′)

= 2m − dim(W + W ′). �
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So altogether,

κ2
(

m − m2

n

)
�

∥∥ρ(s)(Q) − Q
∥∥2 = ∥∥ρ(s)Pρ

(
s−1) − P

∥∥2 = ‖P ′ − P ‖2

= 〈P ′ − P,P ′ − P 〉 = 〈P ′,P ′〉 + 〈P,P 〉 − 〈P,P ′〉 − 〈P ′,P 〉
= 2m − 2 Re〈P,P ′〉
� 2m − 2

(
4m − 3 dim(W + W ′)

) = 6 dim(W + W ′) − 6m,

and therefore

m

(
1 + κ2

6

(
1 − m

n

))
� dim(W + W ′).

As 1 − m
n

� 1
2 , we get that dimW(1 + κ2

12 ) � dim(W + W ′) and Proposition 2.1 is now
proved. �
Remark/Question 2.5. For a graph expander or equivalently, as in the introduction, for a permu-
tational representation of Γ on a set V , V is an expander iff the representation of Γ on �2

0(V )

is bounded away from the trivial representation (cf. [Lu1, 4.3]). Do we have such a converse
for Proposition 2.1? I.e., if a C-vector space V = Cn is a dimension expander with respect to a
unitary representation ρ of Γ , does it imply that the representation adjρ on S�n(C) is bounded
away from the trivial representation?

3. Examples and a proof of Theorem 1.2

There are many known examples of groups with property T or τ . They can now, in light
of Proposition 2.1, be used to give a proof for Theorem 1.2, i.e., to give explicit sets of linear
transformations of Cn which solve Wigderson’s Problem.

Let us take some of the examples which are the simplest to present:

Example 3.1. Fix 3 � d ∈ N and let Γ = SLd(Z) with a fixed set of generators, e.g. S = {A,B}
when A is the transformation sending e1 to e1 + e2 and fixing e2, . . . , ed and B will send ei →
ei+1 for i = 1, . . . , d − 1 and ed to (−1)d−1e1. (Here {e1, . . . , ed} is the standard basis for Zd .)

As Γ has property T , whenever we take a finite dimensional irreducible unitary representation
ρ of Γ on V = Cn, ρ(A) and ρ(B) make V a dimension expander.

Remark/Question 3.1. Is this true also for the non-unitary representations of Γ ? Note that,
say SL3(Z), has infinitely many irreducible rational representations (i.e., rational representations
of SL3(C) restricted to the Zariski dense subgroup SL3(C)). These representations are classified
by the highest weights of S�3(C). Are they dimension expanders with respect to ρ(A) and ρ(B)?

Example 3.2. Fix 3 � d ∈ N and a prime p and let Γ = SLd(Fp[t]). This Γ has (T ) and all
its representations over C factor through finite quotients [Ma, Theorem 3, p. 3] which implies
that they can be unitarized. Thus unlike in Example 3.1, we can deduce that all the irreducible
complex representations of Γ give rise to dimension expanders.
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Example 3.3. Let Γ = SL2(Z) and for a prime p, denote Γ (p) = Ker(SL2(Z) → SL2(Z/pZ)).
Let A = ( 1 1

0 1

)
and B = ( 0 1

−1 0

)
form a set of generators S for Γ . The group Γ has property τ

with respect to the family {Γ (p)}—see [Lu1, Chap. 4].
This means that there exists κ > 0 such that for all unitary representations (V ,ρ) of Γ which

factor through Γ/Γ (p) = SL2(p) for some p and do not have a fixed point, KS
Γ (V,ρ) > κ .

The group SL2(p) acts on the Fp-projective line P1 = {0, . . . , p − 1,∞} via
(

a b
c d

)
(z) = az+b

cz+d
.

This is a double transitive permutational representations (and indeed give rise to expander
graphs—see [Lu1, Theorem 4.4.2]). Moreover, it induces an irreducible linear representation ρ

on �2
0(P1) ∼= Cp . The adjoint representation of Γ on S�p(C) also factors through SL2(p) and is

therefore bounded away from the trivial representation. Hence Cp are dimension expanders with
respect to the explicitly given transformations ρ(A) and ρ(B).

Example 3.4. Recently Kassabov [K2] showed that the Cayley graphs of the symmetric groups
Σn are expanders with respect to an explicitly given set Sn of generators with |Sn| � k for some k

(k � 30 in his work). This means that there exists κ > 0 such that K
Sn

Σn
(V,ρ) > κ for every n

and every representation (V ,ρ) ∈R0(Σn). This can be applied in particular to adjρn when ρn is
the linear representation of Σn on Cn−1 ∼= �2

0({1, . . . , n}) induced from the natural permutational
representation of Σn on the set {1, . . . , n}. We get this way that Cn−1 are dimension expanders
for every n with respect to k explicit linear transformations.

Examples 3.3 and 3.4 are especially useful for us as the representations ρ which appear in
these examples are all defined over Q. This enables us now to prove Theorem 1.2 over every field
of characteristic zero. Indeed, if F is such a field then F contains Q and so Examples 3.3 and 3.4
give finite representations ρ into GLn(F ) for various values of n. Now if |F | � ℵ, then F can be
embedded into C and so GLn(F ) ⊂ GLn(C) and as ρ are finite, they can be unitarized over C.
Now, as Cn = C⊗F Fn, every F -subspace W of Fn spans a C-subspace W of Cn of the same
dimension. It is easy to see that for ρ(s) ∈ GLn(F ), dimF (ρ(s)W + W) = dimC(ρ(s)W + W)

hence Fn are also dimension expanders.
This actually covers also the general case: if F has large cardinality and W � Fn is a coun-

terexample, then the entries of a basis of W generate a finitely generated field F1 and the
counterexample can already be found in Fm

1 . This is impossible by the previous paragraph—
so Theorem 1.2 is now proved for every field F or characteristic zero.

The above discussion may give the impression that the only way to make Cn into dimension
expander may be via unitary and even finite representation. This is not the case. Let us consider
more examples:

Example 3.5. Fix 5 � d ∈ N and p a prime. Let f be the quadratic form x2
1 + · · · + x2

d−2 −√
px2

d−1 − √
px2

d and let Γ be the group SO(O, f ) of all the d × d matrices over O of determi-
nant 1 preserving f , where O is the ring of integers of the field E = Q(

√
p). The group Γ is a

Zariski dense subgroup of the E-algebraic group H = SO(f ).
Let G = ResE/Q(H) be the restriction of scalars from E to Q of H . Then Γ sits diagonally

as a lattice in the group of real points of G which is isomorphic to SO(R, f ) × SO(R, f ι) =
SO(d − 2,2)× SO(d) [Ma, Theorem 3.2.4] and it therefore has property T . Here, ι is the unique
non-trivial element of the Galois group Gal(E/Q).

Every irreducible E-rational representation of H define two real representations of Γ -one for
each of the two embeddings of E into R. For an element g of Γ if one representation sends
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it to a matrix A, the second sends it to Aι—i.e., applying ι to all the entries of A. It follows,
that if one representation define ε-dimension expander so is the other. Now, one of these two
representation factors through SO(d) and hence it is always unitary. As Γ has T , it follows
that it defines a dimension expander. The other one is never unitary as its real Zariski closer is
SO(d − 2,2). Still, we deduce that it is a dimension expander. By taking infinitely many such E-
rational representation one sees that neither finiteness nor unitarity are necessary for dimension
expanders.

It is our lack of other methods which forces us to use unitarity (even in a non-unitary ex-
ample). It will be extremely interesting and important to develop methods to build dimension
expanders not via unitarity. This is exactly the obstacle that should be overcome in order to
answer Wigderson’s problem for fields of positive characteristic.

4. Algebras with property τ

In this section we briefly comment on the connection between dimension expanders and alge-
bras with property τ . A more systematic study of these algebras will be given in [LuZa].

Motivated by the definition of groups with τ and by some problems on Golod–Shafarevich
groups and 3-manifold groups, we would like to have a notion of algebras with property τ . There
are several reasonable options. The most natural one is probably:

Definition 4.1. Let F be a field and A an F -algebra generated by a finite set S. A is said
to have property τ if there exists an ε > 0 such that for every (F -)finite dimensional simple
A-module V and for every subspace W of V of dimension most 1

2 dimV , dim(W +∑
s∈S sW) �

(1 + ε)dimW . Namely, V is an ε-dimension expander with respect to S.

It is not difficult to see that if A has τ with respect to S, it has it with respect to any other
finite set of generators, possibly with a different ε.

Examples

Example 4.1. Let A be the free algebra over F on one generator x, i.e., A = F [x]. Assume F has
field extensions of infinitely many different degrees, i.e., {Fi}i∈N are finite field extensions with
ni = [Fi : F ] � i. So, Fi = F [x]/(fi(x)), when fi(x) is an irreducible polynomial of degree ni ,

is an irreducible A module in a clear way. Let W be the span of x +(fi(x)), . . . , x[ ni
2 ]−1 +(fi(x))

in Fi . Then dim(W + xW) � (1 + 2
ni

)dimW and hence A does not have property τ .

Example 4.2. On the other hand, if F is algebraically closed, then every finite dimensional simple
module of F [x] is one dimensional and hence F [x] has τ in a vacuous way. (This is perhaps a
hint that Definition 4.1 is maybe not the most appropriate one.) But see also Example 4.6 below
for comparison.

Example 4.3. If F as in Example 4.1 and d ∈ N a fixed integer, then by a similar argument
Md(F [x]) does not have property τ .

Example 4.4. Let p be a fixed prime, 3 � d ∈ N a fixed integer and Γ = SLd(Fp[x]). It fol-
lows from Example 3.2 that the group algebra C[Γ ] has property τ (and, in fact, it follows that
F [Γ ] has τ for every characteristic zero field). On the other hand, the algebra Fp[SLd(Fp[x])] is
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mapped epimorphically onto Md(Fp[x]) via the natural embedding SLd(Fp[x]) ⊆ Md(Fp[x]).
The latter does not have τ by Example 4.3. Hence Fp[SLd(Fp[x])] does not have τ . We do not
know if for a prime � �= p, F�[SLd(Fp[x])] has τ or not.

Example 4.5. It was shown recently by Kassabov and Nikolov [KN] that for d � 3, the group
Γ = SLd(Z[x]) has property τ . Since SLd(Z[x]) is mapped onto SLd(Fp[x]) for every x, it
follows that for every p,Fp[Γ ] does not have τ . We do not know if C[SLd(Z[x])] has τ . If it
has, the same would apply for C[SLd(Z)] which would resolve Question 3.1.

Example 4.6. Let R = Z〈x, y〉 be the free non-commutative ring on x any y. Fix 3 � d ∈ Z and
let Γ = ELd(R)—the group generated by the elementary unipotent matrices I + rEij inside
Md(R), when r ∈ R and 1 � i �= j � d . It was conjectured by Kassabov [K1] that Γ has τ and
some partial results in this direction are proved there. We claim that for every field F , F [Γ ]—
the group algebra of Γ over F , does not have property τ . To see this, let us observe first that
F 〈x, y〉 = F ⊗Z Z〈x, y〉 does not have τ . Indeed, the latter would have implied that there exists
ε > 0 such that for any n ∈ N and any two generators a and b of Mn(F) and any subspace W

of Fn with dimW � n
2 , we have dim(W + aW + bW) � (1 + ε)dimW , which is clearly not the

case. A general (easy) argument shows that if an F -algebra A does not have τ then Md(A) does
not have it either (see [LuZa] for this and more). Thus Md(F 〈x, y〉) does not have τ . The algebra
F [Γ ] is mapped onto Md(F 〈x, y〉) and so the same applies to it.

It is interesting to compare the last example with the results of Elek [E1,E2]. He defined a
notion of “amenable algebra” and proved that a group Γ is amenable if and only if its group
algebra C[Γ ] is amenable.

The above examples illustrate the delicacy of finding algebras with property τ over finite
fields or similarly dimension expanders. The lack of unitarity is the main obstacle and the main
problem we leave open is to find a method replacing it for fields of positive characteristic in
general and finite fields in particular.
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