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Antitumor drugs have longbeenknown to introduce ameasurable risk of cardiovascular events. Cardio-Oncology
is the discipline that builds on collaboration between cardiologists and oncologists and aims at screening,
preventing orminimizing such a risk. Overt concern about “possible” cardiovascular toxicitymight expose cancer
patients to the risk of tumor undertreatment and poor oncologic outcome. Careful analysis of risk:benefit balance
is therefore central to the management of patients exposed to potentially cardiotoxic drugs. Concomitant or
sequential management of cardiac and cancer therapies should also be tailored to the following strengths
andweaknesses: i) molecular mechanisms and clinical correlates of cardiotoxicity have been characterized
to some extent for anthracyclines but not for other chemotherapeutics or new generation “targeted” drugs,
ii) anthracyclines and targeted drugs cause different mechanisms of cardiotoxicity (type I versus type II),
and this classification should guide strategies of primary or secondary prevention, iii) with anthracyclines
and nonanthracycline chemotherapeutics, cardiovascular events may occur on treatment as well as years
or decades after completing chemotherapy, iv) some patients may be predisposed to a higher risk of cardi-
ac events but there is a lack of prospective studies that characterized optimal genetic tests and pharmaco-
logic measures to minimize excess risk, v) clinical toxicity may be preceded by asymptomatic systolic and/
or diastolic dysfunction that necessitates innovative mechanism-based pharmacologic treatment, and
vi) patient-tailored pharmacologic correction of comorbidities is important for both primary and second-
ary prevention. Active collaboration of physicians with laboratory scientists is much needed for improving
management of cardiovascular sequelae of antitumor therapy. This article is part of a Special Issue entitled:
Membrane channels and transporters in cancers.

© 2015 Elsevier B.V. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2728
2. Mechanistic foundations for cardiovascular therapy in cancer patients: strengths and weaknesses . . . . . . . . . . . . . . . . . . . . . . . 2728
3. Balancing oncologic efficacy with cardiovascular outcome: primary prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2730

3.1. Primary prevention of cardiotoxicity from anthracyclines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2730
3.2. Primary prevention of cardiotoxicity from any agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2731

4. Secondary prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732
4.1. Methodological limitations and available evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732
4.2. Multiple hits and importance of surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
centration vs time;ACEI, angiotensin converting enzyme inhibitor(s); ARB, angiotensin II receptor blocker(s); BNP, B-typenatri-
sma concentration;EGFR, epidermal growth factor receptor; INa,Late, late inward sodiumcurrent;KI, kinase inhibitor(s); LVEF, left
nitric oxide; Nt-proBNP, inactive aminoterminal fragment of B-type natriuretic peptide prohormone; PDGF(r), platelet derived
GF(r), vascular endothelial growth factor (receptor).
ne channels and transporters in cancers.
artment of Medicine, University Campus Bio-Medico, Via Alvaro del Portillo, 21, 00128 Rome, Italy. Tel.: +39 06 225419109;

https://core.ac.uk/display/82703179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2015.01.003&domain=pdf
http://dx.doi.org/10.1016/j.bbamem.2015.01.003
mailto:g.minotti@unicampus.it
http://dx.doi.org/10.1016/j.bbamem.2015.01.003
http://www.sciencedirect.com/science/journal/00052736
www.elsevier.com/locate/bbamem


2728 E. Salvatorelli et al. / Biochimica et Biophysica Acta 1848 (2015) 2727–2737
5. New avenues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
5.1. Improving primary prevention in children with cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
5.2. Considering primary prevention in the elderly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2734
5.3. Improving secondary prevention with new markers and drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2734

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2735
Transparency document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2735

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2735
1. Introduction

Antitumor therapies may expose patients to cardiovascular discom-
fort such as transient blood pressure instability, supraventricular ar-
rhythmias or sporadic benign ventricular arrhythmias. In the vast
majority of cases such disorders occur acutely (“on-treatment”), revert
spontaneously or respond to cardiovascular therapy, and do not form
an indication to interrupting therapy. In other cases, however, cardiac
sequelae of antitumor therapies are life-threatening. Cumulative doses
of anthracyclines, mitomycin, or mitoxantrone, induce dilated cardio-
myopathy and congestive heart failure (CHF) [1,2]. With the prototypic
anthracycline, doxorubicin, 5% risk of CHF occurs at a cumulative dose of
400–450 mg/m2 [3].

Our perception of the clinical manifestations of cardiotoxicity has
nonetheless changed over the last years. Both retrospective and lon-
gitudinal prospective studies show that cumulative anthracycline
doses lower than e.g., 400 mg of doxorubicin/m2, cause fewer on-
treatment events; nevertheless, CHF may develop five or more
years after completing chemotherapy. This is seen in survivors of
both childhood-adolescent and adult cancer, and suggests that
there is no safe dose of anthracycline [8]. Moreover, some cancer sur-
vivors were found to develop dilated cardiomyopathy and CHF while
others developed restrictive cardiomyopathy with less compro-
mised left ventricle ejection fraction (LVEF), or developed ischemic
disease and myocardial infarction (MI) [4,5]. Irradiation of cardiac
area (e.g., in patients with mediastinal lymphoma) contributes to
causing cardiotoxicity and in some patients, it seems to influence
prevalence of ischemic disease over CHF [5]. Nonanthracycline che-
motherapeutics (antimetabolites, alkylators, tubulin-active vinca al-
kaloids) have long been known to induce coronary endothelial
dysfunction and myocardial ischemia that occurs within hours or
days from treatment [2,6]; however, more recent data demonstrate
that also these drugs introduce a lifetime risk of cardiovascular
events [4–6]. The importance of age of first treatment has been
reappraised. Children-adolescents and the elderly have traditionally
been considered to be more vulnerable by anthracyclines but in de-
fined clinical settings (breast cancer, Hodgkin lymphoma) the risk
of late onset cardiac disease did not always depend on age of first
treatment [5,7].

Cardiovascular events occur also with “targeted” drugs that
were hoped to hit tumor cells but not the cardiovascular system
and other healthy tissues. Many such drugs were in fact designed
for binding to receptors or inhibiting kinases which later were
identified also in healthy tissues. An antibody targeted at the
epidermal growth factor receptor 2 (EGFR2), trastuzumab, precip-
itates CHF in breast cancer patients who receive concomitant
anthracyclines, and causes moderate to severe contractile dysfunc-
tion in patients with a prior exposure to anthracyclines [1,8].
An antibody targeted at the Vascular Endothelial Growth Factor
(VEGF), bevacizumab, may cause hypertension, myocardial con-
tractile dysfunction or ischemia, peripheral vascular occlusive
events [9]. Cardiovascular liability issues have been raised for suni-
tinib and sorafenib, small molecule inhibitors of the kinase domain
of VEGF receptor (VEGFr), and for imatinib and nilotinib, small
molecule inhibitors of Bcr-Abl and c-Kit of leukemic or gastrointes-
tinal sarcoma cells [10].
The list of antitumor drugs that cause, or are suspected to cause car-
diovascular events, seems to be expanding inexorably. A detailed analy-
sis of the library of drugs possibly involved in cancer treatment-related
cardiovascular events is not in the scope of this review.Wewould rather
address some controversial issues that need to be put in context before
one examined which patients would benefit most from cardiovascular
prevention or treatment.
2. Mechanistic foundations for cardiovascular therapy in cancer
patients: strengths and weaknesses

Mechanism-based approaches to preventing or treating cardiovas-
cular sequelae of antitumor therapies should build on a comprehensive
appraisal of how antitumor drugs cause cardiovascular toxicity. As
disappointing it may sound, one such understanding is still lacking. A
mechanistic insight is available for relatively few drugs.

Anthracyclines have been around for more than 40 years and many
theories of anthracycline-induced cardiotoxicity have been advanced.
Anthracyclines, which kill tumor cells by DNA intercalation and topo-
isomerase IIα inhibition, seem to induce cardiotoxicity by a constellation
of mechanisms that go from oxidative stress to mitochondriopathy,
changes in the expression and architectural coupling of respiratory
chain components, and alterations of iron and calcium homeostasis
[1,8]. Cause-and-effect relations or reciprocal interactions between
one mechanism and the others are nonetheless uncertain. More
recently, a unifying mechanism of cardiotoxicity was proposed: it
envisioned formation of anthracyline-DNA-topoisomerase 2β com-
plexes that caused DNA double-strands breaks and transcriptional
changes associated with impaired mitochondrial biogenesis and
function [11]. With that said, not all of the patients exposed to a
given anthracycline dose will develop cardiomyopathy and CHF [6].
Genetic predisposition may come into a play and determine the indi-
vidual risk and clinical pattern of development of cardiotoxicity. For
example, two electron reduction of a carbonyl group in the side chain
of anthracyclines generates secondary alcohol metabolites that are
more polar than their parent drugs, exhibits a reduced elimination
from cardiac tissue, and accumulates to form a long-lived cardiac res-
ervoir of anthracycline [2,8,12–17]. It follows that regardless of the
soundness of one molecular mechanism of toxicity or another, the risk
of cardiotoxicity may ultimately depend on individual changes in the
net levels of formation of secondary alcohol metabolites.

One should also comment on some disconnections betweenmolecu-
lar pathways and clinical manifestations of anthracycline cardiotoxicity.
The aforesaid mechanisms, primarily centered on mitochondrial dys-
function and formation of reactive oxygen species (ROS), fit quite well
in a canonical phenotype of dilated cardiomyopathy and CHF. As it was
said earlier, however, certain patients (childhood cancer survivors) de-
veloped subclinical dilated cardiomyopathy that eventually progressed
to restrictive cardiomyopathy with preserved or less compromised
LVEF [18]. Anthracycline-induced gene expression changes that caused
cardiac remodeling and collagen deposition should therefore be taken
in a due consideration [19]. On balance, it seems that even for 40-years
old drugs, like anthracyclines, the mechanisms and clinical correlates
of cardiotoxicity remain too vague or unexplored to form a solid basis
for choosing one defined strategy of prevention or treatment.
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For newer drugs our knowledge is even less adequate. In the case of
small-molecule kinase inhibitors (KI), mechanisms of cardiovascular
toxicity not only are multifactorial but also involve a blending of “on-
target” and “off-target effects”. Clinical reports of sunitinib-induced
cardiotoxicity showed that LVEF decreased because of hemodynamic
challenge from hypertension [20]. This did not come as surprise.
Sunitinib was developed to inhibit angiogenesis by targeting the
tyrosine kinase domain of VEGFr. By silencing VEGF–VEGFr signal-
ing pathway, sunitinib reduces capillary density and mitigates for-
mation and vasodilating effects of nitric oxide (NO), thereby
causing hypertension that stresses the heart. Sunitinib also inhibits
the kinase domain of platelet derived growth factor receptor
(PDGFr) and prevents cardiomyocytes from responding to stress
by secreting pro-angiogenic factors [21]. This is on-target toxicity
that develops through an anticipated poisoning of VEGFr and
PDGFr. However, sunitinib cardiotoxicity might occur also through
direct effects on cardiomyocytes that remain poorly characterized.
Again, but for different reasons, this is anything but surprise.
VEGFr and PDGFr are two limited examples of the very many poten-
tial targets of sunitinib. This drug inhibits also AMP-activated pro-
tein kinase but at therapeutic plasma levels, it concomitantly
inhibits some other 90 kinases. Inhibition of which kinase or combi-
nation of kinases caused cardiotoxicity from sunitinib would be very
difficult to identify [22].

Off-target effects from “targeted” drugs may occur also in cells other
than adult cardiomyocytes. In addition to inhibiting Bcr-Abl and c-Kit,
the antileukemic drug, imatinib, can block proliferation of c-Kit negative
side-population cardiac stem cells via binding to breast cancer resis-
tance protein [23]. In principle, this effect might prevent cardiac repop-
ulation and recovery of cardiac function if other noxae had irreversibly
damaged a critical number of adult cardiomyocytes. And finally,
in vitro models showed that myocyte damage from a broad panel of
KI correlated with lack of target specificity [24]. In light of the emer-
gence of unpredictable off-target effects, one cannot escape the conclu-
sion that mechanistic foundations for preventing or treating “direct”
cardiotoxicity from “targeted” drugs are still lacking. This having been
recognized, possible disconnections between preclinical findings and
clinical facts should always be taken in a due account. In the case of ima-
tinib, recent clinical surveys suggest that concerns about cardiotoxicity
may have been overemphasized. Imatinib cures patients of chronic
myeloid leukemia without causing cardiac events of major importance
[25,26].

By having illustrated the many factors that limit our understanding
of cardiotoxicity at a molecular level, we would now emphasize that
preclinical and clinical phenotypes of cardiac dysfunction from
anthracyclines or newer drugs are different enough to suggest a classi-
fication that guides clinical management of cancer patients. This classi-
fication is inspired by different effects induced by trastuzumab
Table 1
Cardiovascular events from type I or type II antitumoral agents.

Preclinical and
clinical findings

Type I agents
(anthracycline)

Mechanism Multifactorial damage to cardiomyocytes

Dose-dependence Cumulative
Clinical phenotype CHF with normal or decreased LVEF, Ischemic

disease and myocardial infarction

Ultrastructure Apoptosis or necrosis at endomyocardial biopsies
Clinical course May stabilize, but subclinical damage persists and

progresses to clinical symptoms over months or year
Effect of rechallenge High probability of cardiac events

Adapted, with modifications, from refs. [2,27]
LVEF, left ventricular ejection fraction.
administered alone, in combination with anthracyclines, or after
anthracyclines.

In the adult human heart trastuzumab alone causes a contractile
dysfunction that develops dose-independently, shows reversibility
upon medication or trastuzumab withdrawal, may not relapse upon
rechallenge, and only occasionally induces ultrastructural damage at
endomyocardial biopsies [27]. The characteristics of trastuzumab
cardiotoxicity are quite opposite to those of anthracyclines, whose
cardiotoxicity develops dose-dependently, causes changes of
endomyocardial biopsies, precipitates upon rechallenge, and may not
always respond to cardiovascular drugs [1]. These notions have formed
the basis to classify anthracyclines as type I agents, and trastuzumab as
type II agent [28]. This having been said, how does trastuzumab aggra-
vate cardiotoxicity of concomitant anthracycline? The current thinking
is that by blocking EGFR2 and autophosphorylation of its kinase domain,
trastuzumab silences downstream signalling factors (Grb2, ras, Raf,
MAPK, P13K, Akt) that modulate gene expression and cell growth, glu-
cose uptake, and sarcomeric protein turnover [29]. All such survival-
oriented signals may be redundant in the healthy unchallenged heart
but prove to be life-saving if cardiomyocytes were challenged by
anthracyclines. In other words, blocking EGFR2 with trastuzumab ag-
gravates anthracycline cardiotoxicity by diminishing survival and re-
pairs mechanisms of the heart. It was in keeping with these concepts
that administering trastuzumab weeks or months after anthracyclines
nearly abated the risk of serious cardiac events and became routine
practice in the settings of adjuvant chemotherapy of early breast cancer
[30]. Here it is worth of noting that trastuzumab lacked cardiotoxicity in
preclinical murine models; in fact, trastuzumab does not recognize the
ectodomain of murine EGFR2 [31]. Trastuzumab binds to primate
EGFR2 but only few primates were used in preclinical tests and none
of them was treated with anthracyclines. Again, these facts denote
that preclinical studies do not always help to anticipate clinical
cardiotoxicity of one agent or another [2,32].

Other “targeted” drugs may be similar to trastuzumab in many
respects. In preclinical settings, sorafenib per se caused little or no
damage to the heart but remarkably aggravated mortality of
experimental-induced myocardial infarction, as if sorafenib caused
trastuzumab-like silencing of factors that helped cardiomyocytes to
withstand stressor conditions [33]. In clinical settings, bevacizumab
aggravated cardiotoxicity of concomitant anthracyclines regardless
of blood pressure changes, which was similar to what trastuzumab
did in patients receiving concomitant anthracycline [34]. And finally,
retrospective analyses show that cardiovascular events from suniti-
nib denote significant reversibility, such that many patients were
able to resume sunitinib dosing following spontaneous of pharmaco-
logical resolution of events [35]. All such findings suggest that the
classification of type II agent might be extended to including suniti-
nib and possibly, other targeted drugs (Table 1).
Type II agents (trastuzumab, sunitinib;
other targeted agents?)

Silencing of survival factors, impaired
cardiomyocyte survival to hemodynamic
challenges or concomitant anthracycline
Lack of evidence for dose-dependence
CHF with decreased LVEF (trastuzumab);
hypertension, decreased LVEF, thrombosis and
thromboembolism (sunitinib and other angiogenesis inhibitors)
With limited exceptions, no apparent ultrastructural abnormalities

s
High likelihood of complete or near-to-complete recovery upon
withdrawal and/or medication
Increasing evidence for the safety of rechallenge
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3. Balancing oncologic efficacy with cardiovascular outcome:
primary prevention

Preventing a disease is better than treating it. This dictum holds true
also in Cardio-Oncology. As shown in Fig. 1, the risk of cardiovascular
events and the need for treatment gradually increase if cancer patients
are denied primary and/or secondary prevention. Some strategies of pri-
mary prevention are specific to patients candidate for anthracycline-
based treatments; others are less specific and can be applied to any
patient undergoing chemotherapy.
3.1. Primary prevention of cardiotoxicity from anthracyclines

Anthracycline cardiotoxicity can be reduced by replacing bolus ad-
ministration with slow infusions over 5 to 96 h. This strategy builds
onwell defined pharmacokinetic determinants of anthracycline activity
and cardiotoxicity. Whereas activity correlates with total plasma expo-
sure to anthracyclines (as exemplified by the area under the curve of
plasma anthracycline concentration vs time, AUC), the risk of CHF corre-
lates with peak plasma level of anthracyclines (Cmax) and their conse-
quent diffusion and accumulation in the heart. Replacing bolus
administration with slow infusions does not significantly affect
anthracycline AUC but diminishes anthracycline Cmax and anthracycline
accumulation in the heart [1]. Cardiac safety of slow anthracyclines
infusions has been documented in numerous studies, even when
anthracyclineswere administered in cumulative doses known to induce
CHF [1].

Anthracycline cardiotoxicity can be reduced also by replacing con-
ventional anthracyclines with liposomal formulations. These latter are
too big to cross the gap junctions of endothelial linings in the heart
and many other healthy tissues; however, liposomal formulations are
small enough to cross the irregular and leaky microvasculature that
characterizes many solid tumors [1]. One liposomal doxorubicin
(Caelyx® in Europe, Doxil® in US) has polyethylene glycol embedded
in the lipid layer; other formulations of doxorubicin (Myocet®) or dau-
norubicin (Daunoxome®) adopt uncoated liposomes. Following extrav-
asation in tumors, liposomal formulations accumulate by virtue of the
insufficient lymphatic drainage and increased interstitial pressure that
characterize many tumors. And in addition, tumor microenvironment
destabilizes the liposomal vesicle through a variety of mechanisms
that go from low pH to the release of lipases from dying tumor cells or
the release of enzymes and oxidizing agents by tumor-infiltrating
inflammatory cells. In the case of uncoated formulations, also the
phagocytic cells residing in tumors could metabolize liposomes and
release active free anthracycline [1]. Liposomal formulations therefore
deliver substantial amounts of anthracycline in tumors but much less
Primary
prevention

Oncologic 
treatment

Secondary 
prevention

Subclinical

damage

Treatment

Cardiovascular 

event

Fig. 1. Prevention or treatment of cardiovascular events in cancer patients. The risk of car-
diovascular events and the need for treatment increase gradually as cancer patients were
denied primary and/or secondary prevention.
so in the heart, offering advantages quite similar to slow infusions.
Regardless of obvious pharmacokinetic and toxicokinetic differences
between uncoated and pegylated formulations, all liposomal
anthracyclines proved to be active and reasonably cardiac tolerable
in a number of clinical trials [36,37]. Efficacy and safety were also
seen when uncoated or pegylated liposomal doxorubicin was used
in combination with trastuzumab, i.e., under conditions when con-
ventional doxorubicin and trastuzumab had proved to synergize
and to cause unacceptable cardiotoxicity [38,39].

Another possible strategy for preventing cardiotoxicity could be the
replacing of a given anthracycline with an equiactive but less
cardiotoxic cogener. The number of “less cardiotoxic” analogs keeps
growing but after all, unambiguous clinical validation of a “less
cardiotoxic” analog is still lacking [1]. 4′-Epidoxorubicin (epirubicin)
has long been said to cause less cardiotoxicity than doxorubicin. Inter-
estingly, however, epirubicin also shows improved body clearance and
therefore causes less antitumor activity when administered equimolar
to doxorubicin. If epirubicin is administered in higher doses to compen-
sate for increased elimination and to attain the same activity as that of
doxorubicin, the risk of cardiotoxicity increases, particularly in the el-
derly or in patients with defined risk factors [40]. Amrubicin and the
novel anthracenedione, pixantrone, are noticeably less cardiotoxic
than doxorubicin but unfortunately they are approved for use in
very limited conditions [15–17]. Other strategies for reducing
anthracycline cardiotoxicity were based on the coadministration of
drugs or natural compound that improved the antioxidant defenses
of cardiomyocytes against oxidative stress. Regrettably, neither vita-
min E nor N-acetylcysteine proved able to prevent cardiotoxicity in
patients exposed to cumulative doses of doxorubicin [1]. These findings
might cast doubts on cause-and-effect relations between oxidative
stress and cardiotoxicity, unless one assumed that antioxidant dosages
were not high enough for one compound or the other to permeate car-
diac sanctuaries exposed to oxidative damage.

Historically, the most popular strategy for preventing anthracycline
cardiotoxicity was based on the coadministration of dexrazoxane. This
latter is a bis-ketopiperazine which enters cardiomyocytes, undergoes
stepwise hydrolysis of its piperazine rings, and forms an EDTA-like
diacid-diamide that chelates iron [1]. Iron chelation and mitigation of
iron-catalyzed free radical reactions were therefore considered to be
culprits of the cardiac protective efficacy of dexrazoxane [1,41]. In sub-
sequent years, however, dexrazoxanewas shown to inhibit topoisomer-
ase IIα (in proliferating cells) and topoisomerase IIβ (in cardiomyocytes
and other quiescent cells) [42]. In cardiomyocytes, dexrazoxane inhibi-
tion of topoisomerase IIβ prevented doxorubicin-induced DNA double
strand breaks and cell death. Regardless of its multiple modes of action,
dexrazoxanewas able to prevent anthracycline-related cardiotoxicity in
many clinical studies of both childhood and adult cancer patients, often
allowing for the administration of anthracycline doses above the thresh-
old associated with risk of CHF [1]. Dexrazoxane was the only drug that
granted approval from US Food and Drug Administration for use as
cardiac protectant in patients exposed to anthracyclines.

Each of the aforesaid strategies of primary prevention should be
scrutinized for risk:benefit ratio. Slow infusions limit patients' compli-
ance, and doctors perceive them as too laborious and demanding to be
done on a routine basis. Perhaps more importantly, protective efficacy
of slow infusions in children with acute lymphoblastic leukemia has
been questioned [43]. Liposomal formulations cause more mucositis,
hand–foot syndrome, and present obvious problems of cost sustainabil-
ity [1]. Moreover, liposomal anthracyclines are approved for use in only
limited settings (metastatic breast cancer for uncoated liposomal doxo-
rubicin;metastatic breast cancer, advanced/refractory ovarian cancer or
multiple myeloma, AIDS related Kaposi's sarcoma, for pegylated liposo-
mal doxorubicin; AIDS related sarcoma for liposomal daunorubicin).

As to dexrazoxane, its clinical usagewas limited by just one report of
its possible interference with anthracycline activity in metastatic breast
cancer [44]. In addition to inhibiting topoisomerases, dexrazoxane is
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also known for its weak alkylating activity [41]. An interference of
dexrazoxanewith anthracycline activitymight thereforefit in a scenario
in which a moderate–weak antitumor agent (dexrazoxane) competed
with a stronger agent (anthracycline) for critical DNA or topoisomerase
sites. This has never been demonstrated [45]. In contrast, an over-
whelming body of clinical studies demonstrates that dexrazoxane did
not diminish anthracycline activity [8,45]. The American Society of
Clinical Oncology, Chemotherapy, and Radiotherapy Expert Panel main-
tained caution and recommended using dexrazoxane only in very limit-
ed conditions (e.g., patients who have received more than 300 mg/m2

for metastatic breast cancer and who may benefit from continued
doxorubicin treatment) [46]. We suggest that the time has come
for revisiting this cautionary position. Another controversial issue
about dexrazoxane pertains to an increased risk of second malignan-
cies. This was observed in survivors of Hodgkin lymphoma who had
received doxorubicin in combination with etoposide. By having con-
sidered that both doxorubicin and etoposide and dexrazoxane
inhibited topoisomerase IIα, albeit by different mechanisms and
with different efficacies, it was postulated that combining the three
drugs could exceed a threshold above which topoisomerase inhibi-
tors caused genetic instability in normal tissues [47]. This report
led the European Medicine Agency to conclude that dexrazoxane
should not be used in children due to the risk of secondmalignancies.
Two studies of survivors of childhood acute lymphoblastic leukemia
reached opposite conclusions and did not detect an increased risk of
secondmalignancies from dexrazoxane [48,49].We believe that risk:
benefit analysis supports a wider clinical usage of dexrazoxane with
the possible exception of conditions in which patients received
etoposide or etoposide-anthracycline combinations.

Slow infusions, liposomal formulations, and dexrazoxane, are
prototypic examples of pharmacologic strategies for primary pre-
vention of anthracycline cardiotoxicity. The advancement of knowl-
edge and identification of genetic variants that put patients at a
higher risk of anthracycline-related cardiotoxicity suggest that the
time might be mature for developing other strategies. The key role of
long-lived secondary alcohol metabolites, and the reported observation
that patients with type 3 carbonyl reductase V244M homozygous G ge-
notype formed higher levels of metabolites and developed CHF after ex-
posure to low cumulative anthracycline doses, should form a rationale to
screen for enzymatic variants before a patientwas treated anthracyclines
[50]. By a similar approach but for different reasons, measurements of
topoisomerase 2β levels in circulating blood leukocytes might be used
Table 2
Primary prevention of anthracycline cardiotoxicity.

Measure Mechanism of protection An

Slow infusions Normal anthracycline AUC but lower Cmax Pre
wit

Liposomal formulations Limited diffusion through the gap
junctions of coronary microvasculature

Im
adm
tra

Dexrazoxane Iron chelation and mitigation of ROS
formation/reactivity, inhibition of
topoisomerase IIβ-mediated DNA double
strand breaks

Pre
bot

Antioxidants Mitigation of oxidative stress Red

Less cardiotoxic analogs Reduced activation and toxicity
mechanisms

Red

Screening for CB3 polymorphisms,
topoisomerase IIβ levels, deficiencies
in TCL1A or MDR1 protein genes,
familial cardiomyopathy mutations

Identification of at-risk patients Ma

AUC, area under the curve of plasma concentration versus time; Cmax, peak plasma concentratio
leukemia protein 1A; MDR1, multidrug resistance protein 1.
See also text for explanations.
to stratify patients for cardiotoxicity risk [51]. Recommendations about
avoiding anthracyclines or reducing anthracycline dosages in patients
with CBR3polymorphismsor high topoisomerase 2β levels should none-
theless be validated by large prospective studies. Similar limitations
apply to the screening of other genetic factors thatwere shown topredis-
pose to anthracycline cardiotoxicity (reduced expression of pro-survival
coactivators like T-cell leukemia/lymphoma protein 1A or of multidrug
resistance protein 1 [52], mutations associated with familial cardiomy-
opathy [53,54]).

General concepts of primary prevention of anthracycline
cardiotoxicity are summarized in Table 2.

3.2. Primary prevention of cardiotoxicity from any agent

For any chemotherapeutic agent with a known or suspected po-
tential for inducing cardiotoxicity, primary prevention is achieved
by measures that rest on common sense. Pre-existing comorbidities
(hypertension, systolic dysfunction, arrhythmias, metabolic disor-
ders) or unfavorable lifestyle choices (smoking, overweight, reduced
physical activity) have long been known to increase the risk of
cardiotoxicity in patients scheduled to receive anthracyclines [1].
This notion can safely be extended to cardiotoxicity from any other
agent and calls for vigorous pharmacological correction of pre-
existing comorbidities before chemotherapy was started [23]. And
importantly, an appraisal of pre-existing comorbidities should not
be exploited to replace one cardiotoxic agent with another agent
that is less cardiotoxic but also shows lower oncologic efficacy. In
the settings of anthracyclines, one might consider using liposomal
formulations. In some European countries, national health systems
actually encourage off label usage of liposomal anthracyclines in
high risk patients. For “targeted” drugs with type II cardiotoxicity,
evidence of reversibility and of safety at rechallenge strongly advise
to not abandon the opportunity of optimal treatment, provided that
pre-existing risk factors were adequately controlled by cardiovascu-
lar or metabolic drugs.

Some reports suggest that cardiovascular drugs should be adminis-
tered also to patients without risk factors. Significant cardiac protection,
measured as preservation or limited decrease of LVEF, was seen in stud-
ies of carvedilol (α1 and β1–2 adrenoceptor blocker) [55], nebivolol (β1

blocker) [56] or a combination of carvedilol with the angiotensin
converting enzyme inhibitor (ACEI), enalapril [57]. Less protection
was seen with metoprolol (β1 blocker) or enalapril alone [58]. The
ticipated clinical benefit Disadvantages/limitations

served anthracycline activity
h reduced risk of cardiotoxicity

Poor patients' compliance, laborious and
demanding in clinical practice, lack of cardiac
protection in children with acute lymphoblastic
leukemia.

proved cardiac tolerability; safe
inistration with concomitant

stuzumab

Mucositis, hand–foot syndrome, high costs, limited
approved indications.

vention of cardiotoxicity in
h childhood and adult cancer

Interference with anthracycline activity and
increased incidence of second malignancies
(unconfirmed and/or dispelled)

uced incidence of CHF? Unproven efficacy (limited cardiac penetration of
antioxidants?)

uced incidence of CHF? Under scrutiny; reduced cardiotoxicity of
amrubicin and pixantrone in limited approved
settings

y guide dose adjustments? Investigational

n; ROS, reactive oxygen species; CBR3, type 3 carbonyl reductase; TCL1A, T-cell lymphoma/
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rationale for using carvedilol or nebivolol was influenced by some phar-
macodynamic reasonings. In addition to blocking adrenergic receptors,
cardvedilol diminished ROS formation in isolated cardiomyocytes ex-
posed to doxorubicin [59]. Nebivolol induced endothelial nitric oxide
(NO) synthase expression, thereby favoring NO-mediated vasodilation
[60]; nebivolol also prevented NO synthase uncoupling, inappropriate
generation of peroxynitrite, nitroxidative stress [61]. The available evi-
dence nonetheless suggests that beneficial effects from one β blocker
or another eventually depends on its affinity and selectivity for β1 re-
ceptors [Ki(β2)/Ki(β1)] and on consequent effects such as reductions
in rate-pressure products and mitigation of myocardial remodeling.
This information was obtained in patients exposed to anthracyclines
but we believe that there is no conceptual obstacle to anticipating ben-
eficial effects also in patients exposed to targeted agents that cause
e.g., vasoconstriction and hypertension.

An observational clinical cohort study of breast cancer patients treat-
edwith anthracyclines suggests that also statins could reduce the risk of
CHF [62]. This finding is consistentwith animal studies andwith the no-
tion that simvastatin protected cardiomyocytes via activation of nitric
oxide synthase and mitochondrial ATP sensitive potassium channels
[63]. Interestingly, however, statin effects weremost evident in patients
who received other cardiovascular drugs for preexisting risk factors. It
remains to be established whether statin effects were coincidental or
reflected one or more independent pharmacodynamic effects.

Primary prevention of thrombotic or thromboembolic events from
targeted agents is even less firmly established. There is no approved
guideline that recommends prophylactic commencement of antiplate-
let agents and/or anticoagulants nor preferential usage of an agent
over another. Oncologic treatment should be preceded by careful anal-
ysis of patient's records of previous coagulation disorders and by labora-
tory assessment of thrombophilic risk factors. Patient's surveillance
during the course of treatment, and serialmonitoring of laboratory indi-
ces like platelet count/reactivity and prothrombin time, are obviously
advised and should guide antiplatelet and/or anticoagulant interven-
tions at the very early signs of vascular damage.

Again, each of the aforesaid strategies of primary prevention
needs to be scrutinized for risk:benefit balance. Many doctors be-
lieve that in patients without risk factors, discomforts from chemo-
therapy (fatigue, nausea, vomiting) should not be aggravated by
class-related effects of cardiovascular drugs (bradycardia, hypotension,
fluid retention, cough). We believe that judicious perception of the risk
of cardiotoxicity should eliminate this conceptual barrier to primary
cardiovascular prevention. On the other hand, many commonly used
medications for cardiovascular disease may alter metabolism and/or
transport of anticancer drugs [23]. A risk of harmful pharmacokinetic in-
teractions cannot be ruled out. One can only recommend that in patients
without risk factors, cardiovascular drugs were used at “prophylactic”
rather than “therapeutic” dosages. Prospective randomized trials are
Table 3
Primary prevention of cardiovascular events from any agent.

Measure Mechanism of protection An
ben

Pharmacologic correction of
comorbidities in
high risk patients

Mitigation of cardiovascular, metabolic,
and lifestyle risk factors

Red
car

Coadministration of ACEI, ARB,
β-blockers, in low risk patients

Reductions of rate-pressure products and
mitigation of cardiac distress

Im
ant

Statins Activation of nitric oxide synthase and
mitochondrial ATP sensitive potassium
channels (preclinical evidence only)

Red

Antiplatelet drugs, anticoagulants Reduction of platelet activation and
inappropriate blood coagulation

Red
thr

ACEI, angiotensin converting enzyme inhibitor(s); ARB, angiotensin II receptor blocker(s); CHF
needed to define the efficacy and dose relations of primary prevention
with cardiovascular drugs as well as its impact on short and long term
efficacy of oncologic treatment. With particular regard to angiogenesis
inhibitors we would comment on the possible positive correlation be-
tween the oncologic efficacy of these drugs and their ability to induce
hypertension through vasoconstriction and reduced capillary density
[9,64]. Inasmuchas tumor growth, invasion andmetastatization, depend
on blood supply to cancer cells, one might wonder whether drugs that
prevented hypertension through vasodilation could also restore blood
supply to tumor cells and diminish oncologic efficacy to some extent.
In the absence of studies that explored this issue in depth, common
sense and judicious assessment of patient-specific risk:benefit balance
must prevail. Drugs that lowered blood pressure by controlling cardiac
output (β blockers) should be preferred over drugs that caused vasodi-
lation (α blockers, ACEI, angiotensin II receptor blockers (ARB), periph-
eral dihydropyridine-type Ca2+ channel blockers).

General concepts of primary prevention of cardiovascular events
from any agent are summarized in Table 3.

4. Secondary prevention

4.1. Methodological limitations and available evidence

Secondary prevention requires that patients be monitored during
and after therapy and be managed when toxicity signals appear. But
how can toxicity be defined? Problems in defining cardiotoxicity at a
molecular level translate into uncertainties in clinical settings. And
what action or actions should be taken to protect patients if a laboratory
or clinical finding met a definition of cardiotoxicity?

According to some recommendations, cardiotoxicity should be
adjudicated as soon as a patient developed symptoms of CHF or
asymptomatic decreases of LVEF [65]. This is a careful and conserva-
tive definition that nonetheless suffers from potential downside. In
some patients LVEF returned to baseline if chemotherapy was
stopped but in other patients LVEF returned to baseline also when
chemotherapy was continued [66]. In cancer patients LVEF may de-
crease by factors that do not always reflect drug-related cardiotoxicity
(e.g., hydration status, anemia, infections, transient neurohumoral
changes). Binding decisions to occasional decreases of LVEF would ex-
pose patients at risk for treatment discontinuation and poor oncologic
outcome. Decisions about interrupting life-saving antitumor therapies
should better rest with serial measurements that detected gradual but
inexorable deterioration of LVEF. This can only be done in centers that
developed collaborations between oncologists and cardiologists; how-
ever, there is a lack of approved guidelines that precisely defined how
often should e.g., LVEF be measured during and after treatment.
Cardiotoxicity has recently been defined also by means of circulating
levels of cardiac biomarkers. In blood samples collected after ending
ticipated clinical
efit

Disadvantages/limitations

uced incidence of on-treatment
diac events

None.

proved cardiac tolerability of
itumor agents

Possible pharmacokinetic interactions with
antitumor drugs (need for dose finding
studies); possible pharmacodynamic
interference of ACEI, ARB, or peripheral Ca2+

antagonists, with angiogenesis inhibitors?
uced incidence of CHF None, but the role of potential confounders

(concomitant cardiovascular drugs) needs to
be elucidated

uced incidence of thrombosis and
omboembolism

Lack of guidelines

, congestive heart failure. See also text for explanations.



Table 4
Secondary prevention.

Measure Mechanism of protection Clinical benefit Disadvantages/limitations

Treatment withdrawal as soon as
LVEF decreases

Removal of the cardiotoxic agent or agents LVEF normalizes Limited predictive value of LVEF decreases (LVEF
may normalize even if treatment was not
stopped), risk of tumor undertreatment

Monitoring of post-infusional levels
of troponin I in patients with
normal LVEF

Detection of cardiomyocyte necrosis and
identification of patients at risk for loss of
contractile function

May guide early commencement of
ACEI to prevent LVEF decreases and
CHF

Information limited to patients with prior
chemotherapies or exposed to high dose
chemotherapy protocols

Monitoring of contractile function
indices after ending chemotherapy

Unraveling asymptomatic subclinical
cardiac dysfunction

May guide therapy with ACEI to
prevent further deterioration of left
ventricle function

Cardiotoxicity progresses after transient
improvements

Surveillance and correction of
chemotherapy-related chronic
health conditions

Preventing the overlap of newly developed
comorbidities with subclinical
cardiotoxicity

Reduced risk of late cardiovascular
sequelae

None

ACEI, angiotensin converting enzyme inhibitor(s); CHF, congestive heart failure
See also text for explanations.
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chemotherapy infusions, troponin I elevations denote necrosis of a def-
inite number of cardiomyocytes and may identify patients at risk for
loss of contractile function [67].

Some studies examined the efficacy of β-blockers or ACEI in patients
who developed cardiotoxicity as defined by means of decreases of LVEF
or elevations of troponin I. In one study, enalapril was given to patients
who showed persistent elevation of troponin I at 72 h from chemother-
apy infusions. In comparisonwith patients without enalapril, thosewho
received enalapril showed significantly higher LVEF at 1-year follow-
up;moreover, patients without enalapril showed a disturbing incidence
of LVEF decreases to below 50% [67]. It is worth noting that troponin I
elevations occurred primarily in patients who had received prior onco-
logic treatment and then underwent secondor third line treatmentwith
high dose chemotherapy. Predictive value of troponin elevations in pa-
tients undergoing first line standard dose chemotherapy remains to be
established. In childhood cancer survivors, starting enalapril some
7 years after ending an anthracycline-based treatment offered measur-
able improvements in many indices of left ventricle structure and func-
tions; however, the improvements did not last longer than 6 years [68].
This study suggested that late commencement of enalapril failed to stop
cardiac remodeling but caused blood pressure-rate reductions that only
transiently delayed it. Earlier enalapril commencement, possibly guided
by troponin I elevations during the course of chemotherapy,might have
been of greater efficacy in these patients.

4.2. Multiple hits and importance of surveillance

In the absence of universal imaging or biohumoral markers for the
lifetime risk of cardiotoxicity, one should look at cardiotoxicity and
hence, at secondary prevention, from alternative but not mutually
exclusive viewpoints. Comorbidities play a key role in this setting. We
mentioned that preexisting comorbidities or unfavorable lifestyle
choices put patients at a higher risk to develop cardiovascular sequelae
of antitumor treatment. The available evidence suggests that this pic-
ture should be viewed also the other way around: in comparison with
age-matched controls, previously healthy survivors of adolescent or
adult cancer develop more comorbidities or tend to reduce physical ac-
tivity [69,70]. In childhood cancer survivors, 10% of 50-year-old patients
carry three chronic health conditions, with ~50% and ≥20% cumulative
incidence of, respectively, first and second condition. Age-matched
siblings would carry only one or two conditions, with ≤20% cumulative
incidence of the first condition [23]. It follows that in cancer survivors,
potentially reversible subclinical cardiotoxicity (unheralded by LVEF
decreases or troponin elevations) may progress toward symptomatic
cardiotoxicity by overlapping with risk factors that matured after
ending chemotherapy. In patients exposed to anthracycline-based
regimens, comorbidities would overlap with the cardiac reservoir
of secondary alcohol metabolites [2,6,8]. In patients exposed to
platinum compounds, comorbidities would overlap with drug that
accumulates in the intima of arteries [71]. This is the so-called
“multiple-hit hypothesis” [2,6,8,70]. These concepts call for new
approaches to the caring of cancer survivors. Surveillance modali-
ties and comorbidity treatment should be tailored to the character-
istics of each survivor and data show that patients' outcome
improves significantly if survivors referred to cancer centers with
expertise in long term surveillance [69]. Much of this information de-
rives from patients treated with anthracyclines and nonanthracycline
chemotherapeutics. Less is known about the possible incidence of
chronic health conditions in survivors of cancer treated with targeted
agents. The concept of type II toxicity should argue against overt concern
but more data are needed to draw firm conclusions.

General concepts of secondary prevention are summarized in
Table 4.

5. New avenues

We illustrated the problems that cardio-oncologists face in assisting
cancer patients and survivors at risk for cardiovascular events. We said
relatively little of what can be done when patients developed severe
symptoms during or after treatment. Although the mechanistic classifi-
cation of antitumor drugs in type I and type II agents would intuitively
call for different therapeutic approaches [23], the pharmacologic arma-
mentarium of cardio-oncologists does not meet this requirement but
rests with the same cardiovascular drugs (ACEI, ARB, β blockers, inotro-
pic agents, Ca2+ channel blockers, diuretics). More should be done in
the settings of prevention.

5.1. Improving primary prevention in children with cancer

Our appraisal of the lifetime risk of cardiovascular sequelae of antitu-
mor therapies originates primarily from epidemiologic studies of child-
hood cancer survivors. The life expectancy of these patients is long
enough to allow for subclinical cardiotoxicity to become symptomatic
through themultiple hits mechanism and, in the case of anthracyclines,
through the slowbut inexorable accumulation of secondary alcoholme-
tabolites in the heart. Regrettably, however, there is a lack of primary
prevention studies with liposomal anthracyclines that caused limited
cardiac exposure to anthracycline and proved to be more cardiac toler-
able than conventional formulations in adult patients. Fifteen observa-
tional studies described the use of liposomal anthracyclines in
children with cancer but most patients had been treated extensively
in the past and hence, they had already been primed to risk of
cardiotoxicity [72]. There is a solid rationale and compelling need for
studies that evaluated liposomal anthracyclines as first line agents for
pediatric cancer. These studies should include a follow-up that was
long enough to decipher the impact of liposomal anthracyclines on
both oncologic and cardiovascular outcomes.
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5.2. Considering primary prevention in the elderly

Older cancer patients are often undertreated because of fear of
toxicity. This may lead to adopt treatment regimens that lack curative
effects, particularly when anthracyclines are given in lower doses or
fewer cycles or are replaced by other drugs. There is a tendency to
ignore that the elderly may benefit from the same cardioprotective
strategies we described for younger patients. On the other hand, there is
a limited but persuasive evidence that even conventional anthracyclines
could be safely administered to the elderly at risk for cardiotoxicity, pro-
vided that the cumulative full dose was split in more numerous cycles
compared to the standard regimen adopted in younger patients [73].

5.3. Improving secondary prevention with new markers and drugs

As for secondary prevention, we believe that more studies are need-
ed to explore the value of natriuretic peptides that are secreted by ven-
tricular cardiomyocytes under conditions of stress [74]. In particular,
active B-type natriuretic peptide (BNP) and the inactive aminoterminal
fragment of its prohormone (Nt-proBNP)may help to detect left ventri-
cle distress in asymptomatic patientswith normal LVEF [75].We foresee
developments also in the settings of imaging techniques. Echocardio-
graphic measurements of strain and strain rates, indices of myocardial
deformation, may help to detect asymptomatic abnormalities in patient
at risk for delayed decreases of LVEF and symptomatic CHF [76]. The
clinical utility of these biomarkers should be validated in large
multiinstitutional studies.

Secondary prevention should also benefit from studies that identify
diastolic dysfunction as the earliest manifestation of both on-treatment
and delayed cardiotoxicity. Asymptomatic cancer survivors often
present echocardiographic indices of diastolic dysfunction (im-
paired relaxation, stiffness) [4,71,77]. In non-oncologic settings, dia-
stolic dysfunction may progress toward CHF with preserved LVEF
and eventually, toward CHFwith reduced LVEF [78]. In oncologic set-
tings, progression of cardiotoxicity from asymptomatic diastolic dys-
function to CHF might equally well be driven by several factors.
Almost all of chronic health conditions that develop in cancer
Ischemia

Alkylators

Fluoropyrimidines A

R

Ranolazine

N

Diastolic 
stiffness
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Fig. 2. Ranolazine-inhibitable activation of INa,Late and increase of diastolic stiffness induced by
chemia, anthracyclines and nonanthracycline chemotherapeutics cause elevated intracellular N
cess Ca2+ entry causes diastolic stiffness, and the latter causes ischemia that perpetuates IN
(increased Ca2+ release from sarcoplasmic release and reduced Ca2+ sequestration inmitochon
cycles. Modified after ref. [75]. NaCh, Na+ channel; NCX, Na+–Ca2+ exchanger; ROS, reactive o
survivors (hypertension, diabetes, dyslipidemia) can aggravate
diastolic dysfunction [75]. Asymptomatic but persistent diastolic
dysfunction progresses also toward ischemic disease; in fact, myo-
cardial stiffness increases interstitial pressure and diminishes cor-
onary conductance, eventually inducing conditions of limited
oxygen supply to cardiomyocytes [75]. The pathophysiology of
diastolic dysfunction therefore embraces the main clinical pheno-
types of cardiotoxicity (CHF with normal LVEF, CHF with reduced
LVEF, ischemic disease). The available evidence suggests that
diastolic dysfunction could be detected a few months after ending
chemotherapy [79], but the possibility that it developed earlier
during the course of chemotherapy should not be ignored.

Common cardiovascular drugs are not specific enough to cure dia-
stolic dysfunction [80]. There are hopes that diastolic dysfunction
could be cured with ranolazine, a drug approved for the treatment of
chronic angina. Ranolazine relieves chronic angina by inhibiting diastol-
ic late inward sodium current (INa,Late). In the repolarizing ischemic
heart there is delayed and/or incomplete inactivation of INa,Late. This
causes elevation of intracellular Na+, which exchanges with extracellu-
lar Ca2+ via the reverse mode Na+–Ca2+ exchanger. Excess Ca2+ entry
activates myofilaments, increases diastolic left ventricle wall stiffness,
reduces coronary conductance, and therefore causes further ischemia
[81]. By inhibiting INa,Late ranolazine breaks a vicious cycle in which
ischemia begets ischemia.

In patients with chronic angina, INa,Late is activated by hypoxia, accu-
mulation of ischemicmetabolites, and overproduction of ROS [82]. A sim-
ilar activation may occur in cardiomyocytes exposed to anthracyclines
that consume oxygen and form ROS by continuous reduction–oxidation
of their quinone moiety; moreover, anthracyclines increase cytoplasmic
Ca2+ by mechanisms that go from an increased sarcoplasmic release of
Ca2+ to an impaired sequestration of Ca2+ inmitochondria or sarcoplas-
mic reticulum [1,75]. Anthracycline-induced diastolic dysfunction should
therefore be a good target for drugs, like ranolazine, that inhibited
INa,Late and prevented cytoplasmic Ca2+ overload. We suggested
that INa,Late could be activated also by nonanthracycline chemother-
apeutics (fluoropyrimidines, alkylators, tubulin-active vinca alka-
loids) that caused coronary endothelial dysfunction and ischemia,
nthracyclines

OS

Anthracyclines

Na+

Ca2+

Ca2+
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anthracyclines, alkylators, and fluoropyrimidines. By activating INa,Late through ROS and is-
a+ that exchanges with extracellular Ca2+ via the reversemode Na+–Ca2+ exchanger. Ex-
a,Late activation. Anthracyclines induce Ca2+ overload also by independent mechanisms
dria and sarcoplasmic reticulum). By inhibiting INa,Late, ranolazine interrupts these vicious
xygen species.
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whether silent or heralded by transient arrhythmias [75]. This lat-
ter mechanism would be potentiated if nonanthracycline chemo-
therapeutics were combined with anthracyclines that activated
INa,Late and caused diastolic dysfunction by their own mechanisms
[75]. By inhibiting INa,Late ranolazine would break vicious cycles
initiated by anthracyclines and nonanthracycline chemotherapeu-
tics (Fig. 2).

These premises gave us a rationale to design a Phase 2B study of
ranolazine in asymptomatic cancer patientswith early diastolic dysfunc-
tion. The study was designed to demonstrate that i) asymptomatic dia-
stolic dysfunction could be detected as early as few days after patients
completed antitumor therapy ii), 5 week ranolazine treatment relieved
protocol-specified indices of diastolic dysfunction, and iii) ranolazine
was superior to most common cardiovascular drugs [75]. This study ex-
plores the feasibility of secondary prevention with ranolazine. Primary
prevention was not explored as we felt that ranolazine, by competing
for cytochrome P450 3A and P-glycoprotein, could interfere with
metabolization and transport of many antitumor drugs [75]. Once
again, cardiovascular interventions must not interfere with optimal on-
cologic treatment, particularly when cardio-oncologists explore new
ideas, new drugs, or new indications for drugs approved in other
settings. Patients' recruitment and assessment were completed few
months ago, and results are being analyzed for the assessment of
ranolazine safety and efficacy.

6. Conclusions

Newwaves of antitumor drugswill enter clinical practice in the next
few years. This will probably cause newer ormore severe phenotypes of
cardiotoxicity. With new KI, the incidence of cardiac rhythm distur-
bances (QT prolongation) and blood coagulation disorders (thrombosis,
thromboembolism) is very likely to increase. But drugs save lives and
hence, cardio-oncologists will be asked to find their best way to protect
the cardiovascular system without diminishing oncologic efficacy of
new drugs or cocktails of drugs. Excellence in risk:benefit analysis will
be a formidable tool to achieve this goal but laboratory scientists too
will be crucial for deciphering the molecular foundations of cardiac
therapy in cancer patients [83].
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