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Abstract

We wish to use a given nondeterministic two-way multi-tape acceptor as a transducer by
supplying the contents for only some of its input tapes, and asking it to generate the missing
contents for the other tapes. We provide here an algorithm for assuring beforehand that this
transduction always results in a .nite set of answers. We also develop an algorithm for evalu-
ating these answers whenever the previous algorithm indicated their .niteness. Furthermore, our
algorithms can be used for speeding up the simulation of these acceptors even when not used
as transducers. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we study the following problem: assume that we are given a nondeter-
ministic two-way multi-tape acceptor A and a subset X of its tapes. We would like
to use A no longer as an acceptor which receives input on all its tapes, but instead
as a kind of transducer [15, Chapter 2.7] which receives input on tapes X only and
generates as output the set of missing inputs onto the other tapes. We then face the
following two problems:

Problem 1. Can it be guaranteed that given any choice of input strings for tapes X
the set of corresponding outputs of A will always remain /nite?

Problem 2. In those cases where Problem 1 can be solved positively, how can the
actual set of outputs corresponding to a given choice of input strings be computed?

� Supported by the Academy of Finland, grant number 42977.
E-mail address: matti.nykanen@cs.helsinki.. (M. Nyk(anen).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00297 -8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82703154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


84 M. Nyk2anen / Theoretical Computer Science 267 (2001) 83–104

Fig. 1. A 2-FSA for recognizing strings and their reversals.

The motivation for studying these two problems came from string databases [3, 7, 11]
which manipulate strings instead of indivisible atomic entities. Such databases are of
interest, for example, in bioinformatics, because they allow the direct representation and
manipulation of the stored nucleotide (DNA or RNA) sequences. While one can base
a query language for these databases on a .xed set of sequence comparison predicates,
such as in, for example, the PROXIMAL system [5], it would be more Gexible to
allow user-de.ned string processing predicates as well.

If we assume an SQL-like notation [1, Chapter 7.1] for the query language, then
one possible query for such a string database might be stated as follows:

SELECT x2

FROM x1 IN R
WHERE �rev(x1; x2)

Here �rev(x1; x2) is some user-de.ned expression which compares the strings w1

and w2 denoted by the variables x1 and x2, say “w2 is the reversal of w1”. Then this
query requests every string w2 that is the reversal of some string w1 currently stored in
the database table R. Note, in particular, that these strings w2 need (and in general can)
not be stored anywhere in the database; the query evaluation machinery must generate
them instead as needed.

We have developed elsewhere [10, 11, 17] a logical framework for such a query
language. This framework accommodates expressions like �rev(x1; x2) via a multidi-
mensional extension of the modal extended temporal logic suggested by Wolper [29].
The multi-tape acceptors studied here are exactly the computational counterparts to
these logical expressions.

A given query to a database is considered to be “safe” for execution if there is
a way to evaluate its answer .nitely [1, pp. 75–77]. One safe plan for evaluating
the aforementioned query would be as follows, where L(Arev) is the string relation
accepted by Arev, a multi-tape acceptor corresponding to the expression �rev(x1; x2).
(One such acceptor is shown as Fig. 1 below.)

for all strings w1 in table R do
V ←{w2 : 〈w1; w2〉 ∈L(Arev)};
output every string in V

end for
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Our two problems stem from these safe evaluation plans. Problem 1 is “How could
we infer from �rev(x1; x2) that the set V is always going to be .nite for every string w1

that could possibly appear in R?” Problem 2 is in turn “Once the .niteness of every
possible V has been ensured, how can we simulate this Arev (eLciently) for each w1

to generate the V corresponding to this particular w1?”
We have studied elsewhere [9, 17, Chapter 4.4] how solutions for Problem 1 can be

used to guide the selection of appropriate safe execution plans. To this end, Section 1.2
presents the problem in not only automata but also database theoretic terms.

One possible solution would have been to restrict beforehand the language for the
string handling expressions such as �rev(x1; x2) into one which ensures this .niteness
by de.nition, say by .xing x1 to be the input variable, which is mapped into the output
variable x2 as a kind of transduction [3, 7]. However, in logic-based data models [1], the
use of transducers seems less natural than acceptors, because the concept of information
Gow from input to output is alien to the logical level, and of interest only in the query
evaluation level. But we must eventually also evaluate our string database queries, and
then we must infer which of our acceptors can be used as transducers, and how to
perform these inferred transductions, and thus we face the aforementioned problems.

The rest of this paper is organized as follows. Section 1.1 presents the acceptors
we wish to use as transducers, while Section 1.2 formalizes Problem 1. Section 2 .rst
reviews what is already known about its decidability, and then presents our algorithms,
which give suLcient conditions for answering Problem 1 in the aLrmative. Section 3
presents then an explicit evaluation method for those acceptors that these algorithms
accept, answering Problem 2 in turn. Finally, Section 4 concludes our presentation.

1.1. The automaton model

Let the alphabet 	 be a /nite set of characters .xed in advance, let 	∗ denote the
set of all .nite sequences of these characters, let ”∈	∗ denote the empty sequence of
this kind, and let wt denote concatenating t ∈N copies of w∈	∗, as usual. We shall
study relations on these sequences, or strings drawn from 	∗ in what follows.

On the other hand, database theory often studies sequence database models where 	
is taken to be conceptually in/nite instead, as in for example [7, 19, 22, 24, 25]. Then
the emphasis is on data given as lists of data items provided by the user. Conversely,
our emphasis is on data given as strings in an alphabet .xed beforehand by the database
designer. In other words, our approach .xes an appropriate alphabet 	 as part of
the database schema, while the list approach considers 	 as part of the data instead.
However, our approach has been employed even for managing list data [2].

We, furthermore, assume left and right tape end-markers ‘[’ and ‘]’ not in 	. Then
we de.ne the nth character of a given string w∈	∗ with length |w|=m as

c1 : : : cm︸ ︷︷ ︸
w

[n] =




[; n = 0;
]; n = m + 1;
cn; 16n6m:
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Intuitively, our automaton model is a “two-way multi-tape nondeterministic .nite state
automaton with end-markers”; similar devices have been studied by, for example,
Harrison and Ibarra [14] and Rajlich [20]. Formally, a k-tape /nite state automa-
ton (k-FSA) [11, Section 3; 17, Chapter 3.1] is a tuple A = 〈	; k; QA; sA; FA; TA〉
with six elements where

(1) 	 is the .nite alphabet as explained above;
(2) k ∈N is the number of tapes;
(3) QA is a .nite set of states;
(4) sA ∈QA is a distinguished start state;
(5) FA⊆QA is the set of /nal states; and
(6) TA is a set of transitions of the form p

c1 ;:::;ck−−→
d1 ;:::;dk

q, where p; q∈QA, each ci∈	∪{[; ]},
and each di∈{−1; 0;+1}.

We, moreover, require that di = − 1 implies ci = [ and di = +1 implies ci =];
this ensures that the heads do indeed stay within the tape area limited by these
end-markers.

A con/guration of A on input w= 〈w1; : : : ; wk〉 ∈ (	∗)k is of the form C=〈p; n1; : : : ;
nk〉, where p∈QA and 06ni6|wi|+ 1 for all 16i6k. This C corresponds intuitively
to the situation, where A is in state p, and each head i = 1; : : : ; k is scanning square
number ni of the tape containing string wi. Hence, we say that 〈q; n1 + d1; : : : ; nk + dk〉
is a possible next con.guration of C if and only if p

w1[n1];:::;wk [nk ]−−−−−−−→
d1 ;:::;dk

q∈TA. Now +1 can be

interpreted as “read forward”, while −1 means “rewind the tape to read the preceding
square again”, and 0 “stand still”. We call tape i of A unidirectional if no transition
in TA speci.es direction −1 for it; otherwise tape i is called bidirectional instead.

A computation of A on input w is a sequence C=C0C1C2 : : : of these con.gura-
tions, which starts with the initial con.guration C0 = 〈sA; 0; : : : ; 0〉, and each Cj+1 is
a possible next con.guration of the preceding con.guration Cj. This computation C

is accepting if and only if it is .nite, its last con.guration Cf has no possible next
con.gurations, and the state of this Cf belongs to FA. The language L(A) accepted
by A consists of those inputs w, for which there exists an accepting computation C.
Note that this language is a k-fold relation on strings in the general case.

Because A is nondeterministic, we can without loss of generality assume that no
transitions leave the .nal states FA. We can, for example, introduce a new state fA into
QA, and set FA = {fA}. Then for every state p previously in FA, and every character
combination c1; : : : ; ck ∈	∪{[; ]}, on which there is no transition leaving p, we add

the transition p
c1 ;:::;ck−−→
0;:::;0

fA. In this way, whenever a computation of A would halt in state

p, it performs instead one extra transition into the (now unique) new .nal state fA,
and halts there instead.

We often view A as a transition graph GA with nodes QA and edges TA. In
particular, a computation of A can be considered to trace a path P within GA starting
from node sA. It is furthermore expedient to restrict attention to nonredundant A where
each state is either sA itself or on some path P from it into some state in FA. Fig. 1
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presents a 2-FSA Arev in this form where 	= {a; b}. The language L(Arev) accepted
by it consists of the pairs 〈u; v〉, where string v is the reversal of string u: looping in
state II .nds the right end of the bidirectional tape 1 without moving the unidirectional
tape 2, while looping in state III compares the contents of these two tapes in opposite
directions.

Another often useful simpli.cation is the following way to detect mutually incom-
patible transition pairs.

De�nition 1. Tape i of k-FSA A is locally consistent if and only if every consecutive
pair

p
c1 ;:::;ck−−→
d1 ;:::;dk

q
c′1 ;:::;c

′
k−−→

d′
1 ;:::;d

′
k

r

of transitions in TA satis.es the condition

(di = 0⇒ c′i = ci) ∧ (di = +1⇒ c′i = [) ∧ (di = −1⇒ c′i =]): (1)

This ensures that there are con.gurations, in which this pair can indeed be taken;
whether these con.gurations do ever occur in any computation is quite another matter.
For example, both tapes in Fig. 1 are locally consistent. If, in particular, tape i is both
unidirectional and locally consistent, then given any path

P = sA
c(1;1) ;:::;c(k;1)−−−−−→
d(1;1) ;:::;d(k;1)

p1

c(1;2) ;:::;c(k;2)−−−−−→
d(1;2) ;:::;d(k;2)

p2

c(1;3) ;:::;c(k;3)−−−−−→
d(1;3) ;:::;d(k;3)

p3 · · ·pm

in GA we can construct an input string

wi = c′1c
′
2c

′
3 : : : c

′
m

for tape i, which allows P to be followed, if we choose

c′j =

{
c(i;j) if (d(i;j) = +1 ∨ j = m) ∧ (c(i;j) = [); and

 otherwise:

For example in Fig. 1 the w2 from Eq. (2) spells out the sequence of transitions
taken when looping in state III. Harrison and Ibarra provide a related construction for
deleting unidirectional input tapes from multi-tape pushdown automata [14, Theorem
2:2], while Rajlich [20, De.nition 1:1] allows the reading head to scan two adjacent
squares at the same time for similar purposes.

Again the nondeterminism of A allows us to enforce De.nition 1 for tape i at the
cost of expanding the size of A by a factor of (|	| + 2): construct a k-FSA B with
state space QB =QA× (	∪{[; ]}), which remembers the character under tape head

i. Add for each transition p
c1 ;:::;ck−−→
d1 ;:::;dk

q the transitions 〈p; ci〉
c1 ;:::;ck−−→
d1 ;:::;dk

〈q; c′i〉 into TB satisfying

Eq. (1). Set .nally sB = 〈sA; [〉 and FB =FA× (	∪{[; ]}) to complete our construction.
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1.2. The limitation problem

This section introduces our limitation problem [11, De.nition 3:1; 17, De.nition 3:3]
concerning the automata de.ned in Section 1.1.

De�nition 2. Given a (k + l)-FSA A, determine if there exists a limitation func-
tion W :Nk→N with the following property: if 〈u1; : : : ; uk ; v1; : : : ; vl〉 ∈L(A), then
max{|vj| : 16j6l}6W(|u1|; : : : ; |uk |).

If this is the case, then we say that A satis.es the /niteness dependency [21]
" = {1; : : : ; k} {k +1; : : : ; k + l}. These dependencies are a special case of functional
dependencies in database theory [1, Section 8:2]. Intuitively, A is a .nite representation
of the conceptually in.nite database table L(A)⊆(	∗)k+l, while " assures that if we
select rows from this table by supplying values for the columns 1; : : : ; k, we do always
receive a .nite answer. In this way A can be used both safely and declaratively as
a string processing tool within our string database model. Thus our goal is to treat
the (user-de.ned) string processing operation A as just another relation as far as the
database query language is concerned; such transparency is, in fact, being advocated
for the forthcoming object=relational database proposal [4, pp. 49–55]. We discuss
elsewhere [12] how this overall string processing mechanism of ours relates to this
proposal and how it could be incorporated into such database management systems.

In terms of automata theory we require that for any input 〈u1; : : : ; uk〉 ∈ (	∗)k the
possible outputs 〈v1; : : : ; vl〉 ∈ (	∗)l must remain a .nite set. This is what is meant by
“using acceptors as transducers”: we supply strings for only some tapes (here 1; : : : ; k)
of the acceptor A, and ask it to produce us all those contents for the missing tapes (here
k + 1; : : : ; k + l) it would have accepted given the known tape contents. The limitation
problem is then to determine beforehand whether this computation will always return
a .nite result or not. Weber [27, 28] has studied a related question whether the set of
all possible outputs on any inputs of a given transducer remains .nite, and if so, what
is the maximal output length.

2. Solving the limitation problem

The hardness of the limitation problem has been shown to depend crucially on the
amount of bidirectional tapes in A. The problem has been shown elsewhere to be
undecidable for FSAs with two bidirectional tapes [11, Theorem 5:1; 17, Chapter 4.1]:
given a Turing machine [15, Chapter 7] M one can write a corresponding 3-FSA AM

with two bidirectional tapes, which accepts exactly the tuples 〈u; v; w〉, where v and
w together encode a sequence of computation steps taken by M on input u. Here v
and w must be read twice, requiring bidirectionality. Then asking whether AM satis.es
{1} {2; 3} amounts to asking whether M is total. This read-twice construction is
reminiscent of representing the valid computations of a given Turing machine as an
intersection of two Context-Free Languages [15, Chapter 8:6], and shows that it is
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Fig. 2. A crossing behavior of the 2-FSA in Fig. 1.

also undecidable to determine whether a given .niteness dependency is satis.ed by the
intersection of the relations denoted by two given FSAs, even when these FSAs have
no bidirectional tapes at all [17, Corollary 6:1].

On the other hand, the limitation problem becomes decidable if we restrict attention
to those FSAs with at most one bidirectional tape [11, Theorem 5:2; 17, Chapter 4:2].
Intuitively, all the unidirectional tapes are .rst made locally consistent, after which
Eq. (2) allows us to construct their contents at will, so that we can concentrate on
the sole bidirectional tape. This tape can in turn be studied by using an extension
of the well-known crossing sequence construction [15, Chapter 2.6] for converting
two-way .nite automata into classical one-way .nite automata. This method is clearly
impractical, however. Therefore, this paper presents in Section 2.1 a practical partial
solution, which furthermore applies even in some cases involving multiple bidirectional
tapes. Section 2.2 then develops this solution further to yield yet more explicit limitation
information.

Example 3. The 2-FSA Arev in Fig. 1 satis.es both {1} {2} and {2} {1} with
the same limitation function W(n) = n, because the reversal of a string is no longer
than the string itself. This is moreover decidable, because only tape 1 is bidirectional
in Arev. To see how limitation inference proceeds consider Fig. 2, which exhibits the
crossing behavior of Arev when tape 1 contains the string ab. For example, determining
{2} {1} involves checking that every character written onto the bidirectional output
tape 1 is “paid for” by reading something from the unidirectional input tape 2 as well,
although this payment may occur much later during the computation; here it occurs
when tape 1 is reread in reverse. This can in turn be seen from the automaton B

produced by the crossing sequence construction by noting that the loops of B around
the repeating crossing sequence indicated in Fig. 2 consume tape 2 as well.

The 2-FSA Arev is also considered to satisfy the trivial .niteness dependency {1; 2}
 ∅ by de.nition. On the other hand, Arev does not satisfy ∅ {1; 2}, because L(Arev)
is not .nite.

2.1. An algorithm for determining limitation

Our technique for solving the limitation problem given in De.nition 2 is based
on the following two observations. Let A be the (k + l)-FSA and " = {1; : : : ; k} 
{k + 1; : : : ; k + l} the .niteness dependency in question.



90 M. Nyk2anen / Theoretical Computer Science 267 (2001) 83–104

Fig. 3. An algorithm for testing Observation 1.

Observation 1. If A accepts some input 〈w1; : : : ; wk+l〉 with some computation C;
where some head k6j6k + l never visits the corresponding right end-marker ‘]’;
then A also accepts all the su;xed inputs

{〈w1; : : : ; wj−1; wjv; wj+1; : : : ; wk+l〉: v ∈ 	∗}

with the same C. Hence; A cannot satisfy " in this case.

Observation 2. If, on the other hand, every accepting computation of A visits the
right end-marker ‘]’ on all output tapes, then the only way A can violate " is by
looping while generating output onto some output tape but without “consuming” any
of the inputs at the same time – that is, by returning again and again to read the
same squares of the input tapes.

However, the (un)decidability results mentioned in the beginning of this section
indicate that reasoning about actual computations is infeasible. Thus, we reason instead
about the structure of the transition graph GA. Therefore, instead of Observation 1, the
algorithm in Fig. 3 merely tests that there is no path P from the start state sA into
a .nal state, which never requires ‘]’ to appear on some output tape, whereas it
would have suLced to show that no such P is ever traversed during any accepting
computation. (B denotes the Boolean type with values 0 as ‘false’ and 1 as ‘true’.)

Similarly, the algorithm in Fig. 4 enforces a more stringent condition than
Observation 2: every cycle L in GA, during which some output tape is advanced
to direction +1, must also move some input tape i into direction ±1 but not back into
the opposite direction ∓1. Then this tape i acts as a clock, which eventually terminates
the potentially dangerous repetitive traversals of L. Again, if A violates ", then some
L′ failing this condition must exist in GA, but the converse need not hold, because
repetitions of L′ need not necessarily occur during any accepting computation of A;
Fig. 6 presents a loop which seems at .rst glance to generate arbitrary many copies
of character ‘a’ onto its output tape 2, because it seems to move back and forth on its
input tape 1. However, closer scrutiny reveals that this behavior is, in fact, impossible
because the same square on tape 1 must .rst contain character ‘a’ in order to get into
state q, but later character ‘b’ in order to get back into state p.
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Fig. 4. An algorithm for testing Observation 2.

Making the tapes locally consistent as in De.nition 1 will catch some of these
impossible transition sequences, including all cases that arise due to the demands on the
contents of the unidirectional tapes. On the other hand, Fig. 6 presents a bidirectional
tape 1 which is already locally consistent but still impossible. If there is just one
bidirectional tape altogether, then the crossing sequence construction alluded to above
in Example 3 can be seen as a method for detecting these impossibilities and eliminating
them from further consideration. Unfortunately, we have no method of this kind for
the general case.

The more stringent condition given above is enforced by repeatedly deleting those
transitions, which can justi.ably be argued not to take part in any loops of the kind
mentioned in Observation 2. This technique is related to analyzing the input–output
behavior of logic programs [16, 26], which analyze the call graph of the given pro-
gram component by component. However, our technique remains simpler, because our
automata are more restricted than general logic programs.

More precisely, the edge deletions made by the algorithm in Fig. 4 can be justi-
.ed as follows. Consider the .rst call made by the main algorithm in Fig. 5. Every
loop mentioned in Observation 2 must clearly be contained in some component Hi of
G =GA, the entire transition graph of the k-FSA A:

(a) A transition between two diSerent strongly connected components cannot then
surely belong to any loop of this kind. The deletions in step 3 are therefore war-
ranted.

(b) Any transition & that winds the clock tape j selected for the current component
Hi cannot belong to any loop of this kind either, because & cannot be traversed
inde.nitely often. These traversals will namely wind the input tape j eventually
onto either end-marker, because tape j is not wound into the opposite direction by
any other transition &′ in Hi. The deletions in step 6 are therefore warranted as well.
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Fig. 5. An algorithm for determining limitation.

Fig. 6. A loop that cannot be traversed repeatedly.

This reasoning can then be applied in the subsequent recursive calls on the reduced
components Hi as well, because we can then assume inductively that the loops broken
during the earlier calls could not have been ones mentioned in Observation 2

Formalizing this reasoning shows that the algorithm in Fig. 5 is indeed correct as
follows.

Theorem 4. Let A be a (p + q + r)-FSA with tapes 1; : : : ; p unidirectional; and
let the algorithm in Fig. 5 return 1 on A and {1; : : : ; p + q}. Then A satis/es
{1; : : : ; p + q} {p + q + 1; : : : ; p + q + r} with the function

W(m1; : : : ; mp; n1; : : : ; nq) = gA(m1; : : : ; mp; n1; : : : ; nq)− 1

where

gA(m1; : : : ; mp; n1; : : : ; nq) = |QA|
(

max(p; 1) +
p∑

i=1
mi

)( q∏
j=1

(nj + 2)

)
:

Proof. Let us assume that C is an arbitrary computation of A on some input z=
〈u1; : : : ; up; v1; : : : ; vq; w1; : : : ; wr〉. We begin by proving the following two claims about
this C which correspond to Observations 1 and 2.

Claim 5. If C is accepting, then for every tape p+q+16j6p+q+r the computation
C takes some transition which requires ‘]’ on tape j.

Let otherwise h be a tape which violates this Claim 5. C traces a path through GA

from sA into some state in FA. Then step 4 of the algorithm in Fig. 3 sets b= 0 when
testing i = h which violates our assumption that the algorithm in Fig. 5 returns 1, thus
proving this Claim 5.
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Claim 6. No head p + q + h moves to direction +1 more than

l = W(|u1|; : : : ; |up|; |v1|; : : : ; |vq|) + 1

times during the computation C.

Assume to the contrary that some h violates this Claim 6. Post a fence between two
adjacent con.gurations Cg and Cg+1 in C whenever tape p+ q + h moves to direction
+1. By our contrary assumption, at least l + 1 of these fences are posted. Consider,
on the other hand, two con.gurations Cx and Cy of C to have the same color if and
only if they share the same state and the same head positions for tapes 1; : : : ; p + q.
At most l of these colors are available, recalling the assumption that tapes 1; : : : ; p are
unidirectional. Therefore, C must contain two con.gurations Cx and Cy which have
the same color but are separated by an intervening fence. Consider then the sequence
of transitions which transform Cx into Cy, as a path L within GA. This L forms a
closed cycle, and tape heads 1; : : : ; p + q are on the same squares both before and
after traversing L, because Cx and Cy shared a common color. Let us then see which
of the steps 3 or 6 of the algorithm in Fig. 4 will .rst delete some transition that
belongs to L. It cannot be step 3, because all of L belongs initially to the same
maximal strongly connected component. But it cannot be step 6 either, because if L

ever moves a tape j∈X into some direction ±1, it must also move tape j into the
opposite direction ∓1 as well, in order to return its head onto the same square both
before and after L. Hence L persists untouched to the very end of the recursion on
step 9, and there the presence of the transition of L that crosses the fence between
Cx and Cy yields d= 0, which subsequently violates our assumption that the algorithm
in Fig. 5 returns 1, thus proving this Claim 6.

Claims 5 and 6 are combined into a proof of the theorem as follows. Assume that
z∈L(A); that is, A has some accepting computation C on input z. It suLces to show
that |wh|6l − 1 for every 16h6r. Tape head p + q + h must cross every border
between two adjacent tape squares from left to right, because otherwise C would not
meet Claim 5. Claim 6 states in turn that C performs at most l crossings of this kind.
This means that tape p+q+h contains at most l+1 squares, of which the .rst and the
last are reserved for the end-markers, leaving at most l− 1 squares for the characters
of the input string wh.

Example 7. Consider the 2-FSA Arev in Fig. 1. The algorithm in Fig. 5 can detect
that it satis.es {1} {2} as follows. The algorithm in Fig. 3 returns 1, because every

path into the .nal state IV must contain III
[;]−→
0;0

IV.

Evaluating the algorithm in Fig. 4 proceeds in turn as follows. First, all transitions
from one state into another are deleted in step 3, leaving only the loops around states
II and III. This is depicted in Fig. 7, where the components themselves are dotted, and
the transitions between them (and thus deleted in step 3) are dashed. These loops are in
turn deleted in step 6 when processing the corresponding components, and therefore this
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Fig. 7. The division of the 2-FSA in Fig. 1 into components.

function eventually returns 1 as well. However, Theorem 4 provides a rather imprecise
limitation function W(n) = 4n + 7 compared to the one given in Example 3.

On the other hand, the algorithm in Fig. 5 fails to detect {2} {1}, which was
detected in Example 3: looping in state II advances tape 1 without moving tape 2,
and seems therefore dangerous to the algorithm in Fig. 4. Intuitively, Arev .rst guesses
nondeterministically some string, and only later veri.es its guess against the input. In
Example 3, crossing sequences were examined to see that this later checking in state
III indeed reduces the acceptable outputs into only .nitely many (here just one).

Essentially the same limitation function as in Theorem 4 suLces whenever all
of the output tapes p + q + 1; : : : ; p + q + r to be limited are unidirectional, even
if {1; : : : ; p + q} {p + q + 1; : : : ; p + q + r} cannot be veri.ed by the algorithm in
Fig. 5 [9, Theorem 2:1]. This is natural, because the algorithm in Fig. 5 ignored the
eSects of moving any output tape p + q + 1; : : : ; p + q + r into direction −1.

Theorem 8. Let p+ 1; : : : ; p+ q be all the bidirectional tapes in the (p+ q+ r)-FSA
A; and let A satisfy " = {1; : : : ; p + q} {p + q + 1; : : : ; p + q + r}. Then

W′(m1; : : : ; mp; n1; : : : ; nq) = (|	|+ 2)rgA(m1; : : : ; mp; n1; : : : ; nq)− 1

is a corresponding limitation function; where gA is as in Theorem 4.

Proof. Consider the proof of Theorem 4, and assume further in Claim 6 that all the
output tapes p+q+ 1; : : : ; p+q+ r are made locally consistent as in De.nition 1; this
new assumption introduces the factor (|	| + 2)r into W′. With this modi.cation, the
original fencing-coloring construction shows that if some accepting computation C on
input z advances some output tape p+q+h more than W′(|u1|; : : : ; |up|; |v1|; : : : ; |vq|)+1
times, then the path of transitions taken by this C can be partitioned into three sub-
paths KLM where L begins in Cx and ends in Cy which share the same color and
contains a transition & that crosses some fence between Cx and Cy. However, now A

must also accept all the pumped inputs

〈u1; : : : ; up; v1; : : : ; vq; w(1;K)wt
(1;L)w(1;M); : : : ; w(r;K)wt

(r;L)w(r;M)〉;
where t ∈N, and each w(k;J) denotes the string of characters in those squares of output
tape p + q + k, onto which the head lands during J (‘]’ excluded). This is in eSect
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an application of Eq. (1) to the output tapes p+q+1; : : : ; p+q+ r. The presence of &
within L shows that w(h;L) =  , and hence " fails by observation 2, thereby proving
this modi.ed Claim 6.

Claim 5 continues to hold, as reasoned in Observation 1, and the theorem follows
again as before.

Turning now to assessing when the algorithm in Fig. 5 does detect .niteness depen-
dencies we see that it is successful at least when all tapes are unidirectional.

Theorem 9. Let A be a nonredundant (k + l)-FSA with all tapes unidirectional and
locally consistent; and let the algorithm in Fig. 5 return 0 on A and {1; : : : ; k}. Then
A does not satisfy " = {1; : : : ; k} {k + 1; : : : ; k + l}.

Proof. The nonredundancy of A and the unidirectionality and local consistency of all
its tapes imply by Eq. (2) that for every path P in GA we can always .nd an accepting
computation C on some input w traversing P. Letting P then be any subgraph of GA

which caused the algorithm in Fig. 5 to return 0 yields some C whose existence violates
" along the lines of Theorem 8.

2.2. Two variants of the limitation algorithm

This section explores two possible directions into which the algorithm given in
Section 2.1 could be developed further. They both alter the nonrecursive step 9 of
the algorithm in Fig. 4, which tests some strongly connected component Hi in the
transition graph GA of A. Moreover, this Hi is known not to be shrinkable further by
the algorithm.

The .rst direction enlarges the set of FSAs A and .niteness dependencies " that
can be veri.ed to hold by relaxing this test as follows. Suppose Hi contained some
output tape j∈{1; : : : ; k}\X that is wound into the reverse direction −1 but not into
the forward direction +1. Then this tape j can again be used as a clock for shrinking
Hi further, similarly to steps 5–7, because the head on tape j cannot travel backwards
forever, but must stop at least once the left end-marker ‘[’ is reached.

Algorithmically, this direction leads to replacing steps 5–10 of the algorithm in
Fig. 4 with the steps given in Fig. 8.

The other direction into which the algorithm given in Section 2.1 can be developed
is to constrain further the set of FSAs A and .niteness dependencies " that can be
veri.ed to hold by restricting the test performed on step 9 of the algorithm in Fig. 4 to
require that the component Hi being tested must not have any transitions left. Call the
correspondingly modi.ed limitation algorithm of Section 2.1 fastidious; it thus requires
that all the transitions of A are deleted in order to verify ".

Example 10. The calculations in Example 7 show that the 2-FSA Arev in Fig. 1 does
actually satisfy the .niteness dependency {1} {2} even fastidiously.
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Fig. 8. The enlarging additions to the algorithm in Fig. 4.

One advantage of fastidious veri.cation is more eLcient simulation of A, as will be
explained in Section 3.1. The rest of this section explains another advantage, namely
that it enables straightforward construction of better explicit limitation functions than
the generic one provided by Theorem 4. This construction is similar in spirit to van
Gelder’s analysis of logic programs with systems of equations [26], except that recur-
rences are used instead.

Let therefore A be a (k +l)-FSA satisfying the .niteness dependency " = {1; : : : ; k}
 {k + 1; : : : ; k + l} fastidiously. A suitable limitation function would evidently be

W′′(m1; : : : ; mk) = max{fsA
j (m1; : : : ; mk ; 0; : : : ; 0; 0): 16j6l} − 1 (2)

if each auxiliary function fp
j (m1; : : : ; mk ; n1; : : : ; nk ; h) provided some upper limit to the

character position on output tape k + j where the right end-marker ‘]’ is encountered.
Here A is assumed to be in state p∈QA, each of its input tapes 16i6k on character
06ni6mi + 1 of an unspeci.ed input string with length mi ∈N and its designated
output tape k + j on character h of some unspeci.ed output string.

These auxiliary functions can in turn be obtained by labeling the transition graph
GA of A with suitable expressions as follows:

• The expression for a state p∈QA is the maximum of the expressions for those
transitions &∈TA that leave from p:

fp
j (m1; : : : ; mk ; n1; : : : ; nk ; h)

= max{f&
j (m1; : : : ; mk ; n1; : : : ; nk ; h): &∈TA leaves from p}: (3)

Graphically speaking, one can consider each node p of graph GA to become labeled
with the operator ‘max’ applied to the arrows that exit from p.

• The expression for a transition &∈TA is the expression for the state that & enters,
adjusted with the eSects of & on the tapes in question:

f
p
c1 ;:::;ck ;e1 ;:::;el−−−−−−→
b1 ;:::;bk ;d1 ;:::;dl

q

j (m1; : : : ; mk ; n1; : : : ; nk ; h) =




 if
∧

16i6k
�i;

1 otherwise;
(4)
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where

 =

{
h if ej =];

fq
j (m1; : : : ; mk ; n1 + b1; : : : ; nk + bk ; h + dj) otherwise; and;

�i =




(ni = 0) if ci = [;

(ni = mi + 1) if ci =];

(16ni6mi) otherwise:

Here the “otherwise” branch of Eq. (4) denotes the case when the transition cannot
apply by virtue of some input tape head position ni violating its corresponding
restriction �i. Then value 1 is warranted, because it is the earliest possible position
in which ‘]’ can possibly appear.

Graphically speaking, this shows how to construct the expressions for the arrows
maximized by node p of graph GA in Eq. (3) above.

Fastidiousness guarantees that this labeling does indeed yield a function: otherwise
the expression for some fp

j (m1; : : : ; mk ; n1; : : : ; nk ; h) refers (indirectly) back to itself
with no change to its arguments n1; : : : ; nk . This, however, implies a cycle C in GA

from p back to itself for which none of the input tapes 1; : : : ; k moves in exactly one
direction. This in turn means that C could not be deleted by the fastidious limitation
algorithm after all.

Accordingly, if a fastidious version of the algorithm in Fig. 8 is used instead, the
labeling must then include all of h1; : : : ; hl instead of just h, because then also the output
tapes k + 1; : : : ; k + l may have been used in deleting transitions from the (k + l)-FSA
A in question, and thus these output tape head positions might be the ones that cannot
repeat as arguments for some expression.

On the other hand, dropping the fastidiousness restriction does not altogether invali-
date this approach either, it just makes it more diLcult to provide an explicit counterpart
for Eq. (3). It is namely now possible that the expression for some fp

j (m1; : : : ; mk ; n1;
: : : ; nk ; h) does indeed refer back to itself without changing its arguments n1; : : : ; nk :
follow the expressions f&

j of Eq. (4) for the transitions & that still remain in the
component containing state p even after the successful execution of the algorithm in
Fig. 4. However, these expressions f&

j are also guaranteed not to increase h, for oth-
erwise the execution of the algorithm in Fig. 4 would have been unsuccessful. Thus
a function for fp

j does still exist, even though giving an explicit expression for it is
diLcult.

A similar labeling technique suLces even for the crossing sequence construction
mentioned in Example 3 instead of a fastidious algorithm from Section 2.1, provided
that the labeling is performed relative to the resulting crossing sequence automaton
instead of the original [17, Chapter 5:2].
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Fig. 9. A bidirectional loop that eventually ends.

Example 11. The labeling to generate Eq. (3) for Example 10 proceeds as follows.
Applying Eq. (5) to the transitions leaving state III leads to

f
III

[;]−→
±0;±0

IV

1 (m; n; h) =

{
h if n = 0;

1 otherwise;

f
III

a;a−→
−1;+1

III

1 (m; n; h) = f
III

b;b−→
−1;+1

III

1 (m; n; h);

=

{
fIII

1 (m; n− 1; h + 1) if 16n6m;

1 otherwise

which appear in Eq. (4) for state III, namely

fIII
1 (m; n; h) = max




f
III

[;]−→
±0;±0

IV

1 (m; n; h); f
III

a;a−→
−1;+1

III

1 (m; n; h);

f
III

b;b−→
−1;+1

III

1 (m; n; h)


 ;

=




h if n = 0;

fIII
1 (m; n− 1; h + 1) if 16n6m;

1 otherwise;

=

{
h + n if 06n6m;

1 otherwise;

where the last simpli.cation solves the recurrence found above for fIII
1 . Continuing

similarly for state II leads eventually to the tight limitation function W′′(m) =m men-
tioned in Example 3.

A diSerent possibility for improving on the limitation algorithm given in Section
2.1 would be to take into account not only the directions but also the total amount
of tape movement. For instance, the current algorithms will not break a loop like in
Fig. 9, because the input tape 1 in question moves in both directions, even though
the overall net e=ect of these movements is +1, or to move one square forward,
and therefore the loop cannot execute inde.nitely. Calculating such net eSects have
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been recently studied in [18], but the resulting algorithms diSer signi.cantly from the
approach presented here.

3. Evaluation of the limited answers

After inferring that the given (k + l)-FSA A does indeed satisfy the given .niteness
dependency " = {1; : : : ; k} {k + 1; : : : ; k + l} we then want to generate the (.nite)
set of outputs v= 〈v1 : : : ; vl〉 for a given input u= 〈u1; : : : ; uk〉, or to solve Problem 2.
This problem is known to be diLcult in the general case: let B be a 2-FSA with an
unidirectional input tape 1 and a bidirectional output tape 2, and ask if a given input
u can produce any output v. This problem is equivalent to whether B, considered as a
checking stack automaton, accepts u [20, Theorem 5:1] which is known to be either
PSPACE- or NP-complete, depending on whether B′ is a part of the instance or not
[6, Problem AL5]. However, the additional information " provides certain optimization
possibilities.

A straightforward way to obtain an evaluation algorithm is to convert the output tapes
from read-only into write-once, and perform these writing operations concurrently with
the simulation of the nondeterministic control. Fig. 10 shows the resulting algorithm
where the simulations of all the possible computations are performed in a depth-.rst
order using a stack S. The algorithm maintains for each 16j6l an extensible character
array Wj[0 : : : Lj] which holds the contents for the tape squares the output head k +
j has already examined during the computation C of A currently being simulated.
Fig. 11 shows the indices during one simulation of the 2-FSA Arev from Fig. 1, where
the input tape 1 contains the string ab whose reversal is being generated onto the
output tape 2.

In Fig. 10, TA is enumerated as &1; : : : ; &|TA|, and &0 is a new starting pseudo-transition
· · · ···−→

0;:::;0
sA. We also assume as in Section 1.1 that no .nal state in FA has any outgoing

transitions.
Note that " alone does not guarantee that the algorithm in Fig. 10 halts, it just

guarantees that only .nitely many diSerent outputs are ever generated. Consider namely
the situation in Fig. 12, where the 2-FSA Arev in Fig. 1 is being used as a transducer in
the opposite direction to Fig. 11: input is read from tape 2 and written onto tape 1. As
explained in Example 7, Arev is now guessing nondeterministically a possible output
for later veri.cation against the input. But how long guesses should Arev be allowed
to make?

This question can be answered by adding the extra conditions

Wj[Lj] = ‘]’ ∨ Lj6W(|u1|; : : : ; |uk |) (5)

for each 16j6l into branch 15 of the algorithm in Fig. 10 where W is a limitation
function corresponding to ". This addition is warranted, because if during the currently
simulated computation C some j violates Eq. (5) then more than W(|u1|; : : : ; |uk |)
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Fig. 10. An algorithm for using acceptors as transducers.

Fig. 11. Simulating the 2-FSA in Fig. 1 as a transducer.

characters from 	 have been output onto tape k + j. In this case C must be eventually
rejecting and can hence be discarded at once without further ado.

Now that the Lj have been bounded by W the stack S will always contain only
.nitely many diSerent con.gurations C of the transducer being simulated on input
u. (These transducer con.gurations C can be de.ned in a straightforward way by
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Fig. 12. Generating an inde.nitely long output with the 2-FSA in Fig. 1.

extending the acceptor con.gurations de.ned in Section 1.1 with write-once output
tapes.) Although stack S represents these con.gurations C only implicitly, they can
be reconstructed as in branch 10 of the algorithm in Fig. 10. However, some of these
con.gurations C can still repeat, because the transducer being simulated can also loop
on the already known parts of its tapes without generating new output. Fortunately,
this looping can be detected and eliminated simply by testing in branch 15 of the
algorithm in Fig. 10 that the new con.guration Cnew being pushed into stack S does
not yet occur in stack S. This is a standard way to avoid repetition during a depth-.rst
search [23, Chapter 3.6]. We have also experimented with comparing Cnew against all
the con.gurations C encountered so far in the entire search conducted by the algorithm
in Fig. 10 on the current input u, but this proved to be extremely ineLcient in practice.

Now, we have solved Problem 2 by developing a halting variant of the evaluation
algorithm in Fig. 10. However, this solution suSers from two drawbacks.

Drawback 1. The value of a limitation function is needed in Eq. (5) to estimate
– and hopefully tightly – the depth at which ultimately rejecting output-generating
computations can be pruned.

This could be termed the “compile-time” drawback: the limitation function must
be formed when the acceptor is proposed as a possible transducer, while its value is
required before each invocation of the simulation algorithm in Fig. 10.

Drawback 2. The whole stack S must be scanned against repeating con/gurations C
when pushing each new con/guration Cnew in the algorithm in Fig. 10.

This could in turn be termed the “run-time” drawback, because it adds loop checking
overhead the execution of the simulation algorithm in Fig. 10.

Fortunately, both of these drawbacks can be alleviated by considering how " was
inferred to hold, as discussed in the remainder of this section.

3.1. When the limitation algorithm succeeds

Consider .rst the case where " was inferred to hold by having the algorithm in
Fig. 5 return 1 on A and ". Claim 6 in the proof of Theorem 4 shows that every
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computation C of A is “self-limiting” in the sense that no Lj can grow inde.nitely.
Thus Eq. (5) is not needed after all, thereby alleviating Drawback 1.

Claim 6 alleviates also Drawback 2. Two occurrences Cx and Cy of the same con-
.guration during C have the same color by de.nition. The proof of the claim shows
that Cx and Cy can only arise by traversing a closed loop L, which is not deleted
during the algorithm in Fig. 4. We therefore modify this algorithm to mark in A the
transitions it considers deleted. Then the algorithm in Fig. 10 can stop scanning its
stack S as soon as the most recent marked transition is seen. This holds even when
the marking has been performed by the enlarged algorithm in Fig. 8.

This reasoning shows another bene.t of the fastidious variant of the algorithm in
Fig. 4: then every transition gets marked, and therefore scanning the stack S is no
longer required at all. That is, the algorithm in Fig. 10 suLces unmodi/ed in this case,
and all run-time loop checking overhead has been eliminated.

Example 12. Applying this modi.ed marking algorithm in Fig. 4 into the 2-FSA Arev

in Fig. 1 and " = {1} {2} succeeds even fastidiously by Example 10. Then the
algorithm in Fig. 10 and Arev can generate the reversal of any given string in linear
time with respect to its length. In other words, choosing this evaluation strategy leads
into an optimal way to perform string reversals.

Note .nally that this marking technique can also speed up the simulation of those m-
FSAs B which are still used as acceptors and not transducers: just compute the marking
given by the modi.ed algorithm in Fig. 4 with B and {1; : : : ; m} (which yields 1),
and use the resulting stack scanning optimization strategy during the simulation of B

on any given input 〈u1; : : : ; um〉. Again the marks identify transitions under which it is
not necessary to look when scanning the stack for repeating con.gurations during the
simulation.

3.2. When all the outputs are unidirectional

Another strategy related to the one developed in Section 3.1 works when all the
output tapes of A are unidirectional and the .niteness dependency " still holds but
this fact can no longer be inferred by the algorithm developed in Section 2.1.

In this case the proof of Theorem 8 shows that a halting but still correct variant of
the simulation algorithm in Fig. 10 can be obtained by adding into its branch 15 the
extra condition that con.gurations Cx and Cy of the same color – in the sense of that
proof – may not repeat within any computation C: if the path L of transitions from
Cx into Cy advances any of the unidirectional output tapes p + q + 1; : : : ; p + q + r,
then this C must be rejecting because it would violate " via Observation 2, while
otherwise taking L during C was unnecessary because then Cx and Cy are the same
con.guration. This reasoning provides the loop checking discipline which guarantees
the halting of the simulation algorithm in this case.
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Furthermore, this simulation is also amenable to the stack scanning optimization
technique developed in Section 3.1: a variant of the algorithm in Fig. 4 which merely
attempts to mark every transition it possibly can – instead of trying to test for " and
fail – identi.es some of those cycles L that can cause some color to repeat. These
marks can then again be used for limiting stack scanning during simulation.

4. Conclusions

We studied the problem of using a given nondeterministic two-way multi-tape ac-
ceptor as a transducer by supplying inputs onto only some of its tapes, and asking
it to generate the rest. We developed a family of algorithms for ensuring that this
transduction does always yield .nite answers, and another family of algorithms for
actually computing these answers when they are guaranteed to exist. In addition, these
two families of algorithms provided a way to execute and optimize the simulation of
nondeterministic two-way multi-tape acceptors by restricting the amount of work that
must be performed during run-time loop checking.

These algorithms have been implemented in the prototype string database manage-
ment system being developed at the Department of Computer Science in the University
of Helsinki [8, 12, 13].
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