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A new numerical method for performing the Nahm transform for charge k = 2 caloron is presented. The
Weyl equations with boundary impurities are solved directly and the determination of the appropriate 
basis to the linear system is established. The action densities of the 2-calorons with 10 moduli parameters 
are shown.
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1. Introduction

Calorons are finite action (anti-)self-dual ((A)SD) solutions of 
the Yang–Mills gauge theory on R3 × S1. Along with their periodic
instanton picture, they can be interpreted as the compound ob-
jects of constituent monopoles from the perspective of loop group 
gauge theories [1,2]. The intriguing feature of calorons is that they 
can be endowed with a non-trivial holonomy around the periodic 
direction, which will serve as an approximation to Skyrmions [3]. 
Hence, calorons give a connection between instantons, monopoles 
and Skyrmions.

There has been formulated a systematic method to construct 
instantons, the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construc-
tion [4]. Nahm has applied the ADHM construction for calorons as 
well as monopoles [5], known as the Nahm construction. In this 
formulation, gauge fields of calorons can be obtained by solving 
a one-dimensional Weyl equation on finite intervals with “im-
purities” at the boundaries. The dual gauge connection in Weyl 
operators and the impurities are called the bulk Nahm data and 
the boundary Nahm data, respectively. The transformation from 
the Nahm data to the corresponding gauge connections is called 
the Nahm transform. Since the Nahm data are defined in terms 
of quite complicated functions, we need numerical analysis to per-
form the Nahm transform, in general.

The Nahm transform for SU(2) caloron of instanton charge k = 1
with non-trivial holonomy was, however, studied analytically [6,7]. 
For the higher charges, some exact calorons of k = 2 were found
in [8]. The authors demonstrated that the Nahm data written by 
the standard Jacobi elliptic functions works well for the case of
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calorons. The numerical Nahm transform has been discussed in 
somewhat different context, e.g., [9,10].

In this Letter, we perform the numerical Nahm transform for 
SU(2) calorons of instanton charge k = 2, referred to as 2-calorons,
in detail. For a given instanton charge, calorons are classified by 
the constituent monopole charge and mass, respectively. Here we 
consider the case of monopole charge (m1,m2) = (2,2) and mass
(2μ,μ0 − 2μ) = (0,μ0), which corresponds to the 2-caloron with-
out net magnetic charge, and accompanied with trivial holonomy. 
Recently, the 2-caloron Nahm data of monopole charge (m1,m2) =
(2,2) of arbitrary mass with 16 moduli parameters has been pro-
posed in [11]. Since the dimension of framed moduli space of 
SU(2) k-caloron is 8k [12], this 2-caloron Nahm data gives the most 
general gauge fields. We carry out here the Nahm transform for the 
10 parameter subset of the 2-caloron Nahm data whose holonomy 
is trivial, as a primary work for the general cases with non-trivial 
holonomy. The role of each parameter will be clarified in the fol-
lowing sections.

We should mention the relationship between the earlier works 
on the Nahm transform of calorons and the present work. In [8], 
the authors considered the Nahm transform by utilizing the Green 
function method. In contrast, we concentrate here on the Nahm 
transform by solving numerically the Weyl equations with impuri-
ties. These two ways lead, of course, equivalent results for various 
physical quantities such as action density of field configuration. 
However, we expect that the solutions to the Weyl equations in 
the presence of impurities and their numerical code considered 
here make a crucial contribution to the progress of Nahm trans-
form for diverse objects [13], and also D-brane theories, e.g., [14].

This Letter is organized as follows. In Section 2, we give a brief 
review on the Nahm transform of calorons. In Section 3, we make a 
formulation for numerical analysis to the Weyl equations with im-
purities. In Section 4, we consider the action density of 2-caloron
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and give the interpretation of moduli parameters. Section 5 is de-
voted for concluding remarks.

2. Nahm construction for k-calorons

2.1. Basic formalism

In this subsection, we give a brief review of the Nahm trans-
form for SU(2) k-caloron with trivial holonomy. As mentioned in
Introduction, the Nahm data of calorons consists of the bulk Nahm
data and the boundary Nahm data. The bulk one is k × k Hermite
matrices Tμ(s) periodic in s with period μ0, where μ = 0,1,2,3
and s ∈ I . They are smooth functions except for at the boundaries,
with fundamental interval, say, I = (−μ0/2,μ0/2). For the gauge
field to be ASD, they are subject to the Nahm equations,

d

ds
Ti(s) − i

[
T0(s), Ti(s)

] − i

2
εi jk

[
T j(s), Tk(s)

] = 0, (1)

where the roman subscripts are 1,2 or 3, together with the real-
ity conditions Tμ(−s) = tTμ(s). On the other hand, the boundary
Nahm data is given by a k-row vector W of quaternion entries,
enjoying the matching conditions

T j(−μ0/2) − T j(μ0/2) = 1

2
Tr2

(
W †W σ j

)
, (2)

where σ j ’s are the Pauli matrices and the trace is taken over
quaternions.

The link between the Nahm construction of calorons and that
of monopoles is as follows. In the construction of monopoles, the
Nahm data should also enjoy (1) and have simple poles at the
boundary of the interval [15,16] to give correct asymptotic forms
of the Higgs fields. We can make use of their “non-singular parts”
as the bulk Nahm data of calorons [17], which are piece of the
monopole data attached with the shorter segment of the interval.
If we take the monopole limit of the calorons, the interval I even-
tually fills the characteristic period of the bulk data so that the
simple poles appear at the boundaries, accordingly the matching
conditions erupt in certain cases.

The caloron gauge fields in the real, or configuration space are
obtained from the Nahm data through the zero modes of the Weyl
equations with impurities at the boundaries. Denoting a “spinor”
U (s; xα) defined on I with period μ0 and a single quaternion
V (xα), the Weyl equations are{

12k
d

ds
− i

(
Tμ(s) + xμ1k

) ⊗ eμ

}
U

(
s; xα

)
= iW † V

(
xα

)
δ(s − μ0/2), (3)

where 1k is the k ×k unit matrix and eμ = (12,−iσ j) are the basis
of the quaternion. We write these zero modes into components as

U
(
s; xα

) = (u1, u2), V
(
xα

) = (v1, v2), (4)

where u1, u2 and v1, v2 are 2k-column vectors and 2-column
vectors, respectively. By using them, we can separate (3) into two
equations, the bulk Weyl equations on I{

12k
d

ds
− i

(
Tμ(s) + xμ1k

) ⊗ eμ

}
u� = 0, (5)

and the matching conditions at the boundary

�u� ≡ u�(−μ0/2) − u�(μ0/2) = iW † v�, (6)

where � = 1,2. The next step is to find two independent pair of
the zero modes (u1, v1), (u2, v2), orthonormalized as
∫
I

u†
aub ds + v†

a vb = δab, (7)

where a,b = 1,2. Putting together these zero modes, we obtain the
ASD gauge connection of calorons as

{
Aα(x)

}
ab =

∫
I

u†
a∂αub ds + v†

a∂α vb. (8)

As mentioned in Introduction, we have to perform the Nahm trans-
form by numerical analysis, which is the main aim of this Letter.
Note that the numerical Nahm transform for monopoles was vig-
orously studied by Houghton and Sutcliffe [16].

2.2. Exact Nahm data of the 2-caloron

In this subsection, we introduce an exact Nahm data of the
2-caloron, for which we perform the Nahm transform in the fol-
lowing sections. In [11], the bulk Nahm data of the 2-caloron on
an interval is given in the following form

T1(s) = f1(s)σ1 + g1(s)σ3 + d112,

T2(s) = f2(s)σ2 + d212,

T3(s) = g3(s)σ1 + f3(s)σ3 + d312,

T0 = d012. (9)

The solutions to the Nahm equations (1) are

f1(s) = a(s) cos φ, g1(s) = −b(s) sin φ,

f2(s) = ∓Dk′ sn 2Ds

cn 2Ds
,

g3(s) = ±a(s) sin φ, f3(s) = ±b(s) cos φ, (10)

with

(
a(s),b(s)

) =
(

D
k′

cn 2Ds
, D

dn 2Ds

cn 2Ds

)
or

(
D

dn 2Ds

cn 2Ds
, D

k′

cn 2Ds

)
, (11)

where sn, cn, dn are Jacobi elliptic functions of modulus k, and
k′ = √

1 − k2. The monopole limit of this bulk data is obtained by
putting μ0/2 → 1 and D → K (k)/2. Note that φ is not a physical
parameter for the trivial holonomy calorons and also monopoles,
because it can be removed by a spatial rotation (see Section 4).
However, we keep it for the purpose of generalization to the non-
trivial holonomy cases, and also the reliability check of the numer-
ical code.

Next, we consider the matching condition (2) for the 2-caloron.
In accordance with [11], we employ the following parameteriza-
tions for the boundary Nahm data

W = (λ12,ρq̂), q̂ = q̂μeμ, q̂0 = cosψ,

q̂ = (sinψ sin θ sinϕ, sinψ sin θ cosϕ, sin ψ cos θ). (12)

Then (2) reads

T j(−μ0/2) − T j(μ0/2) = λρq̂ jσ2. (13)

From the boundary values of the bulk Nahm data given above, we
find θ = π/2, ϕ = 0 or π , and

±2Dk′ sn 2D(μ0/2) = λρ sinψ. (14)

cn 2D(μ0/2)
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Note that all the parameters are assumed to be real number. Con-
sequently, the moduli parameters of the 2-caloron of trivial holon-
omy are the following 10,

d1, d2, d3, d0, φ, k, D, λ, ρ, ψ, (15)

which are subject to the constraint (14).

3. Numerical Nahm transform: Formulation

3.1. Solving the bulk Weyl equation

In this section, we give the strategy on finding out the nu-
merical solution to the Weyl equations with boundary impu-
rities, which is based on the construction of monopoles a la
Houghton and Sutcliffe [16]. From the Nahm data (9), the bulk
Weyl equations (3) can be written for the components of u� ≡
t(u1�, u2�, u3�, u4�) as⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 O
1

1
O 1

⎞
⎟⎠ d

ds

−
⎛
⎜⎝

f3 g1 g3 f1 − f2
g1 − f3 f1 + f2 −g3
g3 f1 + f2 − f3 −g1

f1 − f2 −g3 −g1 f3

⎞
⎟⎠

−
⎛
⎜⎝

d3 + id0 d1 − id2 0 0
d1 + id2 −d3 + id0 0 0

0 0 d3 + id0 d1 − id2
0 0 d1 + id2 −d3 + id0

⎞
⎟⎠

−
⎛
⎜⎝

x3 + ix0 x1 − ix2 0 0
x1 + ix2 −x3 + ix0 0 0

0 0 x3 + ix0 x1 − ix2
0 0 x1 + ix2 −x3 + ix0

⎞
⎟⎠

⎫⎪⎬
⎪⎭

×
⎛
⎜⎝

u1�

u2�

u3�

u4�

⎞
⎟⎠ = 0. (16)

This system of ordinary differential equations can be solved by the
Runge–Kutta method with appropriate initial conditions. For the
Nahm transform of calorons, as well as monopoles, what we need
is the basis of 2-dimensional vector space spanned by the solutions
to (16) normalizable on I . To employ the monopole construction
procedure, we have to integrate (16) starting from the simple poles
of the Nahm data. The positions of poles are spole = ±K (k)/2D ,
obviously read from (10) and (11). From the Nahm construction of
calorons, spole’s are assumed to be located on the outside of I , i.e.,
|spole| > μ0/2. If we represent (16) at each pole in the following
concise form

(s − spole)
du�

ds
= Bsu�, (17)

where Bs is a regular matrix, then the vector space dimensions
of independent solutions which are normalizable are given by the
number of positive eigenvalues of the matrix Bspole [16]. In the
present case, we evaluate that the eigenvalues at each pole are,
respectively,

1

2
,

1

2
,

−1 ± 2
√

k + 1

2
(18)

for an arbitrary φ. Hence, we find the vector space dimensions
are three for each pole. In terms of Frobenius expansion at the
poles, we can find a couple of free parameters. Appropriately tun-
ing these parameters, we obtain the three independent initial con-
ditions at each pole. In this way, we can compute the array of
independent solutions u(1), u(2), . . . , u(n) , where n is at most 6.

The 2-dimensional basis u� , (� = 1,2), can be obtained by tak-
ing linear combinations of these solutions,

u� = (
u(1), u(2), . . . , u(n)

) · ω�, (19)

where ω� are n-column vectors, i.e., ω� := t(ω1�,ω2�, . . . ,ωn�), to
be fixed below. The evaluation of ω� is not so straightforward
for calorons, as well as monopoles. For the monopole construction
[16], ω� is determined by the condition that a linear combination
of the solutions, integrated from one pole, matches a linear com-
bination of the solutions from the other pole, at the center of the
interval. In this way, we find the 2-dimensional basis of the vector
space. For the caloron construction, the situation is slightly differ-
ent. We are able to compute the solutions in the whole interval at
once without taking linear combination. Instead, we have to find
out the solutions to the boundary Weyl equations (6) simultane-
ously, which should be consistent with the boundary Nahm data.

3.2. Solving the boundary Weyl equation

For an appropriately defined u� , the boundary Weyl equations
(6) with the boundary Nahm data (12) are⎛
⎜⎝

�u1�

�u2�

�u3�

�u4�

⎞
⎟⎠ = i

⎛
⎜⎝

λ 0
0 λ

ρ cosψ ρ sinψ

−ρ sinψ ρ cosψ

⎞
⎟⎠(

v1�

v2�

)
, (20)

where �u� = t(�u1�,�u2�,�u3�,�u4�) and v� = t(v1�, v2�). The
equations seem to be an over-determined system for v1�, v2� , but
that is not true because the left-hand side is not determined at
this stage. Our goal is to determine the coefficients of the linear
combination ω� in (19) and v� , simultaneously, for the given bulk
Nahm data u(1), u(2), . . . , u(n) . This procedure can be reduced to
the problem of linear algebra as follows.

First, we solve the upper two rows of (20) as

v�1 = −i�u�1/λ, v�2 = −i�u�2/λ. (21)

By substituting (21) into the lower two rows, we find (20) becomes
the constraints on �u� as

�u�3 = ρ(�u�1 cosψ + �u�2 sinψ)/λ,

�u�4 = ρ(�u�2 cosψ − �u�1 sinψ)/λ. (22)

The next step is to fix ω� which is consistent with (22). From the
definition (19), �u� is expanded as

�u� = (
�u(1),�u(2), . . . ,�u(n)

) · ω�, (23)

where �u(i) ≡ u(i)(−μ0/2) − u(i)(μ0/2). Note that �u� and
�u(i)

� ’s are 4-column vectors. Now, we can rearrange (22), by using
(23), into a linear equation for �u�(

ρ cosψ ρ sinψ −λ 0
−ρ sinψ ρ cosψ 0 −λ

)
· (�u(1),�u(2), . . . ,�u(n)

) · ω� = 0. (24)

This can also be regarded as the linear defining equation for ω� .
Since the number of constraints on ω� in (24) is two, we have
to take at least four solutions of the bulk Weyl equation, to ob-
tain two independent solutions ω� , i.e., the 2-dimensional basis u� .
To determine the independent solutions ω� to (24), we simply
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Fig. 1. The method of solving the boundary Weyl equation removing the over-determination. We compute the bulk Weyl equation from both poles independently. Then four
of them are used to determine linear combinations which can be performed with the Gauss elimination for the coefficient matrix of (24).
perform the Gauss elimination (Fig. 1). Having obtained the in-
dependent ω� , we take the linear combination (23), and find the
components of �u� automatically satisfy (22). The solutions of
the boundary Weyl equation have already been given by (21). Our
method to solve the Weyl equations is schematically illustrated in
Fig. 1.

3.3. Realization of the action density

To investigate the configuration of calorons in the configu-
ration space, it is useful to visualize the action density, which
is gauge invariant and positive real definite. With the fact that
the field strength of calorons Fμν = ∂μ Aν − ∂ν Aμ + [Aμ, Aν ] is
an anti-symmetric tensor and the (A)SD conditions F01 = ±F32,
F02 = ±F31, F03 = ±F21, the action density of calorons can be
written as

S(x, t) = −1

2
Tr2 F 2

μν = −2 Tr2
(

F 2
12 + F 2

23 + F 2
31

)
. (25)

Thanks to the (A)SD conditions, we do not have to calculate the
“time” t = x0 derivative in the field strength so that we can regard
t as a parameter in the calculation. We perform the visualization
of the action density of the caloron, mainly by Mathematica [18].

4. Numerical Nahm transform: Analysis

4.1. The patchwork

Combining all these procedures, we now compute the action
density of the calorons, a typical gauge invariant quantity. How-
ever, when we carry out the program, we always observe unex-
pected singularities of line form. In the calculation of the zero
modes of the Weyl equation, we always have a trivial phase fac-
tor, which depends on the configuration space coordinates. These
factors inevitably cause effect to the gauge field through a finite
difference method of (8). For the analysis of the monopoles [16],
on the contrary, no such singularities occur. The finite difference
of the zero modes is taken after the trace for quaternion, which
successfully cancels jump or twist of the phase of the zero modes.

These singularities, however, have no essential ingredients so
we employ the following simple procedure to remove them. We
can identify numerically the location of the singular lines, which
depends on the initial conditions of the Runge–Kutta method. For
example, a solution has a singular line located on the upper hemi-
sphere of the configuration space while another has it on the
lower hemisphere. Thus, we obtain the regular action density by
a patchwork with two or three parts of the solutions with differ-
ent parameter sets, by choosing their intersection is regular. We
employ 50 grid points for the dual space, and 61 × 61 × 61 lat-
tice points for the configuration space, which are sufficient for the
numerical convergence.
4.2. The moduli parameters

Having established the formulation for calculating the action
density, our main concern is to clarify the role of the moduli pa-
rameters of the 2-calorons, which are listed in (15).

First, we consider a very simple case

d1 = d2 = d3 = d0 = 0, k = 0,

D = K (k)/2 = π/4, ρ = λ, ψ = π/2 (26)

with the positive sign in (14). In this case, λ can easily be solved
as

λ =
√

π

2
tan

(
π2

2β

)
, (27)

where β = 2π/μ0, which gives the rotation symmetric 2-caloron
of trivial holonomy obtained in [17]. The constant surface of the
action has a toroidal shape, as expected. As the time coordinate
t varies, the surface still keeps its torus configuration: When we
increase t from t = 0, the action density gradually reduces its ab-
solute value and almost fades away at t = β/2, and it returns to its
initial value at t = β .

Now, we consider the general case accompanied with all the
moduli parameters (15). The quadruplets d1, d2, d3, d0 are the pa-
rameters of parallel transformation in R

3 × S1. Substituting (9) into
(3) one can easily see that for a parameter scaling dμ 
→ dμ + δμ ,
δμ is absorbed into xμ as xμ 
→ xμ + δμ .

It is already known for the BPS 2-monopoles that the modulus
k is a parameter of the geodesic motion of the monopoles. The
situation is similar for the 2-calorons. In Fig. 2, we present the
action isosurface plots for several values of k = 0.0,0.7,0.9, which
show the dynamical motion of the constituent monopoles.

Next, we consider D , which can be identified as a scale param-
eter of the caloron. Under a scale transformation with α being an
arbitrary constant,

D 
→ αD, s 
→ s/α, λ 
→ √
αλ, ρ 
→ √

αρ, (28)

the bulk and the boundary Nahm data, (10), (14) are invariant. If
we fix the poles of the bulk data located on s = ±1, which gives
a constraint on D as D = K (k)/2, then we can find a similar func-
tional form for the bulk data as we change the value of D and μ0,
simultaneously. This means that the change of D leads the rescal-
ing of the range of I , i.e., μ0. Now, the Weyl equation (3) keeps
invariant if the additional conditions are satisfied

xμ 
→ x′
μ = αxμ, U 
→ U ′(s/α, x′

μ

) = √
αU (s, xμ), (29)

which obviously describe the spatial rescaling of the solution. Note
that as s reduces, xμ increases at the same order. Hence, we con-
clude that D works as a scale parameter of the solution.
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Fig. 2. Action isosurface plot of the 2-caloron with μ0/2 = 0.5, t = 0, S(x, t) = 2.94, k = 0.0,0.7,0.9 respectively.
Fig. 3. The action densities on x1x3-plane with μ0/2 = 0.5, t = 0, ψ = π/2, for
γ := λ/ρ = 3 (top), γ = 1 (middle), γ = 1/3 (bottom), respectively.

The triplet, λ, ρ , and ψ , are the boundary data of the 2-caloron.
As discussed in [17], the symmetric calorons are defined such that
they are invariant under the group G ⊆ SO(3) as

Θ−1(T j ⊗ σ j)ΘR = T j ⊗ σ j, (30)
R
Fig. 4. Similar with Fig. 3 but with the case of ψ = 3π/20.

ΘR W † = W †τR , (31)

where ΘR = Rk ⊗ R2 and τR is a unit quaternion. R2 ∈ SU(2) is the
rotation matrix acts on the quaternion coordinate. Similarly, Rk is
the k-dimensional irreducible representation of a rotation which
acts on k-column vectors. One can easily confirm that for rotations
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Table 1
The role of each moduli parameter.

Parameters Role

d1,d2,d3,d0 Parallel transformation in R
3 × S1

k Geodesic motion of two BPS monopoles
D Scale of the solution
φ Angle of the rotation around x2-axis
λ, ρ , ψ Parameters of the boundary data

about x2-axis, (31) is satisfied only for λ = ρ,ψ = π/2. This means
that the calorons are not always axially symmetric even if the bulk
data is invariant. We summarize figures of the action density to
the non-axially symmetric 2-calorons with the same bulk data to
the rotation symmetric 2-calorons in Figs. 3 and 4.

Finally, we consider φ, which describes a rotation around x2-
axis in R

3, as mentioned in Section 2. This is because the bulk
data can be written as (for positive sign)( T1(s)

T2(s)
T3(s)

)
=

( cosφ 0 − sin φ

0 1 0
sinφ 0 cosφ

)( a(s)σ1
f2(s)σ2
b(s)σ3

)
(32)

and φ can be set to 0 by the rotation of quaternion xμeμ by R2, to-
gether with the rotation on the Weyl spinors. Thus, this parameter
is dummy in the case of the 2-caloron of trivial holonomy. For the
2-caloron of non-trivial holonomy, however, this becomes a crucial
parameter because it has a meaning of the relative rotation angle
of the constituent monopoles.

Hence, we have found full understandings for all parameters.
The results are summarized in Table 1.

5. Conclusion

In this Letter, we have performed the Nahm transform nu-
merically by directly solving the Weyl equations with boundary
impurities for the 2-calorons of trivial holonomy, with 10 mod-
uli parameters subject to 1 constraint. For the boundary equation,
we have proposed the systematic method to extract appropriate 2-
dimensional basis of the system by taking linear combinations of
solutions of the Weyl equation. The action density plots are qual-
itatively similar with those of [8], which are based on the Green
function method. The method presented in this Letter is essentially
equivalent to [8].

For the most general 2-calorons, with non-trivial holonomy, the
program will also work well, though we need to solve more com-
plicated matching conditions. The role of the moduli parameters in
this object is still not fully understood. The analysis for such case
is now in progress.

The Atiyah–Manton construction of Skyrmions has already been
generalized to the case of finite temperature, by making use of
calorons of trivial holonomy [19,20]. For the study of a high energy
collision of the nucleon or a high density phase of the nuclear mat-
ter, it will be valuable to consider the approximation to Skyrmions
in more general situations. It is extremely interesting whether or
not the calorons of non-trivial holonomy play a significant role
in this subject. The analysis will be reported in forthcoming ar-
ticles.
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