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Alarming Dendritic Cells for Allergic
Sensitization
Monique AM Willart1 and Hamida Hammad1

ABSTRACT
Allergic patients mount a Th2 response to common allergens, like house dust mite (HDM), pollens, molds and
animal dander. Most inhaled antigens are immunologically inert, however if these antigens are accompanied by
microbial or endogenous danger patterns (alarmins), they can be recognized by inflammatory cells. Dendritic
cells are the most potent antigen presenting cells, which express a wide variety of receptors on their cell sur-
face, recognizing these microbial patterns, damage induced molecules and cytokines. Dendritic cells become
reporters of the microenvironment if exposed to the allergen, subsequently migrating to the draining lymph
nodes where they activate naïve T lymphocytes. Dendritic cells could also be indirectly activated by epithelial
cells, which express various receptors and secrete a variety of cytokines early after allergen exposure. Upon
HDM exposure these cells secrete chemokines to attract monocytes and immature dendritic cells, and GM-
CSF, TSLP and IL-33 to activate dendritic cells, mast cells and basophils. Danger signals which alert dendritic
cells and epithelial cells comprise many proteins and molecules, contributing to an enhanced immune response
to inhaled allergens. This review focuses on the role of dendritic cells and alarmins in the sensitization to in-
haled allergens in allergic asthma.
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ALLERGIC ASTHMA
House dust mite, pollens, molds, animal dander are
common allergens that cause chronic illness like al-
lergic rhinitis, asthma, and atopic eczema. These dis-
eases are increasing in prevalence. Several risk fac-
tors for becoming allergic have been identified and
include family history, allergen exposure levels, life-
style (e.g. inner city versus rural living), infection his-
tory, cigarette smoking and environmental pollution.1
Allergic patients mount a T helper 2 (Th2) type re-
sponse to allergens, which is measured clinically by
allergen-specific serum IgE levels and a positive skin-
prick test. Allergic asthma is characterized by attacks
of wheezing and breathlessness due to bronchocon-
striction, mucus secretion, airway hyper responsive-
ness to non-specific stimuli, airway wall thickening
and eosinophilic and CD4+ Th2 cell influx in the air-
way wall. Recruited inflammatory cells in asthmatics
as well as in mouse models of the disease produce
various cytokines like interleukin (IL)-4, IL-5 and IL-

13.2 In experimental settings, blocking these cytoki-
nes with specific antibodies revealed that every single
cytokine contributes to one of the features of
asthma.3,4 However, Th2 cells do not react directly to
inhaled antigen, as their T cell receptor can only rec-
ognize antigens that are processed into peptides for
presentation on major histocompatibility complex
(MHC) molecules.5 One of the most important anti-
gen presenting cells is the dendritic cell (DC), a cell
type previously reported to be important in allergic
asthma.6 This review focuses on the role of danger
factors in initiating an immune response to allergens
mainly through targeting of antigen presenting den-
dritic cells.

SENSITIZATION INDUCED BY DENDRITIC
CELLS
Naïve CD4+ T cells only differentiate into Th2 cells if
inhaled allergens are presented in MHC class II com-
plex molecules.5 DCs are considered to be the most
powerful antigen presenting cells (APCs) and play a
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Table 1 Examples of pathogen associated molecular pattern (PAMP) and damage associated molecular pattern (DAMP) re-
ceptors expressed on dendritic cells and lung epithelial cells

Lung epithelial cellsDendritic cells 

PAMP receptors
TLR1-6TLR1-10 Toll like receptors 

NLRs, TLR 9NLRs, TLR 3, 7, 9 Intracellular receptors 
Dectin-1, -2, DEC205, BDCA-2C-type lectin receptors 
Macrophage mannose receptor

MDA5MDA5, LGP2 RIG-l-Iike receptors 
PAR 1-4PAR 1-3 Protease activated receptors 

DAMP receptors
mC3aR, mC5aRhCR1, hCR2, hCR3, mC3aR, mC5aR Complement receptors 

DP1, EP2, EP4, IPProstanoid receptors 
NK1, CGRPRNeuropeptide receptors 

P2X, P2YP2X, P2Y Purinergic receptors 
RAGERAGE HMGB1 receptor 

CD14, CD36, CD91Heat shock protein receptors 

central role in the initiation of primary immune re-
sponses,7,8 and in the enhancement of secondary im-
mune responses.9,10 Under basal conditions, DCs can
be found throughout the conducting airways, lung in-
terstitium and vasculature.6 Inhaled allergens can be
recognized by airway DCs lining the epithelial layer.
They are able to “fish” and endocytose antigens from
the airway lumen. This was initially shown in the gut
where intravital imaging DCs in MHCII-GFP knock-
in mice were able to extend protrusions through the
epithelial layer and probed the lumen for antigens.11

We recently confirmed this scenario in the airways,
using tracheal explants from the same mouse strain.
However, in the trachea DCs showed the capacity to
move in the upper layers of the pseudostratified epi-
thelium to reach the airway lumen (unpublished data
and12). Airway DCs which have captured antigen mi-
grate to the T cell area in the draining mediastinal
lymph nodes (MLN). On their way to the MLN, DCs
process these captured antigens, display them as pep-
tides on MHC class II molecules and subsequently
present them to naïve CD4 Th cells in the paracortex
of the draining node.13 During this process, DCs ac-
quire a mature phenotype, meaning that they upregu-
late their expression of costimulatory molecules nec-
essary for optimal naïve T cell activation, and they ac-
quire the capacity to stimulate an effector re-
sponse.14-18

The DCs therefore become a reporter of their ear-
lier microenvironment and have the potential to in-
duce a polarized Th1, Th2, Th17 or regulatory T cell
(Treg) type of response.7,19 Many factors are deter-
mining the outcome of the DC-induced T-helper cell
polarization, such as the type of antigen captured, the
presence of microbial patterns or endogenous danger
signals (also called alarmins) or the route of expo-
sure and the genetic background of the host.15,20,21

ACTIVATION OF DENDRITIC CELLS
DCs do not initiate an immune response to inhaled
antigen randomly. Most inhaled particles are immu-
nologically inert, and therefore the usual outcome of
their inhalation is tolerance and inflammation does
not develop upon chronic exposure to the same anti-
gens. In the absence of inflammatory triggers, DCs
that take up these harmless antigens do not properly
express costimulatory molecules, consequently fail to
reach the threshold necessary to induce T cell activa-
tion and instead induce an abortive T cell response.
DCs express a wide variety of receptors recognizing a
wide array of antigens or contaminants in soluble an-
tigens, like Toll-like receptors (TLR), cytokine recep-
tors, NOD-like receptors, protease activated recep-
tors (PAR) and C-type lectin receptors (Table 1).
Triggering of these receptors activates an intracellu-
lar signaling cascade and influences the phenotype
and functions of DCs.22,23 Additionally, the dose of in-
haled allergen is also playing a role in the type of im-
mune response generated. As a result, when high
amounts of antigen are administered the majority of
antigen reactive T cells are deleted after dividing.
This process is referred to as deletional tolerance.
Animal studies have shed some light on how tolero-
genic responses are initiated and regulated. In the
lung, tolerance is a feature of DCs present in steady
state conditions and is shown best for the model anti-
gen ovalbumin (OVA). In the most commonly used
models to induce allergic asthma, OVA is adminis-
tered either in conjunction with an adjuvant, such as
aluminium hydroxide or by repetitive injections at a
low concentration.24 After challenges with OVA aero-
sol via the lung or droplet aspiration via the nose, tis-
sue eosinophilia occurs, and infiltrates of inflamma-
tory cells develop around the bronchi. However,
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when OVA is administered without an adjuvant, mice
become tolerant to this antigen and the development
of airway inflammation is prevented, this is a feature
of true immunologic tolerance.25,26

In mice DCs were first described as CD11c and
MHCII positive cells. However, it has become clearer
that a broad range of markers are needed to divide
DCs into various subsets, that possess different func-
tions.27,28 Recent studies from our group have demon-
strated that tolerance is induced by particular DC
subsets. Indeed, conventional DCs (cDCs) were
shown to be important for inducing Th2 responses in
the lung, whereas plasmacytoid DCs (pDCs) were
able to suppress T cell effector generation and to pro-
mote tolerance to inhaled antigens.25 Interestingly,
we have shown that pDCs anti-inflammatory irrespec-
tively of their maturation state and their protective ef-
fects are mediated through programmed death (PD)-
1�PD ligand 1 interactions.28

How sensitization to natural allergens occurs is still
under study. DCs will only start a T helper response
if there is some sort of adjuvant activity on board at
the time of exposure to the allergen. This activity pro-
vided by the presence of pathogen associated mo-
lecular patterns (PAMPs), damage associated mo-
lecular patterns (DAMPs) and cytokines released
upon cell activation, necrosis or oxidative stress (e.g.
cigarette smoking, ozone exposure, diesel particles).
This adjuvant signal can also be found in the allergen
itself. Indeed, house dust mite (HDM), cockroach
and many other allergens have proteolytic enzymes
that can directly activate DCs or epithelial cells, and
in this way promote Th2 sensitization.29,30

PAMPs STIMULATE DC INDUCED SENSITI-
ZATION
Charles Janeway proposed 20 years ago that the im-
mune system cannot recognize every single unique
feature of every microbial pathogen, since the re-
quired information is enormous and would rapidly be-
come out-of-date because of selection pressure and
spontaneous mutations.31,32 Multicellular organisms
have developed mechanisms to counteract life-
threatening events such as infections and tissue in-
jury, as well as to restore tissue homeostasis. Im-
mune cells recognize broad molecular patterns rather
than detailed features of specific pathogens. PAMPs
comprise molecular structures found in microbes but
not in host tissues. In the setting of infection, micro-
organisms initiate a series of host events promoted
by their derived products. PAMPs are recognized by
membrane-bound, cytoplasmic or endosomal pattern-
recognition receptors (PRRs), including the TLRs,
NOD-like receptors (NLRs) and RIG-like receptors
(RLRs). Signalling through TLRs strongly activates
DCs to upregulate costimulatory molecules (CD80
and CD86) and to produce pro-inflammatory cytoki-
nes (TNFα, IL-1, IL-6, and IL-12).33,34 PRRs ‘sense’

bacterial products and activate intracellular cascades
that lead to an inflammatory response.35,36 PAMPs,
sensed by host inflammatory cells early during infec-
tion, are potent stimuli for innate immunity and are
often referred to as ‘exogenous danger signals’. In al-
lergic setting, antigens such as the experimental al-
lergen OVA, do not have any intrinsic activating prop-
erties, like HDM. For these antigens, additional sig-
nals from contaminating molecules (like LPS33) or en-
vironmental exposures (respiratory viruses, air pollu-
tion or cigarette smoke) might pull the trigger on DC
activation.37,38

The existence of a TLR-dependent mode of Th2

generation is supported by Eisenbarth et al. Using a
murine model of asthma, characterized by airway in-
flammation, eosinophilia, and mucus secretion in re-
sponse to intranasal exposure to antigen, they found
that the dose of LPS that is contaminating most com-
mercially available batches of OVA used in mouse
models of asthma regulates the induction of Th2 ver-
sus Th1 responses.33 Intranasally administered anti-
gen required a concomitant low-dose LPS signaling
through TLR4 to induce allergic pulmonary Th2 re-
sponses. MyD88, a common TLR adaptor molecule
required for signalling, is an essential innate compo-
nent in the induction of TLR4-dependent Th2 re-
sponses to antigens, by inducing the expression of in-
flammatory cytokines like IL-6, IL-12 and TNF-
α.33,39-41 The fact that endotoxin in experimental mice
models promotes allergic sensitization via effects on
DCs might have direct clinical relevance, since most
inhaled allergens, such as allergens derived from
cockroaches and house-dust mites are contaminated
with LPS. We have recently shown that Th2 re-
sponses induced by HDM were mediated through
TLR4.12 Surprisingly however, the endotoxin con-
tamination of HDM extracts used to induce allergic
asthma in this study was in the subnanogram range,
which is much lower than the dose described to pro-
mote Th2 responses to OVA.12 Therefore another
molecule was expected to contribute to TLR4 signal-
ling by HDM. TLR4 signalling by LPS leading to NF-
κB activation will only take place in presence of extra-
cellular proteins as CD14 and myeloid differentiation
protein 2 (MD2). CD14 helps to form LPS-MD2-TLR4
complex and therefore signalling via the TLR4 recep-
tor.42 Analysis of the main HDM-allergen Der p2
shows functional homology to MD2, which facilitates
TLR4 signalling and thus NF-κB activation even in ab-
sence of MD2.43 These experimental and clinical ob-
servations suggest that direct or indirect activation of
DCs by PAMPs (like TLR agonists) is a critical com-
ponent of sensitization to some allergens.

DAMPs STIMULATE DC-INDUCED SENSITI-
ZATION
Oxidative stress or tissue damage can trigger inflam-
mation even in the absence of pathogens. Inflamma-
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tion triggered by tissue damage in the absence of in-
fection is often referred to as sterile inflammatory re-
sponse. It is now understood that immune cells react
to molecules released by injured or necrotic, but not
apoptotic, cells.44 These molecules alert our body de-
fence system of an impending danger, and are there-
fore also referred to as ‘alarmins’, ‘endogenous dan-
ger signals’ or DAMPs.45 These DAMP molecules
contribute to the induction of inflammation by recruit-
ment of innate inflammatory cells and interact with
PRRs, shared with the exogenous danger signals.
The actual repertoire of DAMPs in damaged tissues
can vary greatly depending on the type of cell (epithe-
lial or mesenchymal) and injured tissue. Heat shock
proteins (HSP), high mobility group box 1 (HMGB1)
protein, uric acid and adenosine triphosphate (ATP)
are a few examples. We have recently summarized
the contribution of ATP to allergic sensitization.46,47

Many intracellular proteins secreted actively through
nonclassical pathways and endowed with inflamma-
tory activity so-called leaderless secretory proteins
(LSPs) can be released by dying cells and behave as
DAMPs. HMGB1 is a prototypical LSP that is pas-
sively released by injured or necrotic cells, or by im-
mune cell responses to endotoxin, promoting tissue
inflammation.48 A study on PBMCs however showed
that HMGB1 alone cannot induce detectable levels of
IL-6, except after co-administration of LPS, CPG-
ODN, PAM3CSK4 or IL-1β.49 Compelling evidence
suggests that a tight collaboration between PAMPs
and DAMPs is needed to start an immune response
to allergens.50,51 More research nowadays focuses on
how the immune system regulates danger. In a
model of liver necrosis, Chen et al. showed that CD24
partners with Siglec-G (Siglec-10 in human) to nega-
tively regulate the immune response to proteins re-
leased by damaged cells, but not ligands of microbial
origin (like LPS and Poly-IC). CD24 is a membrane
protein expressed by immune and stem cells and
Siglec-G is a c-type lectin. CD24 does not contain a
cytosolic domain, and signals through Siglec-G,
which contains an immune receptor tyrosine-based
inhibitory motif (ITIM). ITIMs are cytosolic domains
that reduce activation of NF-κB. CD24 and siglec-G
deficient DCs showed an increased secretion of IL-6
and TNF-a in response to HMGB1, HSP-70 and -90 as
compared to wild-type DCs.52 In contrast to necrotic
cells, apoptotic cells retain HMGB1 in their nuclei
and so do not activate inflammation.53 All these data
together suggest that there are some similarities be-
tween infectious and sterile inflammation, since
PAMPs and DAMPs seem to share many receptors.36

ALUM-INDUCED Th2 RESPONSES
One recent illustration of the potential implication of
endogenous danger signals to the process of allergic
sensitization comes from our studies on the mecha-
nism of action of alum adjuvant. Alum is used in

mouse models of asthma as a prototypical Th2 adju-
vant, whose mechanism of action is poorly under-
stood. When added to DCs in vitro, alum poorly acti-
vates APC function with the notable exception of IL-
1β induction.54 In vivo however alum strongly re-
cruits and stimulates inflammatory DCs and boosts
their potential to induce Th2 responses, associated
with production of bio-active IL-1β.55

We found that alum induces the release of uric
acid, an endogenous danger signal released by dying
cells or cells exposed to oxidative stress.56-58 Uric
acid is known to induce the release of IL-1β, to pro-
mote Th2 polarizing responses by DCs and to induce
IgG1 responses.59 The activation of IL-1β release re-
quires the presence of a TLR agonist, IL-1 receptor I
or TNF receptor I�II signalling acting on APCs to
promote activation of NF-κB and transcription and
translation of pro-IL-1β.60 Subsequently pro-IL-1β is
cleaved by caspase-1 in the cytoplasm, whose activa-
tion in turn depends on triggering of the NLR NALP3
(also known as cryopyrin) via endogenous danger
signals, which activates caspase-1.55,61,62 Recently, it
was shown that NALP3 activation occurs in cells un-
dergoing necrosis in vitro and in vivo, resulting in the
production of mature IL-1β.63 In addition, extracellu-
lar ATP has been known for years to activate caspase-
1, and several studies have demonstrated the require-
ment of P2X7 receptors (in a complex pannexin-1) for
ATP-induced caspase-1 activation and subsequent IL-
1β maturation.61,64,65 Double stranded DNA which is
released by necrotic cells, is also potently able to in-
duce caspase-1 activation as soon as it is cytosolic. Re-
cently PYHIN (pyrin and HIN domain-containing pro-
tein) family member absent in melanoma 2 (AIM2) is
described as a receptor for cytosolic DNA to regulate
caspase-1 activation via NALP3.66

It therefore comes as no surprise that mice defi-
cient in NALP3, ASC (apoptosis-associated speck-like
protein containing a caspase recruitment domain)
and caspase-1 have a defect in crystal-induced IL-1β
secretion and fail to mount Th2 mediated inflamma-
tion in vitro.55,67 This finding however has also been
debated and it seems that NALP3 inflammasome ac-
tivity is mainly necessary at the start of the alum in-
duced Th2 response.68,69 There is indeed evidence
that alum directly triggers the formation of the
NALP3 inflammasome in a process that also requires
the ASC protein.55,67 However, in vivo, uric acid-
mediated Th2 cell development is an additional trig-
ger. Certainly uric acid promotes the development of
Th2 responses when added to DCs in vitro.55,59,67

Cleaving of pro-IL-1β into its bio-active form does not
occur only intracellularly. Neutrophils which are at-
tracted to inflammatory sites, secrete proteinase-3, an
enzyme which is able to cleave pro-IL-1β extracellu-
larly. Other proteases such as caspase-11, elastase,
matrix metalloproteases, granzyme A and the mast
cell chymase also generate active IL-1β.70 Therefore
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not all IL-1β induced responses are necessarily NALP3
dependent.

ROLE OF IL-1βIN INFLAMMATION
Another cell type recruited during inflammation and
found to be a dominant source of IL-1β is the mono-
cyte. Whereas macrophages and DCs need a two way
signalling to process pro-IL-1β into bio-active IL-1β,
human monocytes are able to secrete bio-active IL-1β
upon only a TLR stimulus.71 However if these mono-
cytes differentiate into other cell types, they loose
this ability. Monocytes constitutively express active
caspase-1, likely due to the fact that these cells are
able to release endogenous ATP, therefore providing
their own ‘second signal’ to release bio-active IL-1β,
since it was shown to be dependent on ASC and
NALP3.71,72 The proinflammatory IL-1 cytokine family
consists of 11 members, the best known being IL-1α,
IL-1β and IL-1 receptor antagonist (IL-1Ra). All types
can bind to IL-1 receptors I and II, whereas IL-1Ra
and IL-1α�β compete for binding to these receptors.
In healthy individuals there is a balance between IL-
1Ra and IL-1α�β, IL-1Ra (Anakinra) has appeared
very useful to treat patients with inflammatory disor-
ders such as gout and rheumatoid arthritis.73 Only
signalling via IL-1RI results in NF-κB activation, since
soluble IL-1RII is able to block inflammatory func-
tions of IL-1.74 Previous experiments using OVA alum
sensitization as a model for asthma in mice deficient
of IL-1α�β did not result in any differences in airway
hyperresponsiveness (AHR) compared to wild-type
mice. However, in a milder model by repetitive OVA
injections intraperitoneally, a reduction in AHR in
mice deficient of IL-1α�β was observed. In addition,
mice deficient for IL-1Ra showed an increase in the
influx of DCs to the lung, in AHR and in the levels of
specific IgE and Th2 responses.75 Mice lacking IL-1RI
had reduced features of asthma when the mild model
was used, but not when alum adjuvant was added to
sensitize the mice.76 In another asthma model using
toluene diisocyanate, AHR and specific IgG1 levels in
serum were partly reduced in mice treated with neu-
tralizing antibodies to IL-1β, but this was not ob-
served in mice treated with antibodies against IL-
1α.77 These data together suggest a role for IL-1β in
Th2 sensitization in mild models of asthma.

In clinical settings, levels of IL-1β are found to be
increased in broncho-alveolar lavage taken from chal-
lenged asthmatics and IL-1β levels in serum were
proposed to be useful as a biomarker during the
symptomatic phase to distinguish allergic asthmatics
form non-allergic asthmatics and COPD patients.78,79

The main inflammatory cell types secreting IL-1β
were found to be monocytes and dendritic cells.78 A
study of cell necrosis in mice revealed different che-
motactic pathways for monocytes and neutrophils
upon sterile inflammation. Injection of dead cells in
IL-1R and MyD88 deficient mice resulted in a modest

reduction of monocytic influx, whereas neutrophils
numbers were significantly reduced compared to wild
type mice. Therefore attraction of neutrophils seems
to be regulated by IL-1β in sterile inflammation.80 By
using autoimmune prone NOD mice and IL-1Ra defi-
cient mice O’Sullivan et al. showed that IL-1β drives
proliferation and cytokine production by CD4+CD25+

effector and memory T cells, and in addition attenu-
ates functions of regulatory T cells, and allows escape
of autoreactive effector Tcells from suppression.81

Taking together, these data suggest an important
role for IL-1β in recruiting and regulating inflamma-
tory cell functions, but the precise significance of
these findings remain unknown.

ROLE OF IL-33 IN INFLAMMATION
A new member of the IL-1 cytokine family is recently
identified, namely IL-33. This cytokine possesses a
dual function like IL-1α and HMGB1, as a nuclear
binding factor and it acts as a cytokine via ST2 recep-
tor, which is expressed by many inflammatory cells.82

IL-33 is released during inflammatory events and pro-
motes Th2 development and stimulates DCs to in-
duce Th2 responses.6,83,84 Intratracheal administra-
tion of IL-33 induces an influx of eosinophils in the
lung and increased immunoglobulin serumlevels.82

Human eosinophils were shown to become activated
by binding to the ST2 receptor in vitro.85 In addition,
in mice treated with an antibody against IL-33 in a
mild asthma model, features of airway inflammation
were inhibited.86 IL-33 was found to be elevated in bi-
opsies from asthmatics compared to control sub-
jects.87 This cytokine is also released by lung epithe-
lial cells upon HDM challenge and levels are found to
correlate with AHR.12,88

Recently this cytokine was found to be cleaved by
caspase-1 as well as its family members IL-1β and IL-
18. However, the cleaved protein was not able to bind
to the ST2 receptor and induce signalling, unlike the
intact IL-33.89 These data together suggest a role for
IL-33 in allergic asthma.

EPITHELIAL CELLS AS A SOURCE OF
ALARMING CYTOKINES
Allergens in HDM and cockroach extracts possess
protease activity of which the most studied is Der p1
in HDM. This peptide is shown to break intercellular
tight junctions by cleaving occludin and claudin-1.
Therefore epithelial permeability is increased allow-
ing Der p1 to cross the epithelial barrier and to come
into contact with DCs.90 In vitro studies on human
cell lines revealed the importance of TLRs and NOD
receptors on epithelial cells. Lung epithelial cells for
example express a wide variety of TLRs (TLR1 to 6
being the most abundantly expressed), and also ex-
press PARs which are involved in the recognition of
allergens with enzymatic activity.91 Recently it has
shown by our group that TLR4 expression on struc-
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tural cells is necessary for the development of HDM-
induced asthma.12 Protease activated receptors can
be activated by inflammatory proteases, like tryptase
and chymase, which are released upon activation of
mast cells and allergens such as HDM and cock-
roach. PAR1-4 are expressed on epithelial cells, but
only PAR-1, -2 and -4 activation lead to cytokine secre-
tion.92 PAR-2 expression is also found to be upregu-
lated in lung and nose epithelial cells of asthmatics.93

How epithelial cells control Th2 sensitization and the
subsequent development of allergic asthma remains
unclear, but it might involve several inflammatory cy-
tokines released very early after HDM exposure. As
an example, the inhalation of HDM induces the re-
lease of GM-CSF, TSLP, IL-25 and IL-33 by epithelial
cells within hours following HDM administration.
GM-CSF is a growth factor that promotes DC differ-
entiation and their maturation.94 In previous studies
the blockade of GM-CSF has been shown to prevent
HDM-driven asthma.95 TSLP is produced by epithe-
lial cells, mast cells and basophils upon HDM chal-
lenge. This cytokine directly activates DCs to prime
naïve CD4+ Tcells.96-98 IL-33 and IL-25 (IL-17E) are
also cytokines released in the lung upon HDM expo-
sure, by epithelial cells, basophils and eosinophils.6,99

These cytokines are shown to play a role in the initia-
tion of Th2 differentiation and in the maintenance and
restimulation of Th2 memory cells.99,100 In addition, it
might be that the recruitment of specific inflamma-
tory cell types to the airways by chemokines is an-
other way of contributing to Th2 sensitization. In vitro
and in vivo studies have shown that exposure of air-
way epithelium to HDM resulted in the rapid secre-
tion of CCL20, a chemokine attractant for immature
DCs.100 This CCL20 release showed to be protease-,
TLR2- and TLR4-independent but relied on beta-
glucan moieties within the HDM extract. Treatment
of HDM with the enzyme beta-glucanase to break
these moieties significantly reduces subsequent
chemokine secretion by epithelial cells.100 Moreover,
HDM exposure is also accompanied by an increased
production of CCL2, a chemoattractant for mono-
cytes.12 These recruited CCR2+ monocytes are the
precursors for inflammatory DCs and it is very tempt-
ing to speculate that these cells are responsible for
the sensitization to HDM.

CONCLUSION
The term alarmins or danger molecules covers a wide
range of cytokines, molecules and proteins, which in-
duce activation of the immune system. Allergens,
either accompanied with danger signals or displaying
proteolytic activity, are able to affect a broad range of
inflammatory cells, as well as structural cells. Aller-
gens containing proteases are able to activate den-
dritic cells directly or indirectly by stimulating epithe-
lial cells. Further research on how DCs are instructed
via their PAMP and DAMP receptors might lead to

the discovery of new targets for therapy.
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