
International Journal of Approximate Reasoning 52 (2011) 38–48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier .com/locate / i jar
Strict and tolerant antidivision queries with ordinal layered preferences

Patrick Bosc, Olivier Pivert *, Olivier Soufflet
Irisa – Enssat, University of Rennes 1, Technopole Anticipa, 22305 Lannion Cedex, France

a r t i c l e i n f o
Article history:
Received 18 November 2009
Received in revised form 8 April 2010
Accepted 13 April 2010
Available online 18 April 2010

Keywords:
Database querying
Antidivision
Ordinal preferences
Quotient
Query relaxation
Fuzzy quantifiers
0888-613X/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.ijar.2010.04.004

* Corresponding author.
E-mail addresses: bosc@enssat.fr (P. Bosc), piver
a b s t r a c t

In this paper, we are interested in taking preferences into account for a family of queries
inspired by the antidivision. An antidivision query aims at retrieving the elements associ-
ated with none of the elements of a specified set of values. We suggest the introduction of
preferences inside such queries with the following specificities: (i) the user gives his/her
preferences in an ordinal way and (ii) the preferences apply to the divisor which is defined
as a hierarchy of sets. Different uses of the hierarchy are investigated, which leads to que-
ries conveying different semantics and the property of the result delivered is characterized.
Furthermore, the case where a conjunctive stratified antidivision query returns an empty
set of answers is dealt with, and an approach aimed at relaxing such queries is proposed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Queries including preferences have received a growing interest during the last decade. Motivations for introducing pref-
erences inside database queries are manifold [1]. First, it has appeared to be desirable to offer more expressive query lan-
guages that can be more faithful to what a user intends to say. Second, the introduction of preferences in queries
provides a basis for rank-ordering the retrieved items, which is especially valuable in case of large sets of items satisfying
a query. Third, on the contrary, a classical query may also have an empty set of answers, while a relaxed (and thus less
restrictive) version of the query might be matched by items in the database.

Approaches to database preference queries may be classified into two categories according to their qualitative or quan-
titative nature [1]. In the latter, preferences are expressed quantitatively by a monotone scoring function (the overall score is
positively correlated with partial scores), often taken as a weighted linear combination of attribute values (which have there-
fore to be numerical). Since the scoring function associates each tuple with a numerical score, tuple t1 is preferred to tuple t2

if the score of t1 is higher than the score of t2. Representatives of this family of approaches are top-k queries [2], fuzzy-set-
based approaches (e.g., [3]), and the model proposed in [4]. However, it is well known that scoring functions cannot repre-
sent all preferences that are strict partial orders [5], not even those that occur in database applications in a natural way [6].
Another issue is that devising the scoring function may not be simple. In the qualitative approach, preferences are defined
through binary preference relations. Since binary preference relations can be defined in terms of scoring functions, the qual-
itative approach is more general than the quantitative one. Among the representatives of this second family of approaches,
let us mention the system called Preferences [7], an approach based on CP-nets [8], and those relying on a dominance rela-
tion, e.g. Pareto order, in particular PreferenceSQL [9], Skyline queries [10] and the approach presented in [6].

In this paper, a qualitative view of preference queries is adopted, considering that it is less demanding for a user in terms
of elicitation. Indeed, it is sufficient to use a completely ordered scale involving symbolic weights for assessing the
. All rights reserved.

t@enssat.fr (O. Pivert), soufflet@enssat.fr (O. Soufflet).

https://core.ac.uk/display/82702902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijar.2010.04.004
mailto:bosc@enssat.fr
mailto:pivert@enssat.fr
mailto:soufflet@enssat.fr
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar


P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48 39
importance of the different preference criteria. Another aspect worthy of comment concerns the type of result returned to
the user. Pareto-order and CP-net-based approaches yield partially ordered answers, which can be somewhat frustrating for
a user. Here, a type of preference queries for which a totally ordered result can be computed is considered. More precisely,
preference queries dealt with involve a hierarchy of Boolean conditions (which induces an implicit ordinal scale).

Up to now, most of the research works on database preference queries have focused on fairly simple queries where pref-
erences apply only to selections. The objective of this paper is to enlarge the scope of preference queries by considering more
complex ones, founded on the association of an element with a given set of values, in the spirit of the division operation.
Taking preferences into account will allow for keeping only the best k answers, in the spirit of top-k queries [2].

In the following, antidivision queries are considered. Let r be a relation of schema R(X,A) and s a relation of schema S(B),
with A and B compatible (sets of) attributes, i.e., attributes defined on the same domain. The antidivision query r[A > B]s
retrieves the X-values present in relation r which are associated in r with none of the B-values present in s. By analogy with
a division, relation r may be called the dividend and relation s the divisor. Knowing that an antidivision delivers a non-dis-
criminated set of elements, the idea is here to introduce preferences in this operator. Several lines for assigning preferences
may be thought of, depending on whether preferences concern the divisor, the dividend or both, tuples individually (see e.g.,
[11–13]), or (sub) sets of tuples. In this paper, we investigate the case where: (i) preferences are purely ordinal and ii) they

apply to the divisor only, which is structured as a hierarchy (a set of layers). An element x of the dividend will be all the more
acceptable as it is not connected with a certain number of the subsets (Si’s) defined over the divisor. Three different roles
allotted to the divisor (described as a hierarchical set) are envisaged in the remainder of this paper. They differ in the
way the layers of the divisor are taken into account for discrimination.

The rest of the paper is organized as follows. Section 2 is dedicated to some reminders on the antidivision operator. Three
types of stratified antidivision queries are studied and modeled in Section 3. In Section 4, it is shown that the result returned
by these queries can be characterized as an ‘‘antiquotient”, i.e., a largest relation according to a given inclusion constraint. In
Section 5, the case where a conjunctive stratified antidivision query returns an empty set of answers is dealt with, and an
approach aimed at relaxing such queries is proposed. The idea consists in replacing the crisp quantifier not exists underlying
strict antidivision queries by a more tolerant fuzzy quantifier such as almost none. Section 6 deals with implementation as-
pects and presents some experimental results as to the performances of different algorithms implementing conjunctive
stratified antidivision queries. The conclusion summarizes the contribution of the paper and draws some lines for future re-
search in particular as to implementation issues.

2. Some reminders about the antidivision

In the rest of the paper, the dividend relation r has the schema (A, X), while that of the divisor relation s is (B) where A and
B are compatible sets of attributes. The division of relation r by relation s is defined as:
r½A� B�s ¼ fxjx 2 r½X� ^ s # XrðxÞg ð1Þ
or equivalently as:
r½A� B�s ¼ fxjx 2 r½X� ^ 8a; a 2 s) ða; xÞ 2 rg ð2Þ
where r[X] denotes the projection of r over X and Xr(x) = {aj(a,x) 2 r}. In other words, an element x belongs to the result of the
division of r by s iff it is associated in r with at least all the values a appearing in s. The justification of the term ‘‘division”
assigned to this operation relies on the fact that a property similar to that of the quotient of integers holds. Indeed, the result-
ing relation d-res obtained with expression (1) or (2) has the double characteristic:
8t 2 d-res; s� ftg# r ð3Þ
8t 2 ðr½X� � d-resÞ; s� ftg � r ð4Þ
� denoting the Cartesian product of relations. Expressions (3) and (4) express the fact that relation d-res is a quotient, i.e., the
largest relation whose Cartesian product with the divisor returns a result included in the dividend. In a similar way, we call
antidivision the operator > defined the following way:

r½A> B�s ¼ fxjx 2 r½X� ^ s # cpðXrðxÞÞg ð5Þ

where cp(r) is the complement of r, or equivalently:
r½A> B�s ¼ fxjx 2 r½X� ^ 8a; a 2 s) ða; xÞ R rg ð6Þ
sult ad-res of the antidivision may be called an ‘‘antiquotient”, i.e., the largest relation whose Cartesian product with
visor is included in the complement of the dividend. Thus, the following two properties hold:

8t 2 ad-res; s� ftg# cpðrÞ ð7Þ
The re
the di
8t 2 ðr½X� � ad-resÞ; s� ftg � cpðrÞ ð8Þ



40 P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48
where E � F denotes the difference between E and F. In an SQL-like language, the division of r by s may be expressed:
select X from r ½where condition� group by X having set ðAÞ contains fv1; . . . ; vng
and the antidivision similarly as:
select X from r ½where condition� group by X having setðAÞ contains-none fv1; . . . ; vng ð9Þ
where the operator ‘‘contains-none” states that the two operand sets do not overlap. An alternative expression of the latter
can be based on a difference:
ðselect X from rÞ minus ðselect X from r where A in ðselect B from sÞÞ: ð10Þ
Example 1. Let us consider the following relations P (product, component, proportion), which describes the composition of
some chemical products and N (component) which gathers the identifications of noxious components:
P ¼ fðp1; c1;3Þ; ðp1; c2;4Þ; ðp1; c3;54Þ; ðp2; c2;30Þ; ðp3; c2;8Þ; ðp3; c6;22Þg;
N ¼ fc1; c2; c5g:
The query ‘‘retrieve any product which does not contain any noxious component in a proportion higher than 5%” can be ex-
pressed as the antidivision of the relation Prod0 derived from Prod made of {(p1, c3), (p2, c2), (p3, c2), (p3, c6)} by Nox, whose
result according to (5) or (6) is {p1} and it is easy to check that formulas (7) and (8) both hold.
3. Three types of stratified antidivision queries

3.1. Antidivision and preferences

What has been said until now concerns what we could call traditional antidivision queries inasmuch as no preferences
come into play. We now move to more advanced queries mixing antidivision and the expression/handling of preferences.
The three types of queries investigated here are the following:

� CJ queries: a direct extension of the antidivision in a conjunctive way, where the connection with the first layer of the
divisor is forbidden and the non-association with the following ones is considered only desirable: find the elements x
not connected with S1 and if possible . . . and if possible Sn.
� DJ queries: a disjunctive view where x is all the more satisfactory as it is connected with none of the values of a highly

preferred sub (set) of the divisor: find the elements x not connected with S1 or else . . . or else Sn,
� FD queries: an intermediate approach where x is all the more highly ranked as it is not connected with numerous and

preferred (sub) sets of the divisor: find the elements x not connected with S1 and-or . . . and-or Sn.

Knowing that the dividend may be any intermediate relation and the divisor is explicitly given by the user along with his/
her preferences, the expression of these three types of antidivision queries is inspired from (9):

select top k X from r [where condition] group by X
having set(A) contains-none{v1,1,. . ., v1;j1 } connector . . .connector{vn,1,. . ., vn;jn }

where ‘‘connector” is either ‘‘and if possible”, or ‘‘or else”, or ‘‘and-or”, and not from (10) inside which the integration of the
layers of the divisor would not be easy. Such a statement induces an order over the divisor, namely ðS1 ¼
fv1;1; . . . ;v1;j1gÞ � � � � � ðSn ¼ fvn;1; . . . ; vn;jngÞwhere a � b denotes the preference of a over b. Actually, this order is about dis-
likes, i.e., S1 contains the values the most highly undesired (even excluded for CJ queries) and Sn those which are the most
weakly unwanted. Associated with this preference relation is an ordinal scale L with labels li’s (such that l1 > � � � > ln > ln+1)
which will be used to assign levels of satisfaction to elements pertaining to the result of stratified antidivisions (l1 and
ln+1 are extreme elements similar to 1 and 0 in the unit interval).
Example 2. Let us consider the case of a consumer who wants food products (e.g., noodles or vegetal oil) without certain
additive substances. In the presence of the relation Products (p-name, add-s) describing which additives (add-s) are involved
in products, a possible query is:

select top 6 p-name from Products group by p-name
having set(add-s) contains-none {AS27, BT12, C3}
and if possible {AS5, D2} and if possible {D8}

which induces the scale L = l1 > l2 > l3 > l4.



P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48 41
3.2. Conjunctive queries (CJ)

As mentioned before, CJ queries are basically seen as an extension of the regular antidivision. To be more or less satisfac-
tory, an element x must be connected with none of the elements having the maximal importance (S1). In addition, as soon as
it is connected with at least one of the elements of a set Sk, its association with values of any set Sk+p does not intervene for its
final ranking. An element x is all the more preferred as it is not associated with any of the values of the succession of sets S1–
Si where i is large (if possible n for ‘‘perfection”). In other words, x is preferred to y if x is associated with none of the values of
the sets S1 to Sp and y is not associated with a shorter list of sets. This behavior is formalized using two approaches.

First, we consider the formal framework of relations assorted with preferences where every tuple t of a relation r is as-
signed a symbolic level of preference denoted by prefr(t). Tuples of the divisor are graded according to the ordering given by
the user and since no preference applies to the dividend, its tuples have the maximal grade l1 (conversely, any tuple absent
from it is considered as having the grade ln+1).

The usual implication (p) q=(not p) or q) involved in Formula (6) is extended to this context, which requires an adequate
definition for both the negation and the disjunction. This latter is expressed thanks to the maximum (denoted by max), which
satisfies most of the usual properties of the regular disjunction (associative, commutative, increasingly monotone with re-
spect to each argument, admittance of ln+1 as the neutral element). Note that the maximum is meant with respect to the
order of the labels. As to the negation, it corresponds to order reversal (denoted by rev(�)) defined as:
8i 2 ½1; nþ 1�; revðliÞ ¼ lnþ2�i
which is involutive, i.e., rev(rev(li)) = li.

Example 3. Let us consider the following scale related to the importance of a phenomenon: complete > high >
medium > low > no. The inverse scale is:
revðcompleteÞ < revðhighÞ < revðmediumÞ < revðlowÞ < revðnoÞ
¼ ¼ ¼ ¼ ¼
no low medium high complete
This leads to the symbolic (or ordinal) version of Kleene-Dienes’ implication defined as: p ? q = max(rev(p),q). This implica-
tion coincides with the regular one when p and q take only the values l1 and ln+1 (corresponding to true and false) and it
obeys most of its properties, in particular contraposition and monotony with respect to the arguments.

Adapting the antidivision (formula (6)) to ordinal relations leads to assign each x of the dividend r the level of satisfaction
sat(x) defined as:
satðxÞ ¼ minv2s prefsðvÞ ! revðprefrðv; xÞÞÞ ¼ minv2s maxðrevðprefsðvÞÞ; revðprefrðv; xÞÞÞ ð11Þ
Knowing that prefr(v,x) takes only the values l1 and ln+1 depending on the presence or absence of the tuple (v,x) in relation r,
each term
maxðrevðprefsðvÞÞ; revðprefrðv ; xÞÞÞ
equals l1 if x is not connected with v in r ((v, x) R r) and rev(prefs(v)) otherwise. In particular, if x is connected with none of the
values of the divisor, the maximal level l1 is obtained and as soon as an association is encountered, the level of satisfaction
decreases all the more as the undesired element is highly rejected.

Another description of CJ queries may also be provided. Its interest lies in its closeness to those given later for DJ and FD
queries, which cannot be modeled by means of (logical) expressions in the spirit of (11). The grade of satisfaction for x may
be expressed thanks to a vector W(x) of dimension n where W(x)[i] = 1 if x is associated with none of the values of Si, 0 other-
wise. Let us denote:
IðxÞ ¼ fijW½i� ¼ 0g and iminðxÞ ¼minðIðxÞÞ ðnþ 1Þ if IðxÞ ¼ ;Þ:
The grade of satisfaction obtained by an element x (t sat(x)) is expressed thanks to the scale L (implicitly) provided by the
user as follows:
satðxÞ ¼ lnþ2�iminðxÞ: ð12Þ
So doing, the satisfaction is seen as a composition of the results of the antidivision of the dividend with each of the layers of
the divisor. It is easy to prove that formulas (11) and (12) deliver the same result.

3.3. Disjunctive queries (DJ)

While CJ queries have a conjunctive behavior, DJ queries are meant disjunctive instead, and S1 is no longer a completely
forbidden subset. Here, the order of the subsets according to user’s preferences is used so that an element x is all the more
preferred as it is connected with none of the values of Sk and k is small (ideally 1 for ‘‘perfection”). In this case again, the
associations with the subsets of higher index (>k), and then lower importance, do not play any role in the discrimination



42 P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48
strategy. In other words, x is preferred to y if x is associated with at least one of the values of each set S1 to Sk�1 and with none
of the values of Sk and y is associated with at least one of the values of each set S1 to Sp�1 and with none of the values of Sp and
k < p. Let us denote:
I0ðxÞ ¼ fijW½i� ¼ 1g and imin0ðxÞ ¼ minðI0ðxÞÞðnþ 1 if I0ðxÞ ¼ ;Þ:
Here again, the grade of satisfaction obtained by an element x is expressed using the ordinal scale L and:
satðxÞ ¼ limin0 ðxÞ: ð13Þ
The satisfaction is still a combination of the results of the antidivision of the dividend with each of the layers of the divisor.
The grade l1 is obtained if x is associated with none of the values of S1, while ln+1 expresses rejection when the connection
with at least one element of each of the Si’s holds.

3.4. Full discrimination queries (FD)

Queries of type FD are designed so as to counter the common disability of CJ and DJ queries in distinguishing between
elements which are equally ranked because additional associations are not taken into account. So, the principle for interpret-
ing FD queries is to consider all the layers for which no association occurs. An element is all the more preferred as it is con-
nected with none of the elements of a set Si highly excluded and this same point of view applies to break ties. Here, ordering
the elements is a matter of comparison between the vectors W according to the lexicographic order (>lex):
x � y()WðxÞ>lexWðyÞ () 9k 2 ½1; n� s:t: 8j < k; WðxÞ½j� ¼WðyÞ½j� and WðxÞ½k� > WðyÞ½k�: ð14Þ
Here, scale L is not used directly even if the order of the elements of the vectors reflects it in the sense that, if i < j, W(x)[i] is
more important than W(x)[j] as li > lj.

Example 4. Let us take the divisor {{a,b} � c � {d,e}} and the dividend: r = {(c,x1), (g,x1), (f,x2), (c,x3), (e,x3), (a,x4), (k,x4)}.
Here n = 3 and according to formula (11) or (12):
satðx1Þ ¼ l3; satðx2Þ ¼ l1; satðx3Þ ¼ l3; satðx4Þ ¼ l4 and x2 � fx1; x3g � x4:
With formula (13), one gets:
satðx1Þ ¼ satðx2Þ ¼ satðx3Þ ¼ l1; satðx4Þ ¼ l2 and fx1; x2; x3g � x4:
Last, using formula (14), we get a refinement of the previous two orderings, namely: x2 � x1 � x3 � x4 where the tie between
x1, x2 and x3 (resp. x1 and x3) in the result obtained with (13) (resp. (12)) is broken.
4. Characterizing the result of antidivision queries

In this section, we provide a characterization (in terms of an ‘‘antiquotient”) of the result delivered by the three previous
types of queries. In other words, the result returned by each of these queries is a maximal relation and it obeys formulas
similar to (7) and (8). The validity of the characterization formulas given hereafter straightforwardly follows from the def-
initions of the three types of stratified division operators. Since relations are graded, (symbolic or ordinal) levels of satisfac-
tion (li’s) in both the result and the dividend have to be considered for the characterization.

For CJ queries, if tuple x of the result is assigned the grade li (i 2 [1,n + 1]), the following properties hold:
if i 2 ½1; n�; 8k 2 ½1; n� iþ 1�; Sk � fxg# cpðrÞ ð15Þ
if i 2 ½2; n�; Sn�iþ2 � fxg � cpðrÞ: ð16Þ
In a similar way, for DJ queries, if x has received the grade of satisfaction li (letting Sn+1 be empty) one has the double
property:
Si � fxg# cpðrÞ ð17Þ
8k 2 ½1; i� 1�; Sk � fxg � cpðrÞ ð18Þ
As to FD queries, let us recall that the values of the vector W(x) state whether x is connected (W(x)[i] = 0) or not (W(x)[i] = 1)
with at least one of the values of layer i of the divisor. So, the following properties hold:
8i 2 ½1; n� such that WðxÞ½i� ¼ 1; Si � fxg# cpðrÞ; ð19Þ
8i 2 ½1; n� such that WðxÞ½i� ¼ 0; Si � fxg � cpðrÞ ð20Þ
which means that if sat(x) were higher, constraint (19) would be violated. The validity of (15)–(20) can easily be checked
over Example 4.



P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48 43
5. Tolerant conjunctive antidivision queries

When every element x from the dividend is associated with at least one value from the first layer of the divisor, a CJ anti-
division query returns an empty set of answers. In order to provide for a more flexible interpretation of the antidivision, it
makes sense to envisage a less demanding view of conjunctive queries, in other terms, to consider a relaxed form of CJ que-
ries. In this section, such a relaxation approach is presented, which rests on a weakening of the universal quantifier. Since the
only layer of the divisor which has a ‘‘discarding power” is the first one—the most prioritary one—, obviating empty answers
only implies to relax that layer—with no guarantee that the relaxed query will produce a non-empty result, of course, since
the situation can occur where every x from the dividend is associated with too many values from the first layer. However, in
the approach we describe hereafter, all of the layers are relaxed in order to increase the discrimination capability of the
query as well as to handle the different layers of the divisor in an homogeneous way.

5.1. Softened universal quantifier

The idea is to replace the universal quantifier in each layer of the query by a fuzzy relative quantifier [14,15] which allows
for some tolerance as to the number of non-associations required. In addition, the softening mechanism is gradual, i.e., the
level of satisfaction corresponding to a given proportion p (of associations) lies in the unit interval. Among others, represen-
tatives of such a quantifier are almost none (an), and as little as possible (alap) modeled as follows:

� an(p) = 1 if p 6 lb, 0 if p P ub, linear in-between (where lb and ub are two constants belonging to [0,1] such that lb < ub),
� alap(p) = 1 � p.

For instance, with a referential of ten elements and using lb = 5% and ub = 25%, we get:
an
10
10

� �
¼ � � � ¼ an

3
10

� �
¼ 0; an

2
10

� �
¼ 0:25; an

1
10

� �
¼ 0:75; anð0Þ ¼ 1

alap
10
10

� �
¼ 0; alap

9
10

� �
¼ 0:1; . . . ; alap

2
10

� �
¼ 0:8; alap

1
10

� �
¼ 0:9; alapð0Þ ¼ 1
5.2. Relaxation approach

Let us denote by Q the fuzzy relative quantifier used to relax the query. It is assumed that this quantifier is specified by the
user who either chooses it from a list of default ones, or defines it through an appropriate interface. In any case, such an
interaction between the system and the user takes place only when the initial user query fails.

The evaluation of the relaxed query is as follows. For each x, one builds a vector V(x) of scores of length n (the number of
layers in the divisor) in the following way:
8i 2 ½1; n�; VðxÞ½i� ¼ Q
kðx; iÞ

ni

� �
ð21Þ
where k(x, i) = j{a 2 Si such that (a,x) 2 r}j and ni denotes the cardinality of layer Si.
The result of the tolerant antidivision query could then be ranked using the lexicographic order on the vectors:
x � x0 () VðxÞ>lexVðx0Þ
However, by doing so, one takes into account a layer Si in the ordering of x even if there exists a layer Sj with j < i such that
Q(k(x, j)/nj) = 0, which is somewhat contradictory with the hierarchical behavior expressed by ‘‘and if possible”—even though
different possible interpretations of this operators may be envisaged. Indeed, we think that two items x and x0 such that
V(x) = [0.75,0,1,0.33] and V(x0) = [0.75,0,0,0] should be considered equivalently satisfactory since both of them perform
the same on layer S1 and totally fail on layer S2. This can be modeled by modifying vector V(x) into V0(x) in the following way:
8i 2 ½1; n�; V 0ðxÞ½i� ¼ minj¼1...i VðxÞ½j� ð22Þ
The ranking formula then becomes:
x � x0 () V 0ðxÞ>lexV 0ðx0Þ
Example 5. Let us consider relation r of schema (patient, symptom) and the strict antidivision query:

select patient from r group by patient
having set(symptom) contains-none {‘headache’, ‘fever’, ‘chills’}
and if possible {‘back pain’, ’chest pain’}
and if possible {‘nausea’, ‘dizziness’}.



Table 1
Extension of relation r.

Patient Symptom

Smith Headache
Smith Diarrhea
Smith Cough
Smith Nausea
Jones Fever
Jones Chest pain
Jones Sneezing

44 P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48
Evaluating it on the content represented in Table 1, one gets an empty result since both Smith and Jones have a symptom
from the first layer. Now, if a tolerant form of the previous query is used, where contains-none is replaced by contains-as-
little-as-possible, we get the vectors:
V 0ðSmithÞ ¼ ½0:67; 1; 0:5� and V 0ðJonesÞ ¼ ½0:67; 0:5; 1�
and the final ordered result is: Smith � Jones.
Notice that the use of a fuzzy quantifier leads to dropping the initial ordinal scale for expressing the ‘‘quality level” of an

element in the result. The lexicographic order which is used for ranking the answers to a relaxed query is more refined than
the initial scale in the sense that it involves more levels, but it provides only a relative view of the satisfaction of the ele-
ments, whereas the scale used for evaluating an initial query provides an absolute assessment of the ‘‘quality” of these
elements.

6. Implementation aspects and experimental results

In this section, we first outline some evaluation strategies and algorithms suited to the different types of antidivision que-
ries. Then, we present an experimentation which concerns strict conjunctive antidivision queries, as well as the results
obtained.

6.1. Sequential scan of the dividend (SSD)

In this first algorithm, the idea is to access the tuples from the dividend relation (r) ‘‘in gusts”, i.e., by series of tuples
which share the same X-attribute value (in the spirit of what is performed by a groupby clause). Moreover, the tuples
(x,a) inside a group are ranked in increasing order of their A-attribute value. All this is performed by the query:
select 	 from r order by X; A:
Thanks to a table which gives, for each value (val-A) of the divisor, the layer to which it belongs (str-A), one can update the
number of values from each layer which are associated with the current element x, while scanning the result of the query
above. At the end of a group of tuples from the dividend, one checks the layers in decreasing order of their importance. In the
case of CJ queries, this step stops as soon as the current element x is associated with at least one of the values from a layer Si.
Three cases may appear:

1. Element x is associated with none of the values from any layer of the divisor and it gets the preference level l1.
2. The stop occurs while checking layer Si whose importance is not maximal (i > 1) and x gets the preference level

rv(li) = ln+2�i.
3. The stop occurs while checking layer S1; element x gets the level ln+1 and is thus rejected.

The worst-case data complexity of this algorithm is:
cmaxðSSDÞ ¼ nr � log2ðnrÞ þ nr
where nr denotes the cardinality of relation r. The factor nr � log2(nr) comes from the order-by clause which sorts relation r.
The overall complexity is thus in h(nr � log2(nr)).

In the case of DJ queries, the scan of the layers stops as soon as a layer Si is met such that no element of Si is associated
with x.

On the other hand, for Full Discrimination queries, it is necessary to scan all of the layers in order to build the vector W(x)
of scores according to formula (14).

In case of an empty set of answers returned by a CJ query, the user may choose to relax his/her query according to the
principle described in Section 5, which implies running a modified version of the algorithm suited to CJ queries. The objective
is then to build a vector V0(x) according to formula (22). Notice that the scan of the layers can be stopped as soon as a layer Si

such that Q kðx; iÞ
ni

� �
¼ 0 (cf. formula (21)) is met.



P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48 45
6.2. Access guided by the divisor (AGD)

In this second algorithm, instead of scanning the dividend exhaustively and then checking the layers satisfied by a
given x by means of the aforementioned table, one first retrieves the X-values from the dividend, and for each such
x, one checks the associations with the different layers by means of an SQL query involving the aggregate count. Again,
in the case of CJ queries, a layer is checked only if the layers of higher importance had none of their values associated
with x.

The first step is to retrieve the distinct values of attribute X present in r by means of the query: select distinct X from r.
Then, for each value x returned, one counts the A-values from S1 which are associated with x in r:

select count (*) from r where X =: x and A in
(select A from s where pref = l1);

If the value returned equals zero (for CJ queries), one checks layer S2 by means of a similar query and so on; otherwise the
loop stops. The preference level assigned to x is computed according to the same principle as described in the previous
subsection.

The data complexity of this algorithm is upper-bounded by:
cmaxðAGDÞ ¼ nr þ jr½X�j 	 nr 	 ns
where nr (resp. ns denotes the cardinality of relation r (resp. s).
In the case of DJ queries, the scan of the layers stops as soon as a layer Si is met such that the value of the aggregate count

returned by the inner block query equals 0.
On the other hand, for FD queries, it is still necessary to check all of the layers (which means processing n counting que-

ries for a given x) in order to build the vector W(x) of scores according to formula (14).
6.3. Series of regular antidivision queries (SRA)

This third strategy consists of two steps:

1. Process as many regular antidivision queries as there are layers in the divisor.
2. Merge the different results and compute the final preference degrees (for CJ and DJ queries only).

The algorithm has the following general shape:
Step 1: For each layer Si of the divisor, one processes an antidivision query which retrieves the x’s which are associated in r

with none of the values from Si. The layers are examined in decreasing order of their importance.
For CJ queries, an element x is checked only if it belongs to the result associated with the previous layer:

create view T1 as select distinct X from r where X not in

(select X from r, s where r. A = s.B and s.pref = l1);
for i :¼ 2 to n do

create view Ti as select X from Ti�1 where X not in

(select X from r, s where r. A = s.B and s.pref = li);

For DJ queries, an element x is checked only if it does not belong to the result associated with the previous layer. There-
fore, the query inside the loop must be replaced by:

create view Ti as select X from r where X not in

(select X from Ti�1) and X not in

(select X from r, s where r. A = s.B and s.pref = li)

For FD queries, every layer is checked for every x and Step 1 becomes:

for i :¼ 1 to n do

create view Ti as select distinct X from r where X not in

(select X from r, s where r. A = s.B and s.pref = li);

Step 2: For CJ queries, the results of the previous antidivision queries are merged by taking them in decreasing order of the
priority of the corresponding layers. An element x which belongs to the result of layer Si but not to that of layer Si+1 gets the
preference level ln�i+1 in accordance with formula (12). It is assumed hereafter that there exists a table Tn+1 which is empty.
The algorithm corresponding to that merging step is given hereafter.



46 P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48
for i :¼ 1 to n do

begin

declare cursor ci as

select X from Ti where X not in (select X from Ti+1);
open ci; fetch ci into: x;
while not end (active set) do
begin

result :¼ result + {ln�i+1/x};
fetch ci into: x;

end;
end;

The data complexity of this algorithm is upper-bounded by:
cmaxðSRAÞ ¼
Xn

i¼1

jTi�1j 	 nr 	 ns þ
Xn�1

i¼1

jTij 	 jTiþ1j
where jTij is the cardinality of (r > Si) \ Ti�1 "i = 2,. . .,n and jT1j is the cardinality of r > S1. jT0j = 1 is assumed in the formula.
In the case of DJ queries, the results of the different antividivision queries are scanned in decreasing order of the priority

of the corresponding layers. An element x which belongs to the result of layer Si gets the degree li in accordance with formula
(13).

As for FD queries, Step 2 consists in (i) building the vector W(x) for every x present in the union of the results, (ii) ranking
the x’s by applying the lexicographic order on the vectors.
6.4. Experimental measures

The objectives of the experimentation are:

1. To assess the additional processing cost related to the handling of preferences in strict antidivision queries of type CJ, and
2. to compare the performances of the three algorithms presented above.

The experimentation was performed with the DBMS OracleTM Enterprise Edition Release 8.0.4.0.0 running on an Alpha
server 4000 bi-processor with 1.5 GB memory. Even though the scope of the experiment presented here is still limited
and should be extended in the future, it shows an interesting trend as to the cost of such queries.

A generic stratified antidivision query has been run on dividend relations of 300, 3000 and 30,000 tuples, and a divisor
including five layers made of respectively, 3, 2, 1, 2 and 2 values.

The query taken as a reference is the analogous antidivision query without preferences, where the divisor is made of the
sole first layer (which corresponds to a ‘‘hard constraint” as mentioned before). The reference query has been evaluated using
two methods:

� Algorithm AGD without preferences, denoted by REF2.
� First step of algorithm SRA with one layer only, denoted by REF3.

Notice that algorithm SSD without preferences would have the same complexity as SSD itself since it would also involve an
exhaustive scan of the dividend (this is why there is no reference method ‘‘REF1”). Moreover:

� We used synthetic data generated in such a way that the selectivity of each value vi from the divisor relatively to any x
from the dividend is equal to 25% (for a given value vi from the divisor and a given x from the dividend, tuple (x,vi) has one
chance out of four to be present in the dividend).
� Each algorithm was run eight times, so as to avoid any bias induced by the load of the machine.
� The time unit equals 1/60 s.

We tested different variants of algorithm SRA where set differences in both steps are performed either by means of the
operator minus (instead of not in) or are expressed by an outer join. It appears that the most efficient expression is that where
the set differences are based on: (i) the operator minus in Step 1, (ii) an outer join in Step 2. The results discussed further
consider this expression for SRA. The results reported in Table 2 show that:

� Among the reference methods for non-stratified antidivisions, REF3 is much more efficient than REF2.
� The performances of REF2, AGD, and SSD vary linearly w.r.t. the size of the dividend. As to REF3 and SRA, their complexity

is less than linear.
� The best algorithm for stratified antidivisions is SRA, which is significantly better than AGD, itself much more efficient

than SSD.



Table 2
Experimental results.

Size of the dividend 300 3000 30,000

REF2 41.4 400.7 4055
REF3 13.2 81.4 760.2
SSD 108.6 960.5 10,418
AGD 54.2 645.2 6315
SRA 106 375.1 4353
Number of answers (top layer) 37 427 4365

P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48 47
� The extra cost of SRA w.r.t. the most efficient reference algorithm, namely REF3, is still rather important (multiplicative
factor between 4.6 and 8).

What all these measures show was somewhat predictable: the best way to process an antidivision query (stratified or
not) is to express it by means of a single query that can be efficiently handled by the optimizor of the system, and not by
external programs which induce a more or less important overhead. The extra cost attached to SRA w.r.t. REF3, is also
explainable by the fact that SRA processes five regular antidivision queries—one for each layer—instead of one for REF3,
and then has to merge the results of these queries. If the stratified antidivision functionality were to be integrated into a
commercial DBMS, it is quite clear that it would have to be handled by the optimizor at an internal level, and processed
as one query involving a new type of ‘‘having” clause, as in expression (9).
7. Conclusion

In this paper, preferences for a family of queries stemming from the relational antidivision have been considered. The key
idea is to make use of a divisor made of a hierarchy of subsets of elements. So doing, the result is no longer a flat set but a list
of items provided with a level of satisfaction.

Three uses of the hierarchy have been investigated, which led to three distinct semantics of the corresponding queries.
Moreover, a characterization of the result produced in all cases has been given: it is an ‘‘antiquotient”, i.e., the largest relation
whose product with the divisor remains included in the complement of the dividend. The case where a conjunctive stratified
antidivision query returns an empty set of answers has also been dealt with, leading to an approach aimed at relaxing such
queries. The idea consists in replacing the crisp quantifier none underlying strict antidivision queries by a more tolerant fuz-
zy quantifier such as almost none. Then, the elements of the result are not associated with a symbolic satisfaction level any-
more, but each element is attached a vector of scores, which allows to rank the result by applying the lexicographic order on
these vectors.

Besides, some experimental measures have been carried out in order to assess the feasibility of stratified antidivision que-
ries. Even though these measures still need to be completed—only one of the three semantics has been considered so far—,
they show that the additional cost induced by the stratified nature of the divisor is quite high (factor 4–8 w.r.t. a classical
antidivision) but that the overall processing time is still acceptable for medium-sized dividend relations. To reach better per-
formances, it would be of course necessary to integrate the new operator into the processing engine of the system, so as to
benefit from a real internal optimization, instead of processing stratified antidivision queries externally, as we did here.

We are now planning to: (i) design algorithms for implementing antidivision queries of types DJ and FD, (ii) make exper-
iments in order to evaluate these algorithms, as we did for CJ queries, (iii) check whether the results obtained are confirmed
when another DBMS (e.g. PostgresQL or MySQL) is used, (iv) investigate some possible uses of stratified antidivision queries
in an information retrieval context, as we did for fuzzy division queries [16].
References

[1] A. Hadjali, S. Kaci, H. Prade, Database preference queries – a possibilistic logic approach with symbolic priorities, in: Proceedings of the 5th Symposium
on the Foundations of Information and Knowledge Systems (FoIKS’08), 2008, pp. 291–310.

[2] N. Bruno, S. Chaudhuri, L. Gravano, Top-k selection queries over relational databases: mapping strategies and performance evaluation, ACM
Transactions on Database Systems 27 (2) (2002) 153–187.

[3] P. Bosc, O. Pivert, SQLf: a relational database language for fuzzy querying, IEEE Transactions on Fuzzy Systems 3 (1995) 1–17.
[4] R. Agrawal, E. Wimmers, A framework for expressing and combining preferences, in: Proceedings of SIGMOD’00, 2000, pp. 297–306.
[5] P. Fishburn, Preferences structures and their numerical representation, Theoretical Computer Science 217 (1999) 359–383.
[6] J. Chomicki, Preference formulas in relational queries, ACM Transactions on Database Systems 28 (4) (2003) 427–466.
[7] M. Lacroix, P. Lavency, Preferences: putting more knowledge into queries, in: Proceedings of of the 13th Conference on Very Large Data Bases

(VLDB’87), 1987, pp. 217–225.
[8] R.I. Brafman, C. Domshlak, Database Preference Queries Revisited, in: Technical Report TR2004-1934, Cornell University, Computing and Information

Science, 2004.
[9] W. Kießling, G. Köstler, Preference SQL — design, implementation, experiences, in: Proceedings of the 28th Conference on Very Large Data Bases

(VLDB’02), 2002, pp. 990–1001.
[10] S. B}orzs}onyi, D. Kossmann, K. Stocker, The skyline operator, in: Proceedings of the 17th IEEE International Conference on Data Engineering (ICDE’01),

2001, pp. 421–430.



48 P. Bosc et al. / International Journal of Approximate Reasoning 52 (2011) 38–48
[11] P. Bosc, O. Pivert, On a parameterized antidivision operator for database flexible querying, in: Proceedings of the 19th Conference on Database and
Expert Systems Applications (DEXA’08), 2008, pp. 652–659.

[12] P. Bosc, O. Pivert, D. Rocacher, About quotient and division of crisp and fuzzy relations, Journal of Intelligent Information Systems 29 (2) (2007) 185–
210.

[13] P. Bosc, O. Pivert, D. Rocacher, Characterizing the result of the division of fuzzy relations, International Journal of Approximate Reasoning 45 (3) (2007)
511–530.

[14] E. Kerre, Y. Liu, An overview of fuzzy quantifiers – interpretations, Fuzzy Sets and Systems 95 (1) (1998) 1–21.
[15] L. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Computer Mathematics with Applications 9 (1983) 149–184.
[16] P. Bosc, V. Claveau, O. Pivert, L. Ughetto, Graded-inclusion-based information retrieval systems, in: M. Boughanem, C. Berrut, J. Mothe, C. Soulé-Dupuy

(Eds.), Proceedings of ECIR’09, Lecture Notes in Computer Science, vol. 5478, Springer, 2009, pp. 252–263.


	Strict and tolerant antidivision queries with ordinal layered preferences
	Introduction
	Some reminders about the antidivision
	Three types of stratified antidivision queries
	Antidivision and preferences
	Conjunctive queries (CJ)
	Disjunctive queries (DJ)
	Full discrimination queries (FD)

	Characterizing the result of antidivision queries
	Tolerant conjunctive antidivision queries
	Softened universal quantifier
	Relaxation approach

	Implementation aspects and experimental results
	Sequential scan of the dividend (SSD)
	Access guided by the divisor (AGD)
	Series of regular antidivision queries (SRA)
	Experimental measures

	Conclusion
	References


