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Abstract

Let R be a left and right ℵ0-Noetherian ring. We show that if all projective left and all projective right
R-modules have finite injective dimension, then all injective left and all injective right R-modules have
finite projective dimension. Using this result, we prove that the invariants silp ZG and spli ZG, which were
introduced by Gedrich and Gruenberg (1987) [15], are equal for any group G. As an application of the latter
equality, we show that a group G is finite if and only if cdG = 0, where cd is the generalized cohomological
dimension of groups introduced by Ikenaga (1984) [21].
© 2010 Elsevier Inc. All rights reserved.
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0. Introduction

The classical Tate cohomology theory of finite groups (cf. [6, Chapter VI] and [7, Chap-
ter XII]) was generalized by Farrell in [14] to the class of all groups with finite virtual cohomo-
logical dimension. In his attempt to extend the definition of Farrell cohomology to an even bigger
class of groups, Ikenaga introduced in [21] the generalized cohomological dimension cdG of a
group G, by defining cdG to be the supremum of all integers n, for which there exist a Z-free
ZG-module M and a projective ZG-module P , such that Extn

ZG(M,P ) �= 0. Ikenaga showed
that if the group G has finite virtual cohomological dimension, then cdG = vcdG. In particular,
if G is a finite group, then cdG = 0. We prove that the converse of the latter assertion is also
true:

Theorem A. A group G is finite if and only if cdG = 0.

This characterization of finiteness was conjectured in [22] by Ikenaga, who proved that the
vanishing of cd implies finiteness under the presence of an additional homological finiteness
hypothesis. We are able to remove that hypothesis by translating the vanishing of the groups
Ext1

ZG
(M,P ), where M and P are as above, into a Mittag–Leffler condition on certain inverse

systems of Hom-groups. We note that this technique has been also used in [20], in order to estab-
lish a projectivity criterion, which was conjectured by Kaplansky, for modules over commutative
domains.

The generalized cohomological dimension cdG of G is closely related to the invariants
spli ZG and silp ZG, which were introduced by Gedrich and Gruenberg in [15], in connection
with the existence of complete cohomological functors in the category of ZG-modules. Here,
spli ZG is the supremum of the projective lengths of injective ZG-modules, whereas silp ZG

is the supremum of the injective lengths of projective ZG-modules. The relation between these
two invariants has been studied by several authors in various contexts: Using the Hopf algebra
structure of the group ring, Gedrich and Gruenberg have shown in [15, 1.6 and Corollary 5.9]
that for any group G we have silp ZG � spli ZG, with equality if spli ZG is finite. The equality
silp ZG = spli ZG has been established for groups in the class HF of Kropholler (cf. [8, §6]) and,
more generally, for groups in LHF (cf. [32, Corollary 1]). On the other hand, the equality between
silp ZG and spli ZG is also known for groups G that have periodic cohomology after some steps
(cf. [31, Theorem 3.2]); in that case, a result of Adem and Smith [1] shows that the finiteness of
these invariants implies the existence of a free action of G on a finite-dimensional CW-complex,
which is homotopy equivalent to a sphere. We shall prove that the equality between silp ZG and
spli ZG holds for any group G:

Theorem B. If G is any group, then silp ZG = spliZG.

One may prove Theorem A using Theorem B and the main result of [9], where it is shown that
the finiteness of G is equivalent to the equality spli ZG = 1. As far as the proof of Theorem B
is concerned, it suffices to establish the inequality spliZG � silp ZG; indeed, as we mentioned
above, the reverse inequality has been proved by Gedrich and Gruenberg in [15]. We can easily
reduce the proof to the case of a countable group. Then, the integral group ring ZG is a countable
ring and the proof of the inequality spliZG � silp ZG follows from a more general result, which
we now describe.
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Let R be any ring. Then, as in the special case where R is the integral group ring of a group,
we may consider the injective lengths of projective left R-modules and the projective lengths of
injective left R-modules, in order to define the left invariants l-silpR and l-spliR respectively.
In the same way, we may consider right R-modules and define the right invariants r-silpR and
r-spliR. We note that the distinction between left and right R-modules is superfluous if, for
example, R is a commutative ring or the group algebra of a group. Gedrich and Gruenberg note
in [15] that the relation between l-spliR and l-silpR is unclear for a general ring R and ask
whether the finiteness of one implies that of the other. A positive answer to the latter question
would imply the equality l-spliR = l-silpR; indeed, it is easily seen that if both invariants are
finite, then they are equal. As shown by Faith and Walker in [12,13], the class of quasi-Frobenius
rings is characterized by the vanishing of any one of the four invariants l-silp, r-silp, l-spli and
r-spli. On the other hand, Jensen has proved in [26, 5.9] that if R is a commutative Noetherian
ring, then we always have silpR = spliR. In the special case where R is an Artin algebra, the
equality l-spliR = l-silpR is equivalent to a long-standing conjecture in representation theory,
the so-called Gorenstein Symmetry Conjecture, which appears as conjecture 13 at the end of [2]
(see also [3, §11] and [4, Chapter VII]). As shown by Happel in [19], the latter conjecture is
closely related to the existence of Serre duality in the homotopy category of perfect complexes
over R [29], which is itself a key hypothesis in Kontsevich’s formalism of Non-commutative
Algebraic Geometry [27].

The ring R is called left ℵ0-Noetherian if all left ideals of it are countably generated. In the
same way, one defines the class of right ℵ0-Noetherian rings. For example, any countable ring is
both left and right ℵ0-Noetherian. We prove the following result:

Theorem C. Let R be a ring which is both left and right ℵ0-Noetherian. If both l-silpR and
r-silpR are finite, then l-spliR = l-silpR and r-spliR = r-silpR.

As an immediate consequence of Theorem C, it follows that spliR � silpR for any commu-
tative ℵ0-Noetherian ring R, with equality if silpR < ∞; this result may be viewed as a partial
generalization of the result of Jensen mentioned above. As another consequence of Theorem C,
we conclude that spli ZG � silp ZG for any countable group G; as we noted above, the proof of
Theorem B follows easily from this.

Instead of considering projective resolutions, we may consider flat resolutions and define
the invariant l-sfliR (resp. r-sfliR) as the supremum of the weak dimensions of injective left
(resp. right) R-modules. Since projective modules are flat, it is clear that l-sfliR � l-spliR and
r-sfliR � r-spliR. Using a duality argument, we prove that we also have r-sfliR � l-silpR if R is
a left ℵ0-Noetherian ring and l-sfliR � r-silpR if R is a right ℵ0-Noetherian ring. The use of flat
modules and weak dimension in this setting enables us to use a surprising result of Jensen, which
states that flat modules have finite projective dimension, provided that the finitistic dimension of
the ring is finite (cf. [25, Proposition 6]). The proof of Theorem C is a consequence of these two
results.

The contents of the paper are as follows: In Section 1, we present a few equivalent descriptions
of the Mittag–Leffler condition on inverse systems of abelian groups and establish a relation
between the vanishing of the Ext1-group and the Mittag–Leffler condition on certain inverse
systems of Hom-groups. In the following section, we examine a natural transformation (which
was introduced by Cartan and Eilenberg) and use it in order to prove a key duality result. The
latter result is then applied in Section 3, in order to relate the invariants silp and spli for ℵ0-
Noetherian rings. Finally, in Section 4, we establish the equality between silp and spli for integral
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group rings and prove that the finiteness of a group is equivalent to the vanishing of Ikenaga’s
generalized cohomological dimension.

1. Preliminaries on the Mittag–Leffler condition

The goal of this preliminary section is to record a few properties of inverse systems of abelian
groups that are related to the Mittag–Leffler condition. All direct and inverse systems will be
indexed by the ordered set N of natural numbers.

Let (An)n be an inverse system of abelian groups with structural maps σn,m : Am −→ An,
n � m, and consider the inverse limit A = lim←−n

An, which is endowed with canonical maps
sn : A −→ An, n � 0. The right derived functors of the inverse limit functor were introduced by
Roos in [30]. In that paper, Roos showed that the higher inverse limits lim←−

i vanish for all i � 2;
the assumption that the inverse systems are indexed by N is crucial here. For all n � m we shall
denote by An,m the image of σn,m : Am −→ An; it is clear that im sn ⊆ An,m. We consider for all
n � 0 the decreasing filtration

An = An,n ⊇ An,n+1 ⊇ An,n+2 ⊇ An,n+3 ⊇ · · ·

of An by the An,m’s. The inverse system (An)n is said to satisfy the Mittag–Leffler condition
if these filtrations are eventually constant. In other words, (An)n satisfies the Mittag–Leffler
condition if for all n ∈ N there exists a suitable integer N = N(n) with N � n, such that

An,N = An,N+1 = An,N+2 = An,N+3 = · · · .

Assuming that the inverse system (An)n satisfies the Mittag–Leffler condition, we shall refer to
the subgroup A′

n = An,N ⊆ An (where N = N(n) as above) as the stable image. It is clear that
the structural morphisms σn,m : Am −→ An map the stable image A′

m ⊆ Am onto the stable
image A′

n ⊆ An for all n � m. Therefore, we may consider the subsystem of stable images
(A′

n)n ⊆ (An)n. It is easily seen that the inclusion (A′
n)n ↪→ (An)n induces an isomorphism

between the corresponding inverse limits lim←− n A′
n � lim←− n An.

Lemma 1.1. Let (An)n be an inverse system of abelian groups with structural maps denoted
by σn,m : Am −→ An, n � m, and consider the inverse limit A = lim←− n An. Then, the following
conditions are equivalent:

(i) The inverse system (An)n satisfies the Mittag–Leffler condition.
(ii) For all n ∈ N there exists an integer N = N(n) � n, such that the subgroup An,N ⊆ An

coincides with the image of the canonical map sn : A −→ An.
(iii) For all n ∈ N there exists an integer N = N(n) � n, such that for any abelian group B the

kernel of the additive map

HomZ(An,B) −→ HomZ(A,B), (1)

which is induced by the canonical map sn : A −→ An, coincides with the kernel of the
additive map
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HomZ(An,B) −→ HomZ(AN,B), (2)

which is induced by σn,N : AN −→ An.

Proof. Even though the equivalent formulation of the Mittag–Leffler condition that appears in
(ii) is certainly well known, we shall provide a proof of the lemma because it is condition (iii)
that we shall use in the sequel.

(i) → (ii): Assuming that the inverse system (An)n satisfies the Mittag–Leffler condition, let
(A′

n)n be the subsystem of stable images of (An)n and consider the inverse limit A′ = lim←− n A′
n.

As we have already noted, the inclusions A′
n ↪→ An induce an isomorphism A′ � A. The struc-

tural maps of the inverse system (A′
n)n being surjective, it is easily seen that the canonical maps

s′
n : A′ −→ A′

n are surjective as well. Therefore, the commutativity of the diagram

A′

s′
n

∼
A

sn

A′
n An

shows that im sn = A′
n. This completes the proof, since the stable image A′

n ⊆ An is the image
of σn,N : AN −→ An for some N � n.

(ii) → (iii): Let B be an abelian group. Then, the kernel of (1) consists of those additive maps
f : An −→ B which vanish when restricted to the image of the canonical map sn : A −→ An.
Similarly, the kernel of (2) consists of those additive maps f : An −→ B which vanish when
restricted to the image of σn,N : AN −→ An. Therefore, (iii) follows readily from (ii).

(iii) → (i): We fix n ∈ N and choose an integer N = N(n) � n as in (iii). We consider the
cokernel of the canonical map sn : A −→ An and note that the projection π : An −→ coker sn is
contained in the kernel of the additive map

HomZ(An, coker sn) −→ HomZ(A, coker sn).

Therefore, in view of our assumption, π is also contained in the kernel of the additive map

HomZ(An, coker sn) −→ HomZ(AN, coker sn).

In other words, π vanishes in the image An,N of σn,N : AN −→ An, i.e. we have An,N ⊆ im sn.
Then, the chain of inclusions

An,N ⊇ An,N+1 ⊇ An,N+2 ⊇ An,N+3 ⊇ · · · ⊇ im sn ⊇ An,N

shows that we actually have equalities

An,N = An,N+1 = An,N+2 = An,N+3 = · · · = im sn.

Since this is the case for all n ∈ N, we conclude that the inverse system (An)n satisfies the
Mittag–Leffler condition, as needed. �
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The Mittag–Leffler condition was introduced by Grothendieck in [17], as a sufficient condition
for the vanishing of lim←−

1. Even though this sufficient condition turns out to be necessary in
the case of inverse systems of countable abelian groups (cf. [16]), in general, the vanishing of
lim←−

1 does not imply the Mittag–Leffler condition. In order to formulate a condition in terms
of the functor lim←−

1, which is equivalent to the Mittag–Leffler condition, one may proceed as
follows: The category of inverse systems of abelian groups has arbitrary direct sums, which
are computed pointwise. In particular, for any inverse system (An)n of abelian groups we may
consider the direct sum of an infinite countable number of copies of itself. The latter is the
inverse system (A

(N)
n )n, whose structural maps A

(N)
m −→ A

(N)
n are those induced by the structural

maps Am −→ An of (An)n for all n � m. In [11, Corollary 6], it is proved that the inverse
system (An)n satisfies the Mittag–Leffler condition if and only if lim←−

1
nA

(N)
n = 0. We shall use

that characterization of the Mittag–Leffler condition below.
We note that for any ring R and any direct system (Mn)n of left R-modules a contravariant

functor F from the category of left R-modules to that of abelian groups induces an inverse system
of abelian groups (FMn)n, whose structural maps FMm −→ FMn are induced by the structural
maps Mn −→ Mm of the direct system (Mn)n for all n � m.

Proposition 1.2. (Cf. [20, Example 2.4(4)] and the discussion in pp. 208–213 of [18].) Let R

be a ring and (Mn)n a direct system of finitely generated left R-modules with direct limit M =
lim−→ n Mn. We consider a left R-module P and assume that Ext1R(M,P (N)) = 0, where P (N) is the
direct sum of an infinite countable number of copies of P . Then, the inverse system of abelian
groups (HomR(Mn,P ))n, whose structural maps are induced by the structural maps of the direct
system (Mn)n, satisfies the Mittag–Leffler condition.

Proof. It is well known that one may express the Ext-groups of M in terms of the Ext-groups of
the Mn’s, by means of short exact sequences

0 −→ lim←−
1
n Ext∗−1

R (Mn,_) −→ Ext∗R(M,_) −→ lim←− n Ext∗R(Mn,_) −→ 0.

In particular, there is a short exact sequence of abelian groups

0 −→ lim←−
1
n HomR

(
Mn,P

(N)
) −→ Ext1R

(
M,P (N)

) −→ lim←− n Ext1R
(
Mn,P

(N)
) −→ 0.

Our assumption about the vanishing of the group Ext1R(M,P (N)) therefore implies that

lim←−
1
n HomR

(
Mn,P

(N)
) = 0. (3)

Since the left R-module Mn is finitely generated, the abelian group HomR(Mn,P
(N)) can be

identified with the direct sum HomR(Mn,P )(N) of an infinite countable number of copies of the
group HomR(Mn,P ). Then, the inverse system (HomR(Mn,P

(N)))n is identified with the direct
sum of an infinite countable number of copies of the inverse system (HomR(Mn,P ))n and we
may rewrite (3) into the form

lim←−
1
n HomR(Mn,P )(N) = 0.

Using [11, Corollary 6], we conclude that the inverse system of abelian groups (HomR(Mn,P ))n
satisfies the Mittag–Leffler condition, as needed. �
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2. The natural transformation Φ

Let R be a ring. If P is a left R-module and D an abelian group, then the abelian group
HomZ(P,D) of all additive maps from P to D can be endowed with the structure of a right
R-module, by using the left R-module structure of P . If M is another left R-module, then we
may consider the tensor product HomZ(P,D) ⊗R M and define the map

Φ : HomZ(P,D) ⊗R M −→ HomZ

(
HomR(M,P ),D

)
, (4)

by letting Φ(f ⊗ m) be the operator which is given by g �→ f (g(m)), g ∈ HomR(M,P ), for all
f ∈ HomZ(P,D) and m ∈ M . It is easily seen that Φ is a well-defined additive map, which is
natural in P,D and M . As we are mainly interested in the dependence of Φ upon M , we shall
denote the map (4) above by ΦM .

The natural transformation Φ was introduced by Cartan and Eilenberg in [7, Chapter VI, §5],
in order to obtain certain duality isomorphisms. In the special case where R is the group ring ZG

of a group G and P = ZG, the natural transformation Φ was used in a crucial way by Ikenaga
[22], in his attempt to prove that the vanishing of the generalized cohomological dimension cdG

implies the finiteness of G.
Our first goal is to examine some properties of Φ . In particular, we shall obtain conditions

under which Φ is a monomorphism of abelian groups. We begin with a preliminary result, whose
easy proof is omitted (cf. [5, Chapter II, §4, Exercise 6]).

Lemma 2.1. Let P,M be left R-modules and assume that M is finitely presented. Then, the
additive map

ΦM : HomZ(P,D) ⊗R M −→ HomZ

(
HomR(M,P ),D

)

defined above is an isomorphism for any divisible abelian group D.

Proposition 2.2. Let (Mn)n be a direct system of finitely presented left R-modules with direct
limit M = lim−→ n Mn. We consider a left R-module P and assume that Ext1R(M,P (N)) = 0, where
P (N) is the direct sum of an infinite countable number of copies of P . Then, the additive map

ΦM : HomZ(P,D) ⊗R M −→ HomZ

(
HomR(M,P ),D

)

is injective for any divisible abelian group D.

Proof. Since the group Ext1R(M,P (N)) is trivial, we may apply Proposition 1.2 and conclude
that the inverse system of abelian groups (HomR(Mn,P ))n, whose structural maps are induced
by the structural maps of the direct system (Mn)n, satisfies the Mittag–Leffler condition. We
consider a divisible abelian group D and let tn : Mn −→ M be the canonical map for all n ∈ N.
In view of the naturality of Φ , the diagram
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HomZ(P,D) ⊗R Mn

1⊗tn

ΦMn
HomZ(HomR(Mn,P ),D)

tn∗

HomZ(P,D) ⊗R M
ΦM

HomZ(HomR(M,P ),D)

is commutative for all n ∈ N. In order to prove the injectivity of ΦM , it suffices to show that

ker(tn∗ ◦ ΦMn) ⊆ ker(1 ⊗ tn) (5)

for all n ∈ N. Indeed, let us assume that (5) holds and fix an element ξ ∈ kerΦM . Since the abelian
group HomZ(P,D) ⊗R M is the direct limit of the direct system (HomZ(P,D) ⊗R Mn)n, there
exists n ∈ N and an element ξn ∈ HomZ(P,D) ⊗R Mn, such that ξ = (1 ⊗ tn)(ξn). Since

(tn∗ ◦ ΦMn)(ξn) = (
ΦM ◦ (1 ⊗ tn)

)
(ξn) = ΦM(ξ) = 0,

it follows that ξn ∈ ker(tn∗ ◦ ΦMn). In view of (5), we conclude that ξn ∈ ker(1 ⊗ tn) and hence
ξ = (1 ⊗ tn)(ξn) = 0. This shows that kerΦM = 0, proving the injectivity of ΦM .

Therefore, it only remains to prove that (5) holds for all n ∈ N. Having fixed the non-negative
integer n, we note that the abelian group HomR(M,P ) can be naturally identified with the inverse
limit of the system (HomR(Mn,P ))n, in such a way that the canonical map from the inverse limit
to HomR(Mn,P ) is identified with the map

HomR(M,P ) −→ HomR(Mn,P ),

which is induced by tn : Mn −→ M . Since the inverse system (HomR(Mn,P ))n satisfies the
Mittag–Leffler condition, we may use Lemma 1.1 in order to find an integer N = N(n) � n,
such that the kernel of

tn∗ : HomZ

(
HomR(Mn,P ),D

) −→ HomZ

(
HomR(M,P ),D

)

coincides with the kernel of the additive map

τn,N∗ : HomZ

(
HomR(Mn,P ),D

) −→ HomZ

(
HomR(MN,P ),D

)
,

which is induced by the structural map τn,N : Mn −→ MN . We now consider the commutative
diagram

HomZ(P,D) ⊗R Mn

1⊗τn,N

ΦMn
HomZ(HomR(Mn,P ),D)

τn,N∗

HomZ(P,D) ⊗R MN

ΦMN
HomZ(HomR(MN,P ),D).
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The R-module MN being finitely presented, the additive map ΦMN
is bijective (Lemma 2.1) and

hence

ker(τn,N∗ ◦ ΦMn) = ker(1 ⊗ τn,N ). (6)

Since tN ◦ τn,N = tn, it follows that (1 ⊗ tN ) ◦ (1 ⊗ τn,N ) = 1 ⊗ tn and hence we conclude that

ker(1 ⊗ τn,N ) ⊆ ker(1 ⊗ tn). (7)

On the other hand, in view of our choice of N ∈ N, we have ker tn∗ = ker τn,N∗ and hence

ker(tn∗ ◦ ΦMn) = Φ−1
Mn

(ker tn∗) = Φ−1
Mn

(ker τn,N∗) = ker(τn,N∗ ◦ ΦMn). (8)

Combining (6), (7) and (8), it follows that ker(tn∗ ◦ ΦMn) ⊆ ker(1 ⊗ tn), as needed. �
A left R-module is called countably presented if it is the cokernel of a linear map between

countably generated free left R-modules. It is well known that the class of countably presented
modules coincides with the class of those modules that may be expressed as direct limits of
finitely presented modules; see, for example, [18, Lemma 1.2.8]. (We remind the reader of our
convention that all direct systems be indexed by the ordered set of natural numbers.) We may
therefore restate Proposition 2.2 as follows:

Proposition 2.3. Let P,M be left R-modules and assume that M is countably presented. If
Ext1R(M,P (N)) = 0, where P (N) is the direct sum of an infinite countable number of copies of P ,
then the additive map

ΦM : HomZ(P,D) ⊗R M −→ HomZ

(
HomR(M,P ),D

)

is injective for any divisible abelian group D.

Having fixed a left R-module P and a divisible abelian group D, we consider for any left
R-module M a projective resolution

F∗ −→ M −→ 0.

Then, the natural transformation Φ induces a chain map

ΦF∗ : HomZ(P,D) ⊗R F∗ −→ HomZ

(
HomR(F∗,P ),D

)
.

By applying homology, we obtain additive maps

Φ
(n)
M : TorRn

(
HomZ(P,D),M

) −→ HomZ

(
ExtnR(M,P ),D

)
,

n � 0, which do not depend upon the particular choice of the projective resolution of M . It
is clear that Φ

(0)
M can be identified with the map ΦM studied before. Moreover, the Φ

(n)
M ’s are

natural in M and commute with the connecting homomorphisms, which are associated with any
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short exact sequence of left R-modules

0 −→ M ′ −→ M −→ M ′′ −→ 0.

In other words, Φ induces a morphism of homological exact ∂-functors

Φ(∗) : TorR∗
(
HomZ(P,D),_

) −→ HomZ

(
Ext∗R(_,P ),D

)
.

Let n be a non-negative integer and assume that the projective resolution F∗ −→ M −→ 0 is
such that Fi is finitely generated for i = n,n+1. (Such a resolution exists if, for example, M is a
module of type FPn+1.) Then, the map Φ

(n)
M defined above is bijective; this is essentially shown

by Ikenaga in [22, Proposition 1.7]. In the following result, we show that one may relax this
homological finiteness condition on M and still be able to prove the injectivity of Φ

(n)
M , under the

additional assumption that a certain Ext-group vanishes. In this way, we obtain a generalization
of certain well-known duality isomorphisms (cf. [7, Chapter VI, §5] and [18, Lemma 1.2.11]).

Proposition 2.4. Let n be a non-negative integer and consider two left R-modules P and M . We
assume that:

(i) M admits a free resolution F∗ −→ M −→ 0, such that Fi is countably generated for i =
n,n + 1 and

(ii) Extn+1
R (M,P (N)) = 0, where P (N) is the direct sum of an infinite countable number of copies

of P .

Then, the additive map

Φ
(n)
M : TorRn

(
HomZ(P,D),M

) −→ HomZ

(
ExtnR(M,P ),D

)

is injective for any divisible abelian group D.

Proof. Let K be the cokernel of the map Fn+1 −→ Fn. In view of our assumption (i), K is a
countably presented left R-module which fits to an exact sequence

0 −→ K −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ M −→ 0. (9)

Since Ext1R(K,P (N)) = Extn+1
R (M,P (N)) = 0, we may use Proposition 2.3 and conclude that the

additive map

ΦK : HomZ(P,D) ⊗R K −→ HomZ

(
HomR(K,P ),D

)

is injective. By applying dimension shifting to the exact sequence (9), we obtain (composing
connecting homomorphisms) injective additive maps

TorRn
(
HomZ(P,D),M

) −→ HomZ(P,D) ⊗R K
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and

HomZ

(
ExtnR(M,P ),D

) −→ HomZ

(
HomR(K,P ),D

)
.

Since Φ(∗) commutes with connecting homomorphisms, we conclude that the following diagram
of abelian groups (whose top raw is exact) is commutative

0 TorRn (HomZ(P,D),M)

Φ
(n)
M

HomZ(P,D) ⊗R K

Φ
(0)
K

HomZ(ExtnR(M,P ),D) HomZ(HomR(K,P ),D).

Therefore, the injectivity of Φ
(n)
M follows from the injectivity of Φ

(0)
K = ΦK . �

Corollary 2.5. Let n be a non-negative integer and consider a left R-module M . We assume that:

(i) M admits a free resolution F∗ −→ M −→ 0, such that Fi is countably generated for i =
n,n + 1,

(ii) Extn+1
R (M,R(N)) = 0, where R(N) is the direct sum of an infinite countable number of copies

of R, and
(iii) ExtnR(M,R) = 0.

Then, TorRn (I,M) = 0 for any injective right R-module I .

Proof. It is well known that HomZ(R,Q/Z) is an injective cogenerator of the category of right
R-modules, i.e. any right R-module N embeds as a submodule of a suitable direct product of
copies of the injective right R-module HomZ(R,Q/Z). In fact, there is a natural monomorphism
of right R-modules

N ↪→ HomZ(R,Q/Z)X � HomZ

(
R, (Q/Z)X

)
,

where X is the set of all additive maps form N to Q/Z. Of course, the above monomorphism
splits if the right R-module N is injective.

Therefore, it follows that any injective right R-module I embeds as a direct summand of
a right R-module of the form HomZ(R,D), where D is a divisible abelian group. Hence, in
order to show that TorRn (I,M) = 0 for any injective right R-module I , it suffices to show that
TorRn (HomZ(R,D),M) = 0 for any divisible abelian group D. The latter equality follows from
Proposition 2.4 (by letting P = R therein). �
3. The invariants silp and spli for ℵ0-Noetherian rings

Let R be a ring. In connection with the existence of complete cohomological functors in the
category of left R-modules, Gedrich and Gruenberg have defined in [15] the invariant l-silpR

as the supremum of the injective lengths of projective left R-modules and the invariant l-spliR
as the supremum of the projective lengths of injective left R-modules. In the same way, we
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may consider right R-modules and define the right invariants r-silpR and r-spliR. We note
that, instead of considering projective resolutions, we may consider flat resolutions and define
the invariants l-sfliR (resp. r-sfliR) as the supremum of the weak dimensions of injective left
(resp. right) R-modules. Since projective modules are flat, it is clear that l-sfliR � l-spliR and
r-sfliR � r-spliR.

Remark 3.1. Let R be a left ℵ0-Noetherian ring, i.e. a ring all of whose left ideals are countably
generated. Then, arguing by induction on n, one can show that any submodule of the left R-
module Rn is countably generated for all n � 1. It follows that the same is true for all submodules
of the direct sum R(N) of an infinite countable number of copies of the left R-module R. Hence,
we conclude that any submodule of a countably generated left R-module is countably generated
(cf. [24, Lemma 1]). Therefore, a left R-module M is countably presented if and only if it is
countably generated. Moreover, such an M possesses a resolution by countably generated free
left R-modules.

If R is a left Noetherian ring, then, as shown by Iwanaga in [23], the injective dimension of the
left R-module R is equal to r-sfliR. We shall now partly generalize Iwanaga’s result, as follows:

Proposition 3.2. Let R be a left ℵ0-Noetherian ring. Then, r-sfliR � l-silpR.

Proof. We note that there is nothing to prove if l-silpR = ∞ and hence we may assume that
l-silpR = n < ∞. We have to show that any injective right R-module has weak dimension � n.
Let I be an injective right R-module.

In view of the hypothesis made on R, we know that any countably generated left R-module
M admits a resolution by countably generated free modules (cf. Remark 3.1). Our assumption
about the value of l-silpR implies that the functors Extn+1

R (_,P ) and Extn+2
R (_,P ) are identically

zero for any projective left R-module P . Therefore, we may apply Corollary 2.5 and conclude
that TorRn+1(I,M) = 0. Since this is the case for any countably generated left R-module M , the
continuity of the Tor-functors with respect to filtered colimits implies that TorRn+1(I,_) = 0. It
follows that I has weak dimension � n, as needed. �

Recall that the left finitistic dimension l-fin.dimR of a ring R is defined as the supremum of
the projective dimensions of those left R-modules that have finite projective dimension. There-
fore, the finiteness of l-fin.dimR is equivalent to the assertion that there is a uniform upper bound
on the projective dimension of those left R-modules that have finite projective dimension. In the
same way, we may consider right R-modules and define the right finitistic dimension r-fin.dimR.

Proposition 3.3. Let R be a ring, such that r-sfliR < ∞. Then, r-spliR � r-fin.dimR.

Proof. Assume that r-sfliR = n < ∞. The inequality to be proved is obvious if r-fin.dimR =
∞ and hence we may assume that r-fin.dimR < ∞. Then, in order to show that r-spliR �
r-fin.dimR, it suffices to show that any injective right R-module has finite projective dimension.
(Indeed, it would then follow that any injective right R-module has projective dimension bounded
by the right finitistic dimension r-fin.dimR.)

Let I be an injective right R-module and consider an exact sequence of right R-modules

0 −→ M −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ I −→ 0, (10)
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with Fi projective for all i = 0,1, . . . , n − 1. Since r-sfliR = n, the right R-module I has weak
dimension � n. The projective right R-module Fi is flat for all i = 0,1, . . . , n − 1 and hence
the right R-module M is also flat. As shown by Jensen in [25, Proposition 6], the finiteness
of the right finitistic dimension r-fin.dimR of R implies that any flat right R-module has finite
projective dimension; in particular, the right R-module M has finite projective dimension. In
view of the exact sequence (10), we have Exti+n

R (I,_) = ExtiR(M,_) for all i � 1 and hence the
right R-module I has finite projective dimension as well. �
Corollary 3.4. Let R be a left ℵ0-Noetherian ring, such that l-silpR < ∞. Then, r-spliR �
r-fin.dimR.

Proof. The assumption made on R implies that r-sfliR � l-silpR (Proposition 3.2). Hence,
r-sfliR is finite and the result follows from Proposition 3.3. �

By symmetry, i.e. by applying all of the above to the opposite Rop of a ring R, we obtain anal-
ogous results for right ℵ0-Noetherian rings, i.e. for rings all of whose right ideals are countably
generated. In particular, we have:

Corollary 3.4op. Let R be a right ℵ0-Noetherian ring, such that r-silpR < ∞. Then, l-spliR �
l-fin.dimR.

Our next goal is to combine Corollaries 3.4 and 3.4op , in order to obtain a left–right symmetric
assertion. To that end, we shall use the following well-known result, which appears for instance
in [28, Lemma 6.4] and whose proof goes back to [8].

Lemma 3.5. If R is a ring, then l-fin.dimR � l-silpR and r-fin.dimR � r-silpR.

Proof. By symmetry, it suffices to prove the first of these inequalities. To that end, let M be a left
R-module of finite projective dimension, say equal to m. Then, there exists a projective left R-
module P , such that ExtmR(M,P ) �= 0. In particular, such a module P has injective dimension �
m and hence l-silpR � m. The result follows since l-fin.dimR is the supremum of such m’s. �

We can now prove the following result (Theorem C of the Introduction):

Theorem 3.6. Let R be a ring which is both left and right ℵ0-Noetherian. If both l-silpR and
r-silpR are finite, then l-spliR = l-silpR and r-spliR = r-silpR.

Proof. It follows from Corollaries 3.4 and 3.4op that r-spliR � r-fin.dimR and l-spliR �
l-fin.dimR. Using Lemma 3.5, we conclude that r-spliR � r-silpR and l-spliR � l-silpR. In
particular, r-spliR and l-spliR are also finite. As noted by Gedrich and Gruenberg in [15, 1.6],
the finiteness of both l-silpR and l-spliR (resp. of both r-silpR and r-spliR) implies that
l-silpR = l-spliR (resp. that r-silpR = r-spliR). �

If a ring R is isomorphic with its opposite Rop, then any left R-module M may be iden-
tified with a right R-module M ′ and vice versa, in such a way that M and M ′ have the
same homological properties (in particular, the same projective and injective dimensions) as
left and right modules respectively. In that case, we have l-spliR = r-spliR(= spliR) and
l-silpR = r-silpR(= silpR). The following result is an immediate consequence of Theorem 3.6:
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Corollary 3.7. Let R be a ring which is isomorphic with its opposite Rop. If R is left (and hence
right) ℵ0-Noetherian, then spliR � silpR, with equality if silpR < ∞.

Since commutative rings are obviously isomorphic with their opposites, we obtain the follow-
ing partial generalization of a result of Jensen, who proved in [26, 5.9] that spliR = silpR if R

is a commutative Noetherian ring.

Corollary 3.8. If R is a commutative ℵ0-Noetherian ring, then spliR � silpR, with equality if
silpR < ∞.

4. The case of group rings

Let k be a commutative ring, G a group and R = kG the corresponding group ring. Then,
R is isomorphic with the opposite ring Rop and hence the distinction between left and right
modules is redundant. Assume that the group G is countable and the commutative ring k is ℵ0-
Noetherian; for example, the ring k may be countable or a field. Then, R is a left (and hence right)
ℵ0-Noetherian ring. Indeed, any left ideal of R is a k-submodule of the countably generated
k-module R; hence, it is countably generated as a k-module and a fortiori as an R-module.
Therefore, we may apply Corollary 3.7, in order to conclude that splikG � silp kG.

We shall prove that the latter inequality is valid for any (not necessarily countable) group G.
To that end, we consider the ordered set consisting of all countable subgroups H of G. The latter
set is filtered and the inclusions H ↪→ G are easily seen to induce an isomorphism between G

and the colimit of the H ’s. We also note that for any two ZG-modules M and N , the abelian
group M ⊗ZG N is identified with the colimit of the abelian groups M ⊗ZH N , where H runs
through the countable subgroups of G.

Lemma 4.1. Let k be a commutative ring, G a group and M a kG-module. If M is flat as a
kH -module for all countable subgroups H of G, then M is flat as a kG-module as well.

Proof. Let f : N ′ −→ N be an injective kG-linear map. We have to show that the additive map

1M ⊗ f : M ⊗kG N ′ −→ M ⊗kG N (11)

is also injective. Let ξ ∈ ker(1M ⊗ f ). We may express G as the filtered colimit of its countable
subgroups as above and conclude that there is a countable subgroup H of G and an element
ξH ∈ M ⊗kH N ′, which maps onto ξ under the canonical map

M ⊗kH N ′ −→ M ⊗kG N ′

and is contained in the kernel of the additive map

1M ⊗ f : M ⊗kH N ′ −→ M ⊗kH N.

The latter map is injective, in view of our assumption about the flatness of M over kH , and
hence ξH = 0 ∈ M ⊗kH N ′. It follows that ξ = 0 ∈ M ⊗kG N ′ and hence the additive map (11)
is injective, as needed. �
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Proposition 4.2. Let k be a commutative ℵ0-Noetherian ring and G a group. Then, we have
sfli kG � silp kG.

Proof. There is nothing to prove if silpkG = ∞ and hence we may assume that silpkG =
n < ∞. We have to show that any injective kG-module has weak dimension � n. Let I be
an injective kG-module and consider an exact sequence of kG-modules

0 −→ M −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ I −→ 0, (12)

with Fi projective for all i = 0,1, . . . , n − 1. If H is a countable subgroup of G, then kH is
a left ℵ0-Noetherian ring and hence we may apply Proposition 3.2 in order to conclude that
sfli kH � silp kH . Since silp kH � silpkG = n (cf. [15, 5.1(iii)]), it follows that sfli kH � n.
Therefore, the kH -module I being injective, it has weak dimension � n. Since the kH -module
Fi is projective and hence flat for all i = 0,1, . . . , n − 1, it follows that M is flat as a kH -
module. This is the case for any countable subgroup H of G and hence Lemma 4.1 implies that
the kG-module M is flat. Then, the exact sequence (12) is a resolution of I by flat kG-modules
of length n, as needed. �
Proposition 4.3. Let k be a commutative ℵ0-Noetherian ring and G a group. Then, we have
splikG � silp kG.

Proof. The inequality is obvious if silpkG = ∞ and hence we may assume that silpkG < ∞.
Then, we also have sflikG < ∞ (Proposition 4.2) and hence splikG � fin.dimkG (Proposi-
tion 3.3). Since fin.dimkG � silp kG (Lemma 3.5), it follows that splikG � silp kG. �

We recall that the self-injective dimension of k is the injective dimension of k as a k-module.

Theorem 4.4. Let k be a commutative ℵ0-Noetherian ring of finite self-injective dimension and
G a group. Then, we have silp kG = splikG.

Proof. If silp kG is finite, then spli kG is also finite, in view of Proposition 4.3. On the other
hand, Gedrich and Gruenberg have proved in [15, Theorem 2.4] that the finiteness of spli kG

implies that silpkG is finite. The equality to be proved therefore follows from [15, 1.6]. �
Since the self-injective dimension of Z is 1, the following result (which is precisely Theo-

rem B of the Introduction) is an immediate consequence of Theorem 4.4.

Corollary 4.5. If G is a group, then we have silp ZG = spliZG.

Recall that Ikenaga has defined in [21] the generalized cohomological dimension cdG of a
group G to be the supremum of all integers n, for which there exist a Z-free ZG-module M and
a projective ZG-module P , such that Extn

ZG
(M,P ) �= 0. As an application of Corollary 4.5, we

shall now prove the following finiteness criterion for G, which complements Theorem A of the
Introduction.

Theorem 4.6. The following conditions are equivalent for a group G:
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(i) cdG = 0,
(ii) silp ZG = 1,

(iii) spliZG = 1,
(iv) G is finite.

Proof. (i) → (ii): If cdG = 0, then it is easily seen that projective ZG-modules have injective
dimension � 1 (cf. [22, Lemma 1.8(a)]).

(ii) → (iii): This follows from Corollary 4.5.
(iii) → (iv): This is the main result of [9].
(iv) → (i): This is proved in [21, §II, Corollary 2]. �
Dembegioti and Talelli conjectured in [10, Conjecture A] that the invariants cdG and spli ZG

of G are related by the equality spliZG = cdG + 1. The results obtained above provide some
evidence for the validity of that equality:

Corollary 4.7. Let G be a group. Then:

(i) We always have cdG � spliZG � cdG + 1.
(ii) The equality spliZG = cdG + 1 holds true if cdG = 0.

(iii) The equality spliZG = cdG + 1 holds true if cdG = 1.

Proof. (i) As noted in [22, Lemma 1.8], we have cdG � silp ZG � cdG+1 and hence the result
follows from Corollary 4.5.

(ii) This follows from Theorem 4.6.
(iii) If cdG = 1, then 1 � spli ZG � 2 (in view of (i) above). Therefore, if we assume that

spli ZG �= 2, then it would follow that spli ZG = 1. Using Theorem 4.6 once more, this would
imply that cdG = 0, a contradiction. �
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