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Abstract

Given a set S of linear relations (equations and/or inequalities) among n variables, the
problem of solving the systems resulting after selecting any subsets of S is dealt with. An
algorithm that obtains all the necessary information to solve this problem, even if the operator
in each linear relation is chosen, at wish, as an equality or inequality �, <,�, or > is given.
In addition, this algorithm simultaneously obtains the orthogonal set (dual cone) of a linear
space (cone) generated by any subset of a given set of vectors (including sign selection), and
allows simplifying the representation of the resulting linear spaces and cones to their minimal
representations. The proposed methods are illustrated with several examples. © 2002 Elsevier
Science Inc. All rights reserved.

AMS classification: 15A06; 15A39

Keywords: Dual methods; Orthogonal decomposition; Dual cone; Simultaneous solution of systems of
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1. Introduction and motivation

Systems of linear equations have played an important role in the history of Math-
ematics, Physics and Engineering. The problems of finding methods for a computa-
tionally efficient and precise search of the general solutions have been the occupation
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of many mathematicians and scientists for many years (see, for example, [1,3,4,6,13],
etc.). However, in practice, linear inequalities arise more frequently than equations,
and applied scientists are unavoidably faced with them.

While the problem of finding the general solution of systems of equations implies
dealing with linear spaces, and is simple, finding the general solution of systems of
inequalities implies working with cones and dual cones, and is not an easy task (see
[5,8–12,14,15], etc.).

The key step in solving systems of inequalities is the generation or identification
of the dual cone of a given cone. Only after 1953, when Motzkin et al. [8] published
the method of double description, important advances were made. Castillo et al. [2]
have given an algorithm that leads to a minimal representation of the dual cone.

To clarify the problem we deal with, consider the Euclidean space En and the set
of linear relations

a11x1 + a12x2 + · · · + a1nxn � = � b1,

a21x1 + a22x2 + · · · + a2nxn � = � b2,
...

am1x1 + am2x2 + · · · + amnxn � = � bm,

(1)

where � = � must be understood as any one of the three relations. System (1), using
the extra variable xn+1, i.e., moving from En to En+1, can be written as

a11x1 + a12x2 + · · · + a1nxn − b1xn+1 � = � 0,
a21x1 + a22x2 + · · · + a2nxn − b2xn+1 � = � 0,

...

am1x1 + am2x2 + · · · + amnxn − bmxn+1 � = � 0,
xn+1 = 1.

(2)

This homogenization technique for going from a polyhedron inEn to a polyhedral
cone in En+1 is well known in the polyhedral theory (see [15]).

The main advantage of this new statement is that we first solve the homogeneous
system

(A| − b)
(

x
xn+1

)
�= � 0, (3)

and then, force the extra condition xn+1 = 1.
The set of solutions of (3) is the dual of the cone generated by the rows of (A| − b)

with the corresponding sign. Thus, if we have a method for obtaining the gener-
ators of the dual cone, we also have a method for solving homogeneous systems
of inequalities. With this, it becomes clear that solving homogeneous systems of
inequalities is closely related to finding dual cones. Thus, the importance of dual
cones and the need to deal with them.

In this paper, we are interested not in a single system of inequalities, but in obtain-
ing the general solution of all possible subsets of linear systems that can be generated
by selecting a subset of relations in (1) and freely selecting one of the relations of the
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form �,=,�, <, or > in each row. Our aim consists of obtaining all the necessary
information to solve this problem without the need for starting from scratch each time
we select a subset of constraints and relations. Since we look for the information to
solve any set of constraints, we call this problem the simultaneous solution of linear
subsystems of inequalities. So, our problem requires obtaining simultaneously many
dual cones.

One interesting practical application of this is the case of overconstrained systems
(i.e., systems with no feasible solution), where we are interested first in determining
which subset of constraints must be removed to get a feasible subsystem, and next in
finding the associated general solutions.

In addition, once we have the representation of dual cones, it is convenient to
obtain their minimal representations, that is, obtaining minimal sets of generators, to
have the general solutions in their simplest forms. We shall show that the information
above also allows obtaining these minimal representations.

The paper is structured as follows. In Section 2, we introduce some basic con-
cepts, as polyhedral convex cones, dual cones and minimal representations, that
are needed in the following sections. In Section 3, we describe how simultaneous
dual cones can be obtained. In Section 4, we give an algorithm for obtaining the
corresponding minimal representations. In Section 5, we return to our initial prob-
lem of simultaneously solving systems of inequalities. In Section 6, we discuss the
special case of strict inequalities. Finally, in Section 7, we end with some conclu-
sions.

2. Some necessary background on cone structures

In this section we remind the reader about some elementary concepts about cones,
and the basic notation is introduced.

2.1. Polyhedral convex cones

Polyhedral convex cones play an important role in dealing with systems of in-
equalities. Its definition, standard form, and minimal representation are discussed
below.

Definition 1 (Polyhedral convex cone). Let A be a matrix, and {a1, . . . , am} be the
set of its columns. The set

Aπ ≡ {
x ∈ En | x = π1a1 + · · · + πmam with πi � 0; i = 1, . . . , m

}
of all nonnegative linear combinations of the column vectors of A is known as the
finitely generated cone, the polyhedral convex cone, or simply the cone generated by
A. The vectors a1, . . . , am are called the cone generators.
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Similarly, we shall denote Aρ as the linear space generated by the columns of
A. In this paper the Greek letters π and ρ are used to refer to nonnegative real and
unrestricted real numbers, respectively.

Definition 2 (Standard form of a cone). If we have a cone Aπ , we can classify its
generators {a1, . . . , am} into two groups:
1. The generators whose opposite vectors belong to the cone, that is, B ≡ {ai | − ai ∈

Aπ }.
2. The generators whose opposite vectors do not belong to the cone, that is, C ≡

{ai | − ai /∈ Aπ }.
Thus, we can express the cone in the following form: Aπ ≡ (B| − B|C)π ≡ Bρ +
Cπ , which is known as the standard form of a cone. The standard form of a cone
distinguishes between its linear space part Bρ of the cone, and its proper cone part
Cπ .

Definition 3 (Minimal representation of a cone). A standard form of a cone Bρ + Cπ

is said to be a minimal representation if the set of generators of the linear space Bρ
and the proper cone Cπ are minimal sets.

2.2. Dual cones

Definition 4 (Nonpositive dual or polar cone). Let Aπ be a cone in En, with genera-
tors a1, . . . , am. The nonpositive dual or polar Ap

π (denoted with a p superindex) of
Aπ is defined as the set

Ap
π ≡ {

v ∈ En | ATv � 0
} ≡ {

v ∈ En | aT
i v � 0; i = 1, . . . , m

}
.

Note that the dual of a cone is the set of vectors such that their dot products by
those of the cone are nonpositive. Minkowski [7] proved that Ap

π is a cone
too.

Remark 1. The nonpositive dual of a linear space coincides with its orthogonal:

Ap
ρ ≡ (A,−A)pπ

≡ {
v ∈ En | aT

i v � 0 and − aT
i v � 0; i = 1, . . . , m

}
≡ {

v ∈ En | aT
i v = 0; i = 1, . . . , m

}
.

Pillers [12] gives a method for obtaining Ap
π , and Castillo et al. [2] give an al-

gorithm, the �-algorithm, for obtaining Ap
π in its simplified standard form Bρ +

Cπ .
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3. Obtaining simultaneous dual cones

The �-algorithm sequentially obtains the duals of the cones generated by
{a1, a2, . . . , ah}, the vectors associated with the columns of A = (a1, a2, . . . ,

ah, . . . , am) up to a given index h. It starts with the dual En of the empty set cone
and, in iteration h, a new vector ah is incorporated to get the generators of the dual
cone (a1, . . . , ah)

p
π . All vectors that are not minimal generators are removed from the

tableau. The result is that we start with the unit matrix that generates En, the dual of
the empty set, and end with a minimal set of generators for the dual (a1, . . . , am)

p
π .

In the algorithm given below we have modified the �-algorithm taking into ac-
count that:
1. Any generator can be selected with any sign. Since our aim is to get the generators

of any subset of vectors in A or −A, in each iteration h we must incorporate the
vector ah and the vector −ah, because we are allowed to select the sign, and
keep, in the transformed tableau of generators, all possible generators, that is, the
required set of generators in case we select ah, and the required set of generators
in case we select −ah.

2. Each tableau must contain the dual generators that arise in previous tableaux.
In addition, we must ensure that the dual cones, that can be minimally generated
with the generators in the h-iteration tableau, can also be generated minimally
with the generators in the h+ 1-iteration tableau.

3. The final tableau must contain the generators of all possible duals. If one tableau
contains the minimal generators of the duals of the cones (±aj )π ; j = 1, 2, . . . , m
generated by any single generator, in the initial set and with any sign, it also
contains the minimal set of generators of the dual of any cone generated by a
subset of generators of (a1, a2, . . . , am).

4. We need information to select the generators of any desired polars. Once we have
obtained the final tableau, that contains all possible generators, we need a decision
rule to decide which of these possible generators are required to generate the dual
of a given initial cone, defined by the subset of generators of (a1, a2, . . . , am).
To this end, a careful bookkeeping of indices (the sets IA0(v), IA−(v) and IA+(v)
below) is required.
The details of how this is done are given in the algorithm and the illustrative

examples below. Considering Remark 1, this algorithm is also valid for obtaining
orthogonals.

The standard �-algorithm (see [2]) works with two different situations:
1. �I in which we still have a linear space component in the dual to be used as

pivot. This allows performing linear space operations with linear space genera-
tors, and cone operations (nonnegative linear combinations of vectors) with cone
generators.

2. �II, essentially the double description procedure (see [8]), in which we need to
perform cone operations only (i.e., only nonnegative linear combinations of vec-
tors are allowed).



136 E. Castillo et al. / Linear Algebra and its Applications 346 (2002) 131–154

Algorithm 1 (Simultaneous orthogonals and dual cones of cones generated by sub-
sets of a set of vectors).
• Input: A cone defined by the set of its generators A = {a1, . . . , am} in the Euclid-

ean space En.
• Output: All the information required to readily write the sets orthogonal to the

linear spaces generated by any subset of columns of A (with any sign), and the dual
cones of the cones generated by the same subset, i.e., a matrix V(m) containing as
columns vj all the possible generators of these linear spaces and cones, and two
sets, per each v-vector, containing the indices k such that: (a) vTak = 0 (the IA0(v)
set), and (b) vTak � 0 (the IA−(v) set), that is,

IA0(v) ≡ {
k | vTak = 0

}; IA−(v) ≡ {
k | vTak < 0

}
.

The matrix V(m) is partitioned into two submatrices V and V̄, that refer to vectors
that have and have not been used for pivoting, respectively. The v̄-vectors in matrix
V(m) must be used as linear space generators, and the v-vectors, as cone genera-
tors, but with any sign (for the sake of simplicity we only work with half of these
vectors). When considering vectors −v, i.e., with its sign changed, we must change
the corresponding IA−(v) set, that is,

IA−(−v) ≡ {
1, 2, . . . , m

} − IA0(v)− IA−(v).

Initialization:
• Let V(0) = In, where In is the identity matrix of dimension n, and let IV̄ ≡

{1, . . . , n}.
• Initialize the IA0(vj ) and IA−(vj ) sets to empty sets, for j = 1, 2, . . . , n, and let
h = 1.

Step 1. Calculate the dot products. Calculate t = aT
hV(h−1). Append to IA0(vj ) the

index h for all j such that tj = 0.

Step 2. Look for the pivot. Find a pivot column (tpivot /= 0) among those columns
with indices in IV̄ .

Step 3. Test for �I or �II processes. If no pivot has been found, go to Process II
(Step 5). Otherwise go to Process I (Step 4).

Step 4. Process I (updating of V, IA0(v) and IA−(v)). If tpivot > 0 change the sign
of the pivot column and then perform the pivotal process by letting vij = sign(tpivot)

tpivotvij + tj vi pivot for all j /= pivot such that tj /= 0 and all i = 1, 2, . . . , n. Append
the index h to the set IA−(vpivot) and to the IA0(vj ) sets for all j /= pivot. Remove
index pivot from IV̄ . If desired, simplify the column vectors of V by dividing each
of them by the greater common divisor of the absolute values of all its components.
Then, go to Step 6.

Step 5. Process II (updating of V, IA0(v) and IA−(v)). Append the index h to
IA−(vj ) for all j such that tj < 0. Determine the set

I+− ≡ {
i | vT

i ah /= 0; i ∈ IV
}
. (4)
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If I+− ≡ ∅, then go to Step 6. Otherwise, for each part (i, j) of distinct (i /= j)

indices in I+−:
1. if (IA0(vi ) ∩ IA0(vj )) ∪ {h} �⊂ IA0(vs) ∀s /∈ IV , append to V the vector

v∗ = tjvi − tivj ,

2. let IA0(v∗) ≡ (IA0(vi ) ∩ IA0(vj )) ∪ {h}, and
3. let IA−(v∗) ≡ {k ∈ {1, 2, . . . , h} | v∗Tak < 0}.
Step 6. If h < m, let h = h+ 1 and go to Step 1; otherwise, return matrix V(m), and
sets IA0(v) and IA−(v); ∀v ∈ V(m), and exit.

It is worthwhile mentioning that the set IA+(vh), which is defined as

IA+(vh) ≡ {
i | aT

i vh > 0
} ≡ {

1, 2, . . . , m
} − IA0(vh)− IA−(vh),

can be directly obtained from the output of Algorithm 1. This set will be useful for
solving inequalities of the form �.

Next, we show that Algorithm 1 satisfies the required conditions.
1. Any generator can be selected with any sign. We consider two cases:

(a) �1 process. The transformation in the �1 process is:

vhj =



−sign
(
th−1
pivot

)
vh−1

pivot if j = pivot ∈ J,
sign

(
th−1
pivot

)
th−1
pivotv

h−1
j − sign

(
th−1
pivot

)
th−1
j vh−1

pivot if pivot /= j ∈ J.
Since a sign change of ah implies a sign change in th−1

j , th−1
pivot and sign(th−1

pivot),

then vhpivot also changes sign, but vhj ; j /= pivot do not. This means that we

need vhpivot and −vhpivot in the transformed tableau of the new generators.

Instead, we write only the vector vhpivot, but we interpret it with both
signs.

(b) �II process. The transformation in the �II process adds vectors of the form:

v∗ = tjvi − tivj . (5)

Since a sign change of ah also implies a sign change in ti and tj , and these, a
sign change of the new vector v∗, we must consider v∗ with both signs, though
we write only one of them.

2. Each tableau must contain the dual generators that arise in previous tableaux.
Assume that the dual, Bh−1

ρ + Ch−1
π , of the cone generated by a given subset

of vectors of {a1, . . . , ah−2} has minimal generators {vk | k ∈ K} for Bh−1 and
{vj | j ∈ J } for Ch−1.
To analyze whether or not the transformed tableau contains a minimal set of gen-
erators for the same dual, we consider two cases:
(a) �I process. If we are in the �I process, the transformed generators are Bh =

{vhk | k ∈ K} and Ch = {vhj | j ∈ J }, where
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vhk =



−sign
(
th−1
pivot

)
vh−1

pivot if k = pivot ∈ K,
sign

(
th−1
pivot

)
th−1
pivotv

h−1
k − sign

(
th−1
pivot

)
th−1
k vh−1

pivot if pivot /= k ∈ K.
and

vhj = sign
(
th−1
pivot

)
th−1
pivotv

h−1
j − sign

(
th−1
pivot

)
th−1
j vh−1

pivot if pivot /= j ∈ J.
Thus,

vhk = αvh−1
k + βkv

h−1
pivot with α = sign

(
th−1
pivot

)
th−1
pivot > 0 and βk ∈ R ∀k ∈ K,

vhj = αvh−1
j + βjvh−1

pivot with α = sign
(
th−1
pivot

)
th−1
pivot > 0 and βj ∈ R ∀j ∈ J

and then Bh−1
ρ ≡ Bhρ and Ch−1

ρ ≡ Ch
ρ , which implies that the new representa-

tions are also minimal.
(b) �II process. In the �II process all the vectors in the previous tableau are kept

(note that in the �-process we only add vectors but we remove none).
Thus, the final conclusion is that any dual, that can be written in a minimal rep-
resentation using vectors in the tableau associated with iteration h, can also be
written in a minimal representation using vectors in the tableau associated with
any iteration h′ such that h′ > h.

3. The final tableau must contain the generators of all possible duals. This can be
shown using Algorithm 1 starting with the final tableau instead of the unit matrix.
If we do this, since the generators of the duals of cones generated by any single
vector aj or −aj are in the final tableau, the transformed tableaux remain the same
after introducing each of the desired ah vectors in any order. Thus, we get as the
final tableau of this process the initial one, showing that it contains the generators
of all possible duals.

4. We need information to select the generators of any desired polars. Since in the
final tableau we have all possible minimal generators, we need a rule to decide
which ones are in the dual and which ones are not. This decision rule is very
simple and requires only the definition of the dual, i.e., knowing whether the dot
products of the generators with the candidate to generator vectors are negative,
null or positive, i.e., knowing the sets IA0(v), IA−(v) and IA+(v).
Unfortunately, in the worst case, the running time increases exponentially with

the number of generators. However, this problem is not due to the algorithm, but to
the complexity of the problem itself.

Example 1 (Simultaneous dual cones). Consider the cone generated by the columns
of the matrix

A =




1 2 0 3 0 0
2 1 2 1 0 0
0 −1 1 −2 0 0
1 0 0 1 −1 0
0 0 1 −1 0 −1


 . (6)
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Our aim is to obtain enough information for obtaining the duals of the cone generated
by any subset of columns of A with any sign. To this end we apply Algorithm 1.
In Table 1 the different steps of the process are shown. In each iteration the new
generator ah appears in the first column, and the dot products in the t row. Since we
can find pivot columns in the first three iterations, we use the �I process, and use
the pivotal transformation to update the matrix V, where the v and v̄ vectors refer
to vectors that have and have not been used for pivoting, respectively. In the fourth
iteration we are unable to find a pivot column, because all the dot products associated
with the v̄-vectors are null; thus, we use the �II-process to update the V matrix, and
finally get the final tableau, which contains all the information for obtaining the dual
of the cone generated by any subset of columns of A with any sign. For the sake of
completeness, we have also included the set IA+(v) in the final tableau.

Some of the vectors in the V matrix will be linear space generators and some,
cone generators of the corresponding duals. Which of these two cases apply depend
on the IA0(v), IA−(v) and IA+(v) sets, as we will see in the following sections.

Once the final matrix V(m) and the sets IA0(v) and IA−(v); ∀v ∈ V(m) are avail-
able, the dual of a cone can be easily obtained using one of the two algorithms below
that are justified because of the following theorem.

Theorem 1. The cone (v1)ρ + (w1)π is contained in the dual of the cone (v2)ρ +
(w2)π iff

vT
1 v2 = 0; wT

1 w2 � 0; wT
1 v2 = 0; vT

1 w2 = 0. (7)

Proof. It is obvious because

(ρ1v1 + π1w1)
T(ρ2v2 + π2w2)

= ρ1ρ2vT
1 v2 + ρ1π2vT

1 w2 + π1ρ2wT
1 v2 + π1π2wT

1 w2 � 0

∀ρ1, ρ2, π1 and π2,

is equivalent to (7). �

Algorithm 2 (Dual of a cone).
• Input: A cone Bρ + Cπ , where the columns of matrices B and C are disjoint sub-

sets of the columns of matrices A or −A.
• Output: Its dual cone (Bρ + Cπ )

p in standard form Mρ + Nπ .

Step 1. Let IB, I
+
C and I−

C be the sets of indices of the columns of A corresponding
to the columns of B and C with signs plus or minus, respectively.

Step 2. Let M be the matrix containing the column vectors v in the final tableau of
Algorithm 1 such that IA0(v) contains IB ∪ I+

C ∪ I−
C .

Step 3. Let N be the matrix containing:
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Table 1
Iterations for calculating the dual cone in Example 1 using Algorithm 1

Iteration 1 Iteration 2 Iteration 3 Iteration 4
V(0) V(1) V(2) V(3)

a1 v̄1 v̄2 v̄3 v̄4 v̄5 a2 v1 v̄2 v̄3 v̄4 v̄5 a3 v1 v2 v̄3 v̄4 v̄5 a4 v1 v2 v3 v̄4 v̄5

1 1 0 0 0 0 2 −1 −2 0 −1 0 0 1 −2 2 1 0 3 3 −2 −2 3 −2
2 0 1 0 0 0 1 0 1 0 0 0 2 −2 1 −1 −2 0 1 −2 1 1 −2 1
0 0 0 1 0 0 −1 0 0 1 0 0 1 0 0 3 0 0 −2 4 −2 −3 4 −3
1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 3 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 −1 0 0 0 0 1

t 1 2 0 1 0 −2 −3 −1 −2 0 −4 2 1 −4 1 −1 −1 1 0 0

I
A0 (v) 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2
3 3 3 3

IA− (v) 1 1 2 1 2 3
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Table 1 (Continued)

Iteration 5 Iteration 6 Final tableau
V(4) V(5) V(6)

a5 v1 v2 v3 v4 v5 v6 v7 v8 a6 v1 v2 v3 v4 v5 v6 v7 v8 v1 v2 v3 v4 v5 v6 v7 v8

0 3 −2 −2 3 −2 −5 1 −4 0 3 −2 −2 3 −2 −5 1 −4 3 −2 −2 3 −2 −5 1 −4
0 −2 1 1 −2 1 3 −1 2 0 −2 1 1 −2 1 3 −1 2 −2 1 1 −2 1 3 −1 2
0 4 −2 −3 4 −3 −6 1 −5 0 4 −2 −3 4 −3 −6 1 −5 4 −2 −3 4 −3 −6 1 −5

−1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

t 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0

I
A0 (v) 2 1 1 1 1 3 2 1 2 1 1 1 1 3 2 1 I

A0 (v) 2 1 1 1 1 3 2 1
3 3 2 2 2 4 4 4 3 3 2 2 2 4 4 4 3 3 2 2 2 4 4 4

3 3 5 5 5 3 3 5 5 5 5 5 5 3 3 5 5 5
4 4 4 4 6 6 6 4 4 6 6 6

5 6 5

IA− (v) 1 2 3 2 1 2 1 2 3 5 2 1 2 IA− (v) 1 2 3 5 6 2 1 2
4 4 3 3 4 4 3 3 4 4 3 3

IA+ (v) 4 1

Pivot columns are boldfaced.
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1. the column vectors v not in M such that IA0(v) contains IB, IA0(v) ∪ IA−(v) con-
tains I+

C , and IA0(v) ∪ IA+(v) contains I−
C , and

2. the column vectors −v such that v is not in M, IA0(v) contains IB, IA0(v) ∪ IA+(v)
contains I+

C , and IA0(v) ∪ IA−(v) contains I−
C .

Step 4. The cone Mρ + Nπ is the desired dual.

Example 2 (Dual of a pure cone). The dual of the cone Sπ generated by columns
a1, a3 and −a4 of A, can be obtained using Algorithm 2. In this case we have
IB ≡ ∅, I+

C ≡ {1, 3} and I−
C ≡ {4}. The set M of column vectors v in Table 1 such

that IA0(v) contains IB ∪ I+
C ∪ I−

C ≡ {1, 3, 4} is the set {v4, v5}. Thus M ≡ {v4, v5}.
The column vectors v not in M such that IA0(v) contains IB ≡ ∅, IA0(v) ∪ IA−(v)
contains I+

C ≡ {1, 3}, and IA0(v) ∪ IA+(v) contains I−
C ≡ {4} is the set {v3, v7, v8}

and the column vectors −v such that v is not in M, IA0(v) contains IB = ∅, IA0(v) ∪
IA+(v) contains I+

C ≡ {1, 3}, and IA0(v) ∪ IA−(v) contains I−
C ≡ {4} is the set

{−v2,−v6}. Thus, N ≡ {v3, v7, v8,−v2,−v6}, and its dual has parametric
equations




x1
x2
x3
x4
x5


 = ρ1v4 + ρ2v5 + π1v3 + π2v7 + π3v8 − π4v2 − π5v6

= ρ1




3
−2

4
1
0


 + ρ2




−2
1

−3
0
1


 + π1




−2
1

−3
0
0


 + π2




1
−1

1
0
0


 + π3




−4
2

−5
0
0




−π4




−2
1

−2
0
0


 − π5




−5
3

−6
0
0


 (8)

and the corresponding orthogonal set S⊥
π has parametric equations




x1
x2
x3
x4
x5


 = ρ1




3
−2

4
1
0


 + ρ2




−2
1

−3
0
1


 . (9)
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Example 3 (Dual of a general cone). The dual of the cone with parametric equations


x1
x2
x3
x4
x5


 = ρ1a1 + ρ2a2 + π1a3 − π2a4

= ρ1




1
2
0
1
0


 + ρ2




2
1

−1
0
0


 + π1




0
2
1
0
1


 − π2




3
1

−2
1

−1




can be obtained as follows. Since the linear space generators of Aπ , the columns of
B, are columns a1 and a2 of A, and the cone generators of Aπ , the columns of C, are
columns a3 and −a4 of A, we have IB ≡ {1, 2}, I+

C ≡ {3}, and I−
C ≡ {4}. Thus, we

have:
1. The set of vectors v in the final tableau of Table 1 such that their IA0(v) contains

the set IB ∪ I+
C ∪ I−

C ≡ {1, 2, 3, 4} is the set {v4, v5}. So, M ≡ {v4, v5}.
2. The column vectors v not in M such that IA0(v) contains IB ≡ {1, 2}, IA0(v) ∪
IA−(v) contains I+

C ≡ {3}, and IA0(v) ∪ IA+(v) contains I−
C ≡ {4} is {v3}.

3. The column vectors −v such that v is not in M, IA0(v) contains IB ≡ {1, 2},
IA0(v) ∪ IA+(v) contains I+

C ≡ {3}, and IA0(v) ∪ IA−(v) contains I−
C ≡ {4} is

empty.
Thus, N ≡ {v3}, and we get the cone with parametric equations:


x1
x2
x3
x4
x5


 = ρ1v4 + ρ2v5 + π1v3 = ρ1




3
−2

4
1
0


 + ρ2




−2
1

−3
0
1


 + π1




−2
1

−3
0
0


 . (10)

Remark 2. Algorithm 1 works in the most general case including unbounded poly-
hedra with rays. The �I and �II procedures are prepared for such a case. So, the
original polyhedron can contain rays, though this implies a reduction in the dual
dimension.

4. Minimal representations of dual cones and solutions

As it has been shown, Algorithm 1 is useful for obtaining dual cones associated
with subsets of generators. However, the representations obtained from Algorithm 2
are not necessarily minimal, i.e., they do not need to contain minimal sets of



144 E. Castillo et al. / Linear Algebra and its Applications 346 (2002) 131–154

generators. To simplify the resulting representations of cones and linear spaces,
some extra work is needed. However, all the required information is already in the
final tableau of Algorithm 1. In this section we give one algorithm for obtaining
these minimal representations. This implies that the algorithm is valid for obtaining
extremes and extreme directions of cones, polytopes and polyhedra.

Using Algorithm 1 we get a set of generators of a cone, that can be written in
standard form as Vρ + Wπ , i.e., as a minimal sum of a linear space and a cone.
Algorithm 3 below obtains this standard form.

The following lemma and theorem give theoretical support to Algorithm 3. The
reader not interested in theoretical results can skip them.

Lemma 1 (Dual after removing some generators). Let Vπ = (v1, v2, . . . , vs)π be a
cone, and Aπ ≡ Vp

π ≡ Bρ + Cπ its dual, where C = (a1, a2, . . . , ap). Let C1 be a
matrix that contains some columns of C and V 0(C1) be the set of vectors in V that
are orthogonal to C1, that is:

V 0(C1) = {
vi | vT

i C1 = 0
}
.

Then, the dual of the cone Sπ = (V 0(C1))π is the cone

Spπ = (B,C1)ρ + (C,∼ C1)π ,

where the symbol ∼ is used to indicate the removed columns.

Proof. The proof is based on the �-algorithm (see [2]). Assume that we use the
�-algorithm to obtain the dual of Spπ . Since we already know the dual of Vp

π and
Spπ = {s ∈ Vp

π | − sTC1 � 0T}, we need to perform only as many new iterations in
the �-algorithm as the number of columns of C1, by introducing the vectors in −C1,
one by one. However, when calculating the dot products by the ai vectors, we obtain
nonnegative values, because vT

i C1 � 0T (note that vi ∈ Vpp
π = Vπ implies −vT

i C1 �
0T). According to the �-algorithm, we must keep only those vi ∈ V such that vi ∈
V 0(C1), which proves the theorem. �

Theorem 2 (Simplifying generators of a cone). Consider the cone Vπ , and let Aπ =
Vp
π = Bρ + Cπ . If

IA0(vi1) ⊆ IA0(vi2), i1 /= i2, (11)

then Vπ = (V,∼ vi1)π . In other words, we can remove the vector vi1 from the set of
generators V of Vπ .

Proof. Let C1 ≡ {aj ∈ C | aT
j vi2 < 0}. Relation (11) implies that aT

j vi1 < 0 if aT
j vi2

< 0. Thus, aT
j vi1 < 0; ∀aj ∈ C1.

According to Lemma 1, the dual cone of the cone

(B,C1)ρ + (C,∼ C1)π

is the cone (V 0(C1))π that does not contain neither the vector vi1 nor the vector vi2 .
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To obtain the dual of the cone (V 0(C1), vi2)π we use the �-algorithm and in-
troduce the vector vi2 in a new iteration. Since aT

j vi2 < 0 ∀aj and aT
k vi2 < 0 ∀ak /∈

C1, all dot products are nonpositive and then all vectors in C1 remain. Thus, the
dual of the cone (V 0(C1), vi2)π is the initial cone Vπ . Since the dual of the cone
(V 0(C1), vi2)π , that is generated without the vector vi1 coincides with the initial
cone, generated with it, then vi1 can be eliminated from the set of generators without
any alteration. �

Algorithm 3 (Minimal set of generators).
• Input: A nonnecessarily minimal representation B∗

ρ + C∗
π of the dual cone Ap

π of
a cone generated by a subset of vectors in A or −A.

• Output: A minimal representation Bρ + Cπ of the cone B∗
ρ + C∗

π .

Step 1. Let JC ≡ {h|cs = ah or cs = −ah}, i.e., the set of indices corresponding to
the a or −a vectors from A contained in C, and let i = 1, and B∗ = C∗ = ∅.

Step 2. If B∗ ≡ ∅, then go to Step 5. Otherwise, let B = {v∗
1}, the first vector in B∗,

K = IA0(v∗
1), and s = 1.

Step 3. If s < |B∗| let s = s + 1 and go to Step 4. Otherwise go to Step 5.

Step 4. Let K1 = K ∩ IA0(v∗
s ) and if K1 /= K, then let K = K1 and add v∗

s to B.
Go to Step 3.

Step 5. If C∗ = ∅, then go to Step 7. Otherwise, for i = 1 to |C∗| and vi ∈ C∗ do
IĀ0(vi ) = JC ∩ IA0(vi ).

Step 6. Based on Theorem 2, take as C one of the largest subsets of C∗ such that
IĀ0(v∗

i ) /⊂ IĀ0(v∗
j ) for all i /= j .

Step 7. Return B and C and exit.

The following two examples illustrate this algorithm.

Example 4 (Minimal representations). Consider the dual cone B∗
ρ + C∗

π of the cone
Sπ generated by columns a1, a3 and −a4 of A, that was obtained in (8), i.e.,

B∗ = (v4, v5), C∗ = (v3, v7, v8,−v2,−v6).

To obtain its dual cone in standard form, we use Algorithm 3, as follows:

Step 1. Let JC = {1, 3, 4}, and make i = 1.

Step 2. Let B = {v4}, K = IA0(v4) = {1, 2, 3, 4, 6} (see Table 1), and s = 1.

Steps 3 and 4. Let s = 2 and K1 = {1, 2, 3, 4, 6} ∩ IA0(v5) = {1, 2, 3, 4, 6} ∩
{1, 2, 3, 4, 5} = {1, 2, 3, 4} (see Table 1). SinceK1 /= K we letK = {1, 2, 3, 4}, add
v5 to B, to get B = {v4, v5}, and go to Step 3.
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Step 3. Since s = |B∗| we go to Step 5.

Step 5. We obtain

IĀ0(v3) = {
1, 3, 4

} ∩ {
1, 2, 5, 6

} = {1},
IĀ0(v7) = {

1, 3, 4
} ∩ {

2, 4, 5, 6
} = {4},

IĀ0(v8) = {
1, 3, 4

} ∩ {
1, 4, 5, 6

} = {
1, 4

}
,

IĀ0(−v2) = {
1, 3, 4

} ∩ {
1, 3, 5, 6

} = {
1, 3

}
,

IĀ0(−v6) = {
1, 3, 4

} ∩ {
3, 4, 5, 6

} = {
3, 4

}
.

Step 8. Since IĀ0(v3) ⊆ IĀ0(v8), IĀ0(v7) ⊆ IĀ0(v8), we select C = {v8,−v2,−v6}.
Step 9. We return B = {v4, v5} and C = {v8,−v2,−v6} and exit.

Thus, the given cone is simplified.

Example 5 (Minimal representations). Consider the dual cone B∗
ρ + C∗

π of the cone
Sπ generated by columns a1, a3 and a5 of A. With Algorithm 1 and Table 1,
we get

B∗ = (v2, v5), C∗ = (v1, v3, v4, v7, v8,−v6).

To obtain its dual cone in standard form, we use Algorithm 3, as follows:

Step 1. Let JC = {1, 3, 5}, and let i = 1.

Step 2. Let B = {v2}, K = IA0(v2) = {1, 3, 5, 6} (see Table 1), and s = 1.

Steps 3 and 4. Let s = 2 and K1 = {1, 3, 5, 6} ∩ IA0(v5) = {1, 3, 5, 6} ∩
{1, 2, 3, 4, 5} = {1, 3, 5} (see Table 1). Since K1 /= K we let K = {1, 3, 5}, add v5
to B, to get B = {v2, v5}, and go to Step 3.

Step 3. Since s = |B∗| we go to Step 5.

Step 5. We obtain

IĀ0(v1) = {
1, 3, 5

} ∩ {
2, 3, 5, 6

} = {
3, 5

}
,

IĀ0(v3) = {
1, 3, 5

} ∩ {
1, 2, 5, 6

} = {
1, 5

}
,

IĀ0(v4) = {
1, 3, 5

} ∩ {
1, 2, 3, 4, 6

} = {
1, 3

}
,

IĀ0(v7) = {
1, 3, 5

} ∩ {
2, 4, 5, 6

} = {
5
}
,

IĀ0(v8) = {
1, 3, 5

} ∩ {
1, 4, 5, 6

} = {
1, 5

}
,

IĀ0(−v6) = {
1, 3, 5

} ∩ {
3, 4, 5, 6

} = {
3, 5

}
.

Step 8. Since IĀ0(v7) ⊆ IĀ0(v3), IĀ0(v8) ⊆ IĀ0(v3) and IĀ0(−v6) ⊆ IĀ0(v1) we
select C = {v1, v3, v4}.
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Step 9. We return B = {v2, v5} and C = {v1, v3, v4} and exit.

Thus, the representation of the given cone is simplified.
Table 2 shows the minimal representations of the duals Vρ + Wπ of the cones

generated by all possible subsets of A (for the sake of simplicity, changes in sign are
not considered).

Table 2
Cone and dual cones in standard form

Initial cone Dual generators Initial cone Dual generators
(a indices) V W (a indices) V W

{1} {4, 5, 3, 2} {1} {2, 3, 5} {5, 1} {4, 3, 2}
{2} {4, 5, 3, 1} {2} {2, 3, 6} {4, 1} {5, 3, 2}
{3} {4, 5, 1, 2} {3} {2, 4, 5} {5, 7} {4, 1, 8}
{4} {4, 5, 7, 6} {1} {2, 4, 6} {4, 7} {5, 1, 8}
{5} {5, 3, 1, 2} {4} {2, 5, 6} {3, 1} {4, 5, 2}
{6} {4, 3, 1, 2} {5} {3, 4, 5} {5, 6} {4, 1, 7}
{1, 2} {4, 5, 3} {1, 2} {3, 4, 6} {4, 6} {5, 1, 7}
{1, 3} {4, 5, 2} {3, 1} {3, 5, 6} {1, 2} {4, 5, 3}
{1, 4} {4, 5, 8} {2, 7} {4, 5, 6} {7, 6} {4, 5, 1}
{1, 5} {5, 3, 2} {4, 1} {1, 2, 3, 4} {4, 5} {1, 2, 7, 8}
{1, 6} {4, 3,−2} {5, 1} {1, 2, 3, 5} {5} {4, 3, 1, 2}
{2, 3} {4, 5, 1} {3, 2} {1, 2, 3, 6} {4} {5, 3, 1, 2}
{2, 4} {4, 5, 7} {1, 8} {1, 2, 4, 5} {5} {4,−3, 7, 8}
{2, 5} {5, 3, 1} {4, 2} {1, 2, 4, 6} {4} {5,−3, 7, 8}
{2, 6} {4, 3, 1} {5, 2} {1, 2, 5, 6} {3} {4, 5, 1, 2}
{3, 4} {4, 5, 6} {1, 7} {1, 3, 4, 5} {5} {4, 2,−6, 8}
{3, 5} {5, 1, 2} {4, 3} {1, 3, 4, 6} {4} {5, 2,−6, 8}
{3, 6} {4, 1, 2} {5, 3} {1, 3, 5, 6} {2} {4, 5, 3, 1}
{4, 5} {5, 7, 6} {4, 1} {1, 4, 5, 6} {8} {4, 5, 2, 7}
{4, 6} {4, 7, 6} {5, 1} {2, 3, 4, 5} {5} {4, 1, 7, 6}
{5, 6} {3, 1, 2} {4, 5} {2, 3, 4, 6} {4} {5, 1, 7, 6}
{1, 2, 3} {4, 5} {3, 1, 2} {2, 3, 5, 6} {1} {4, 5, 3, 2}
{1, 2, 4} {4, 5} {−3, 7, 8} {2, 4, 5, 6} {7} {4, 5, 1, 8}
{1, 2, 5} {5, 3} {4, 1, 2} {3, 4, 5, 6} {6} {4, 5, 1, 7}
{1, 2, 6} {4, 3} {5, 1, 2} {1, 2, 3, 4, 5} {5} {4, 1, 2, 7, 8}
{1, 3, 4} {4, 5} {2,−6, 8} {1, 2, 3, 4, 6} {4} {5, 1, 2, 7, 8}
{1, 3, 5} {5, 2} {4, 3, 1} {1, 2, 3, 5, 6} { } {4, 5, 3, 1, 2}
{1, 3, 6} {4, 2} {5, 3, 1} {1, 2, 4, 5, 6} { } {4, 5,−3, 7, 8}
{1, 4, 5} {5, 8} {4, 2, 7} {1, 3, 4, 5, 6} { } {4, 5, 2,−6, 8}
{1, 4, 6} {4, 8} {5, 2, 7} {2, 3, 4, 5, 6} { } {4, 5, 1, 7, 6}
{1, 5, 6} {3, 2} {4, 5, 1} {1, 2, 3, 4, 5, 6} { } {4, 5, 1, 2, 7, 8}
{2, 3, 4} {4, 5} {1, 7, 6}

Indices refer to vectors in A of (6) and v in the final tableau of Table 1. Positive and negative indices refer
to a and −a generators, respectively.
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Remark 3. Since the representation of the dual cone is minimal, then, if there are no
linear space generators each polytope generator must be identified with an extreme
point, and each pure cone generator can be identified with an extreme direction.
Thus, the proposed algorithm enumerates the extreme points and directions of any
of the original polyhedra.

5. Simultaneous solutions of subsystems of equations and inequalities

Once we have solved the problem of simultaneous generation of duals, the prob-
lem of simultaneous solutions of systems of inequalities is straightforward.

It is well known that the general solution of a system of equations and inequalities
is a polyhedron, that can be written, in its minimal form, as the sum of a linear space,
a polyhedral convex cone and a polytope, i.e.,

x =
∑
i

ρivi +
∑
j

πjwj +
∑
k

λkqk, ρi ∈ R, πj , λk � 0,
∑
k

λk = 1,

where vi ,wj , qk ∈ En. Our aim is to obtain a minimal set of generators for this
polyhedron.

In this paper the Greek letter λ is used to refer to nonnegative reals adding up
to 1, i.e., for linear convex combinations, and the polytope generated by the columns
of matrix A is denoted by Aλ.

5.1. Solving systems of inequalities using dual cones

In this section we first show how a system of inequalities can be solved by trans-
forming the polyhedron of solutions in En into a dual cone in En+1. Next, we
give a theorem that allows representing the solution polyhedron based on the dual
cone.

Consider the system of inequalities of the form

Ax � b, (12)

where A is a matrix m× n of real numbers, and x and b are column matrices of
dimensions n and m, respectively, that represent vectors in En and Em. It is worth
noting that it is always possible to write a given system of linear equations and in-
equalities in this form.

One way of solving system (12) consists of writing it in the more convenient form
of a homogeneous system with an extra constraint

Cx∗ =

 A | −b

−− + −−
0 | −1


(

x
xn+1

)
� 0,

xn+1 = 1,

(13)
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where

x∗ =
(

x
xn+1

)
∈ En+1 and C =


 A | −b

−− + −−
0 | −1


 .

The redundant (because xn+1 = 1) constraint −xn+1 � 0 is introduced for con-
venience, because it facilitates the generation of the solution later.

If X is the set of solutions of (13), the definition of polar cone leads to

X ≡ {
x∗ ∈ CTp

π | xn+1 = 1
}
, (14)

that is, the solution of system (13) is the subset of the dual cone of the cone CT
π , such

that xn+1 = 1. This implies that we can find first the polar cone CTp
π , associated

with the first two sets of constraints of (13), and then impose the extra constraint
xn+1 = 1.

This method has a geometric interpretation, which is illustrated in Fig. 1. To
obtain the solution polyhedron (shadowed and bounded by bold lines pentagon in
Fig. 1)

S = {
x | Ax � b

}
,

we first build the cone (dashed in Fig. 1)

CS = CTp
π =

{(
x

xn+1

)∣∣∣∣ Ax − xn+1b � 0; −xn+1 � 0

}
,

and then we obtain its intersection with the hyperplane xn+1 = 1.
The following theorem gives a minimal representation of the polyhedron in terms

of a minimal representation of the dual cone.

E
2

2

2
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X

Y

E
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Associated cone in Polyhedron in 

X

Y

Z

1
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2

Fig. 1. Illustration of how the cone associated with a polyhedron is obtained.
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Theorem 3 (Polyhedron and associated cone generators). Let C be a matrix and
consider the cone Cp

π , i.e., the cone CTx � 0, where we assume that the constraint
−xn+1 � 0 is in CT. If Cp

π = Vρ + Zπ is the general form of Cp
π , then the general

form of the polyhedron CTx � 0; xn+1 = 1 is

CS = Vρ + Wπ + Qλ,

where W and Q are the matrices containing all column vectors in Z such that their
last components are null and nonnull, respectively, and Q has been suitably normal-
ized to have unit last components. When the dual cone is in its minimal representa-
tion, then the representation of the polyhedral based on it is also minimal.

Proof. Assume that Cp
π ≡ Vρ + Zπ . Then, all the vectors in V must have a null last

component, because of the redundant constraint −xn+1 � 0. In addition, and without
loss of generality, we can assume that zn+1k , the last component of any vectors zk in
Z, is 0 or 1, because if it is not, we can divide the whole vector by zn+1k .

Finally, condition xn+1 = 1 leads to∑
k∈KZ

πk = 1, (15)

where

KZ ≡ {
k|zn+1k /= 0

}
(16)

is the set of all column vectors in Z with nonnull last component.
We have the following two cases:

1. KZ ≡ ∅: in this case problem (13) has no solution, since this implies xn+1 = 0
/= 1.

2. KZ /= ∅: letting λk = πk , (15) becomes∑
k∈KZ

λk = 1, (17)

and then the cone Vρ + Zπ transforms to the polyhedron Vρ + Wπ + Qλ, where
W and Q are the matrices whose columns have null and unit last component in Z,
respectively. �

Thus, if we have a procedure to identify the cone generators, we immediately have
a procedure to identify the polyhedron generators.

In summary, the system of linear inequalities (12) can be solved using the follow-
ing steps:

1. Obtaining the dual cone CTP
π = Vρ + Zπ .

2. Normalizing the vectors of Z with nonnull last component zn+1 by dividing them
by zn+1.

3. Writing CTP
π as Vρ + Wπ + Qλ, where W and Q are the vectors in Z with null

and unit last component, respectively.
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4. Removing the n+ 1 component of all vectors implied, i.e., returning from En+1

to En.

Finally, using the methods developed in Sections 3 and 4 we obtain a minimal
representation of the dual cone CS = Vρ + Zπ . Next, we identify those generators
in Z with last null component W, and the rest Q. Finally, Theorem 3 allows us to
write

S = Vρ + Wπ + Qλ,

that is, the solution of the selected subsystem of Ax � b, in its simplest (minimal)
form.

5.2. Choosing inequality relations

As indicated, Algorithm 1 also allows obtaining the general solution of any sub-
system of a given linear system of inequalities, after choosing the relation �,�,=,
> or <.

To this end, the system

BTx = 0,
CTx � 0,
DTx � 0,
xn+1 = 1

(18)

can be solved using Algorithm 1 if the rows of B,C and D are disjoint subsets of the
columns of A, as follows:
1. The solution of

BTx = 0,
CTx � 0,
DTx � 0

is the dual cone of the cone Bρ + (C| − D)π , that can be obtained using Algo-
rithm 2, after changing sign the v vectors in D and exchanging the corresponding
sets IA−(v) and IA+(v).

2. Use the methods, developed in Section 3, to obtain the corresponding minimal
representation.

3. Impose the constraint xn+1 to obtain the solution of (18).

Example 6 (General system). Consider the system

2x1 + x2 − x3 � 0,

2x2 + x3 � −1,

3x1 + x2 − 2x3 + x4 � 1,
(19)
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which, using the artificial variable x5 = 1, can be written as

2x1 + x2 − x3 � 0,
2x2 + x3 + x5 � 0,
3x1 + x2 − 2x3 + x4 − x5 � 0,
x5 = 1.

(20)

Since the inequalities correspond to columns a2, a3 and a4 of matrix A in (6), we
build the sets

IB = { }, IC = {3}, ID = {2, 4}.
Then, we need to move indices 2 and 4 from IA−(vj ) to IA+(vj ) and vice versa, for
all j .

Applying now Algorithm 2, with IC ∪ ID = {2, 3, 4} we get N = {v3, v7,−v1,

−v2,−v6} and M = {v4, v5}, and with Algorithm 3, we obtain B ≡ {v4, v5}, and
C ≡ {−v1,−v6, v7}.

Thus, the solution of system (20) without the last equality is the cone with para-
metric equations



x1
x2
x3
x4
x5


 = ρ1




3
−2

4
1
0


 + ρ2




−2
1

−3
0
1


 + π1




−3
2

−4
0
0


 + π2




5
−3

6
0
0


 + π3




1
−1

1
0
0




and imposing the last constraint x5 = 1 we get ρ2 = 1 and the general solution of
the initial system (the last component removed)


x1
x2
x3
x4


 =




−2
1

−3
0


 + ρ1




3
−2

4
1


 + π1




−3
2

−4
0


 + π2




5
−3

6
0


 + π3




1
−1

1
0


 . (21)

6. Strict inequalities

In this section we deal with the case of strict inequalities. Assume that you have a
system of equations and inequalities, some of which are strict. To obtain the solution
of such a system, we first solve the problem considering linear inequalities with the
corresponding nonstrict inequalities, and then we restrict the solutions as follows.

The general solution of a linear system of equations and inequalities has the form

x =
∑
i∈I

ρivi +
∑
j∈J

πjwj +
∑
k∈K

λkqk,

ρi ∈ R, πj � 0, λk � 0,
∑
k∈K

λk = 1.
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For each strict inequality of the form < (>), at least one of the vectors v (wj

or qk) such that its IA−(v) (IA+(v)) set contains the inequality index, must have its
coefficients πj or λk positive.

Example 7 (Strict inequalities). Consider the following system, which has been ob-
tained by modifying some inequality relations in the system in Example 6

2x1 + x2 − x3 > 0,
2x2 + x3 < −1,
3x1 + x2 − 2x3 + x4 � 1.

(22)

To solve this system we start from solution (21) of system (19). Since the strict
inequalities correspond to columns 2 and 3 of matrix A in (6), we look, in Table 1
(final tableau), for indices 2 and 3 in IA+(v) and IA−(v), respectively, and find that
the index 2 belongs to IA−(v6), which is associated with coefficients π2 and that the
index 3 belongs to IA+(v7), which is associated with coefficients π3. Thus, the final
conclusion is that the solution of (22) is


x1
x2
x3
x4


 =




−2
1

−3
0


 + ρ1




3
−2

4
1


 + π1




−3
2

−4
0


 + π2




5
−3

6
0


 + π3




1
−1

1
0


 , (23)

where π2 > 0 or π3 > 0.
A simpler way of solving this system consists of substituting solution (23) in

system (22) and get

π2 > 0, π3 > 0, π1 � 0,

which is the condition above, because the third constraint (π1 � 0) is always satis-
fied.

7. Conclusions

The simultaneous generation of duals and the solution of subsystems of equations
and inequalities can be easily handled by the proposed algorithm. The final tableau
of the proposed method contains all the information needed to find the dual cone
of the cone generated by any possible subset of vectors of the given set, with any
sign. Similarly, the solution of any possible subset of the initially given system of
equations and inequalities including any change in the relations �, <,=, > or �
can be obtained. In addition, the orthogonal sets of the linear spaces generated by any
subset of vectors of the initially given set can also be obtained from the same tableau.
An additional algorithm allows simplifying the representations of the resulting cones
and linear spaces.
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