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a b s t r a c t

In this paper, using the Exp-function method, we give some explicit formulas of exact
traveling wave solutions for the Nizhnik–Novikov–Vesselov equation.
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1. Introduction

It is well known that many important phenomena and dynamic processes in physics, mechanics, chemistry, biology
can be represented by nonlinear partial differential equations. For decades, mathematicians and physicists have devoted
considerable effort to the study of solutions of nonlinear partial differential equations. The study of exact solutions of
nonlinear evolution equations plays an important role in soliton theory and explicit formulas of such exact solutions play
an essential role in the nonlinear science. Also, the explicit formulas may provide physical information and help us to
understand the mechanism of related physical models.
In recent years, many kinds of powerful methods have been proposed to find solutions of nonlinear partial differential

equations, e.g., the inverse scattering method [1], the variational iteration method [2–4], the homotopy perturbation
method [5–7], the Bäcklund transformation method [8,9], the tanh-method [10], the sinh-method [11], the homogeneous
balance method [12], the F-expansion method [13], and the algebraic geometric method [14]. One may find a complete
review in [15].
In [16], He suggested a novel method, the so-called Exp-function method, to search for solitary solutions, compact-

like solutions and periodic solutions of various nonlinear wave equations. The basic idea of the Exp-function method was
provided in [17] and one may find several applications of the Exp-function method over various areas in [16,18–23].
In this paper,we investigate explicit formulas of solutions of the following (2+1)-dimensionalNizhnik–Novikov–Vesselov

(NNV) equation given in [24]

ut = Auxxx + Buyyy − 3Avxu− 3Avux − 3Bwyu− 3Bwuy,
ux = vy, uy = wx,

(1)

whereA and B are given constants satisfyingA+B 6= 0. In recent years, (1+1)- and (2+1)-dimensional soliton equations have
been studied over several areas of physics including condensematter physics [25], fluidmechanics [26], plasma physics [27]
and optics [28]. The (2+1)-dimensional NNV equation is an isotropic extension of the well-known (1+1)-dimensional KdV
equation. We apply the Exp-function method to derive some explicit formulas of the solutions of NNV equation (1).
The outline of this paper is as follows. In the following sectionwe review the Exp-functionmethod and thenwe apply the

method to find explicit formulas of solutions of the NNV equation in Section 3. We present a brief conclusion in Section 4.
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2. The Exp-function method

Consider the following nonlinear partial differential equation

N(χ, χx, χy, χz, χt , χxx, χyy, χzz, χxy, χxt , χyt , . . .) = 0. (2)

Using a transformation

η = ax+ by+ cz + dt + γ

where a, b, c, d and γ are constants, we can convert (2) to the following nonlinear ordinary differential equation

M(χ, χ ′, χ ′′, χ ′′′, . . .) = 0, (3)

where the prime denotes the differentiation symbol with respect to η.
Adopting the Exp-function method given in [16], we assume that the traveling wave solution can be expressed in the

following form

χ(η) =

Nb∑
n=−Na

an exp(nη)

Mb∑
m=−Ma

bm exp(mη)

, (4)

whereMa,Mb,Na and Nb are positive integers which could be freely chosen, and an and bm are unknown coefficients to be
determined. The formula (4) can be rewritten in the expanded form such as

χ(η) =
aNb exp(Nbη)+ · · · + a−Na exp(−Naη)
bMb exp(Mbη)+ · · · + b−Ma exp(−Maη)

. (5)

In order to determine the values of Na and Ma, we balance the linear terms of the highest order in Eq. (3) with the highest
order nonlinearity. Similarly, to determine the values of Nb and Mb, we balance the linear terms of the lowest order in
Eq. (3) with the lowest order nonlinear terms. For more details see [16,22].

3. Explicit formulas of solutions of the NNV equation

To solve the (2+1)-dimensional NNV equation (1), with the following linear transformation

η = λ(x+ y+ kt + γ ), (6)

define

φ(η) = u(x, y, t), ψ(η) = v(x, y, t), τ (η) = w(x, y, t), (7)

where λ and k are constants which will be determined later, and γ is an arbitrary given constant. Substituting Eqs. (7) into
Eqs. (1), we have the following ordinary nonlinear differential equations for φ,ψ and τ such as

(A+ B)λ2φ′′′ − 3A(ψφ)′ − 3B(τφ)′ − kφ′ = 0 (8)

φ′ = ψ ′, ψ ′ = τ ′. (9)

From Eq. (9), we easily obtain that

ψ = φ + C and τ = φ + D (10)

where C and D are constants. Therefore, by substituting Eqs. (10) into (8) we lead to the following equation

λ2φ′′′ − 6φφ′ − nφ′ = 0 (11)

where

n =
3AC + 3BD+ k

A+ B
.

Using Eq. (5) and according to the homogeneous balance principle, we have that

Ma = Na and Mb = Nb.

In the following subsections,we consider some arbitrary values of the numbersNa andNb to derive explicit analytic solutions
of (11). One may choose the numbers Na and Nb freely, but the resultant solutions do not strongly depend upon such choice
(see [16,22]).
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3.1. Case 1: Na = 1 and Nb = 1

For the simple case of these choices, the trial function (5) becomes

φ(η) =
a1 exp(η)+ a0 + a−1 exp(−η)
b1 exp(η)+ b0 + b−1 exp(−η)

. (12)

For convenience, set b1 = 1. Substituting Eq. (12) into Eq. (11) and using some symbolic calculations we can derive the
following relations:

a1 = 0, a0 = −
b0(3BD+ k)
A+ B

, a−1 = 0,

b1 = 1, b−1 =
b20
4
, C = 0,

λ =

√
(A+ B)(3BD+ k)

A+ B
,

provided that (A+ B)(3BD+ k) > 0.
Consequently the solitonary solution φ(η) is given by

φ(η) =
−b0λ2

exp(η)+ b0 +
b20
4 exp(−η)

where D, b0 and k are free parameters. The other solutions ψ(η) and τ(η) are given by the relation (10).

3.2. Case 2: Na = 2 and Nb = 2

In this case, we set Na = Ma = 2 and Nb = Mb = 2, then the trial function (5) becomes

φ(η) =
a2 exp(2η)+ a1 exp(η)+ a0 + a−1 exp(−η)+ a−2 exp(−2η)
b2 exp(2η)+ b1 exp(η)+ b0 + b−1 exp(−η)+ b−2 exp(−2η)

. (13)

There are some free parameters in the above equation. We also set b−2 = b2 = 0 for convenience, then the trial function
(13) is simplified as:

φ(η) =
a2 exp(2η)+ a1 exp(η)+ a0 + a−1 exp(−η)+ a−2 exp(−2η)

b1 exp(η)+ b0 + b−1 exp(−η)
. (14)

Substituting Eq. (14) into Eq. (11), we can derive the following relations:

a2 = 0, a1 = 0, a0 = −
b0(3AC + k)

A
, a−1 = 0,

b2 = 0, b1 =
b20
4b−1

, b−2 = 0,

B = 0, λ =

√
A(3AC + k)
A

,

provided that A(3AC + k) > 0. Then, we have the following solitonary solution φ(η)

φ(η) =
−b0λ2

b20
4b−1

exp(η)+ b0 + b−1 exp(−η)

where C,D, b0, b−1 and k are free parameters. The other solutions ψ(η) and τ(η) are also given by the relation (10).

3.3. Case 3: Na = 3,Nb = 1

In this case, Eq. (5) can be expressed as

φ(η) =
a3 exp(3η)+ a2 exp(2η)+ a1 exp(η)+ a0 + a−1 exp(−η)
b3 exp(3η)+ b2 exp(2η)+ b1 exp(η)+ b0 + b−1 exp(−η)

. (15)
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Set a2 = 0 and b2 = 0 for simplicity. By the similar arguments given in the previous cases, we derive the following relations

a3 = 0, a2 = 0, a1 =
4a−1b21
b20

, a0 =
−(−4a−1b1 + λ2b20)

b0
,

b3 = 0, b2 = 0, b−1 =
b20
4b1

,

k =
−3ACb20 + λ

2b20A+ λ
2b20B− 3BDb

2
0 − 24a−1b1B− 24a−1b1A

b20
.

Then we have the following solitonary solution φ(η)

φ(η) =

4a−1b21
b20
exp(η)− (−4a−1b1+λ2b20)

b0
+ a−1 exp(−η)

b1 exp(η)+ b0 +
b20
4b1
exp(−η)

where C,D, a−1, b1, b0 and λ are free parameters. The other solutions ψ(η) and τ(η) are also given by the relation (10).
In this case one may derive other relations such as

a3 =
a−1b21
4b2
−1
, a2 = 0, a1 =

−b1(4λ2b−1 − a−1)
b−1

, a0 = 0,

b3 =
b21
4b−1

, b2 = 0, b0 = 0,

k =
−3ACb−1 + 4λ2b−1A+ 4λ2b−1B− 3BDb−1 − 6a−1B− 6a−1A

b−1
.

Then we have the following solitonary solution φ(η)

φ(η) =

a−1b21
4b2
−1
exp(3η)− b1(4λ2b−1−a−1)

b−1
exp(η)+ a−1 exp(−η)

b21
4b−1

exp(3η)+ b1 exp(η)+ b−1 exp(−η)

where C,D, a−1, b1, b−1 and λ are free parameters. The other solutionsψ(η) and τ(η) are also given by the relation (10). In
the above solution, if we set b1 = 2b−1, we have the compact form of solution

φ(η) =
a−1
b−1
−

2λ2

cosh2(η)
.

4. Conclusions

In this paper, we have applied the Exp-function method to find some explicit formulas of solutions for the (2+1)-
dimensional Nizhnik–Novikov–Vesselov equation. The solution procedure is very simple and straightforward. Also the
obtained solutions have very concise explicit form.
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