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Abstract 

Weidner, M. and V. Welker, The combinatorics and the homology of the poset of subgroups 
of p-power index, Journal of Pure and Applied Algebra 90 (1993) 253-274. 

For a finite group G and a prime p the poset S’(G) of all subgroups H # G of p-power 
index is studied. The Mizibius number of the poset is given and the homotopy type of the 
poset is determined as a wedge of spheres. We describe the representation of G on the 
homology groups of the order complex of S’ (G) and show that this representation can be 
realized by matrices with entries in the set { + 1, - 1, 0). Finally a CGshellable subposet of 
SP (G) is exhibited for odd primes p. 

1. Introduction 

For a finite group G and a prime p we study the partially ordered set 
SP (G) of all subgroups H # G of p-power index (i.e. [G : H] = pi for 
some i # 0). We will write poset for partially ordered set in the sequel. We 
obtain results on the algebraic combinatorics, the homology and the topology 
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of the poset. In particular, we show that the homotopy type of the geo- 
metric realization JCSP (G) 1 of the order complex CS’(G) of SP (G) is a 
wedge of spheres of the same dimension. The order complex CP of a fi- 
nite poset P is the set of all linearly ordered subsets (chains) of the poset 
P, in particular CP is a simplicial complex. Thereby we can speak of a 
poset in terms of algebraic topology (e.g. homotopy type) and homology. 
There are various papers on topological properties of parts of the subgroup 
lattice (see, e.g., [ 1,8,10,17] ). Recently (see in particular [ 1 ] ) there have 
been efforts to prove the conjecture of Quillen which states that the poset 
S,(G) = {H 1 IH( = pi for some i # 0) is contractible if and only if the 
maximal normal p-subgroup 0, (G) is not 1. We prove a dual of this con- 
jecture (Theorem 2.10) for the poset S’ (G) where the condition 0, (G) # 1 
is replaced by OP (G) # G for the minimal normal subgroup with p-power 
index. The main source of motivation for the research on the Quillen con- 
jecture is the interest in the representations of the group on the homology 
groups of the order complex. Here we show that the representation of G on 
the homology groups of the order complex of S’(G) reveals a lot about the 
permutation representations of the group (Theorem 3.4). Thereby we can 
show that the representation of G on the homology groups can be repre- 
sented by matrices with entries 1, -I and 0. We prove in Theorem 2.9 that 
the poset Sp (G) has the homotopy type of a wedge of spheres by giving a 
homotopy equivalence to an ordinal sum of antichains. Each antichain corre- 
sponds to the maximal subgroups of p-power index which supplement a fixed 
chief factor. In Section 4 (Theorem 4.9) we determine a CL-shellable (chain 
lexicographically shellable) subposet of S’(G) for p # 2 and for p = 2 in 
the case that the group has no composition factor isomorphic to PSL(2, q) 

and q + 1 = 2” for some n. Since this shellable subposet is G-homotopy 
equivalent to SP (G), our observation enables us to retrieve and understand 
combinatorially the results on the homotopy type for “most” groups. Shella- 
bility is a very strong combinatorial tool which has been of use in various 
branches of group theory (e.g. theory of buildings, Bruhat orders of Coxeter 
groups). Moreover, this shows that the combinatorial structure of S’(G) is 
rather restricted. For general groups it remains open whether there is a CL- 
shellable subposet of SP (G) which is G-homotopy equivalent to S’ (G). We 
refer the reader for an introduction to the theory of shellable posets to [2]. 
As a general reference for combinatorial tools used in this paper we recom- 
mend [12]. 

Throughout this paper we fix a chief series R : 1 = No < . .. < NAG = G 
of the group G. In particular, we will write in the sequel kc for the length of 
a chief series of the group G. By 2, we denote the set of indices j for which 
the set 

icj = {M 1 MNj = G and Nj-i 5 M, M E SP(G)) 
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is not empty. We call the elements of Icj the p-supplements of the chief factor 
Nj/Nj_1. We do not want to exclude the trivial case when 1, is empty by 
an additional assumption in the formulation of our statements. Therefore we 
define the product (resp. the sum) over an empty set to be 1 (resp. 0). 

2. The homotopy type of the poset S’(G) 

For a finite group G we will determine in this section the homotopy type 
of SP (G) and prove a dual of the Quillen Conjecture for Sp (G). Although by 
far nan trjvia1 the pose1 SP IG) is mofe ea&y tracta& Inan S,IG) for which 
a determination of the homotopy type seems to be evasive. 

Before we pmceed acraI_~z‘r~~ the _uoset Sp {G> we &-e same pre_uacztac~ 
detinitions and results about the homotopy type of posets. Let P be a poset 
on which a group G acts order preserving (i.e. for elements x,y E P for wbick 
x 5 y holds and an element g E G the images xg and yg also satisfy xg 5 yg ). 
We will call a poset with such a G-action a G-poset. Since we are interested 
in group representations on the homology groups of the order complex of 
a poset we will ana>~ze the G-homotopy type of a pus& P. Of course the 
G-representations on the homology groups of the order complex of two G- 
hOIII(DlDpy egri>vtienI posels are isomo@%c. We v&e P* EDS 'rhe bua3 pose1 
of P (the poset on the elements of P which is obtained by reversing the order 
relation of P), Since the order complexes CP and CP* are G-isomorphic, 
the posets P and P* are G-homotopy equivalent (even G-homeomorphic). 
Therefore, we may interchange “5” and “2” in the applications of the following 
proposition. 

Proposition 2.1 (Topological tools). Let P and Q be G-posets. 
(i) (See [ 10, Theorem A] and [ 14, Theorem 11. ) Suppose that f : Q + P is 

a G-cepuiivuriant _noset homomorphism. Jffor nil p E P the s&nosef f-l I_n)l = 
{x E Q 1 f(x) 2 p} of Q is StabG (p)-contractible then P and Q are G-homotopy 
equivalent. 

(ii) (See [3] and [18].) Let p E P be an element such that fir all x E P 
the infimum p AX exists in P then P is StabG(p)-contractible. 

Proof. The first assertion is the equivariant version [ 14, Theorem 1 ] of a result 
of Quillen [ 10, Theorem A]. We sketch the proof of the second assertion in 
order to give the reader a feeling for the topology of order complexes. 

We consider the following map: 

f:P+Q={x~p~xxP}c_P, XHPAX. 

Obvbus@ J is a SU& {p>-e~uivac~actc ,aaset morp’drsm. M~RWRX, J” s~kfks 
f(x) 5 x for all x E P. One verifies that in this case f induces a StabG (p)- 
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homotopy equivalence from P to f (P) = Q (This is a special case of an 
equivariant formulation of the Homotopy Property in [ 10, ( 1.3) 1. ) Now p 
is the greatest element of Q and therefore the order complex of Q is a cone 
with apex p. This shows that Q is StabG (p ) contractible. By composing these 
homotopy equivalences one shows that P is Stabc(p)-contractible. 0 

The argumentation in the proof of Proposition 2.1 (ii) actually shows that f 
induces an equivariant conical contraction in the sense of [ 10, ( 1 S) 1. 

In the next lemma we recall some well-known facts about intersection of 
supplements of chief factors. Since the results are fundamental for our further 
investigations we will also provide the proofs. 

Lemma 2.2 (Group-theoretical tools). (i) Zf U and H are subgroups ofG such 
that UH = G, then 

[G: (UnH)] = [G: U].[G:H]. 

(ii) Let Z c {O,..., kc} be a set of indices of normal subgroups Ni in the 
fixed chief series. Let Ki for i E Z be subgroups such that Ni_1 5 Ki and 
KiNi = G. Then for all indices j 

Nj n Ki = n Ki and [G: n Ki] = n[G: Ki]. 
iET j<iEI iEI iEl 

Proof. The first assertion is just a special form of Lagrange’s lemma since in 
this case IGI = [UHl = (/.!I. IHl)/lUn HI. 

The essential ingredient of the proof of the second assertion is Dedekind’s 
modular law: For A, B E G and N 5 B the identity (NA n B) = N (A f~ B) 
holds. 

Now let j be the least element of the set Z. Then for all j’ E Z - {j} the 
subgroup Nj is contained in Kjj. By assumption NjKj = G holds. Hence an 
application of Dedekind’s law proves 

Njr)Ki = Nj(Kjn n Ki) = NjKjfI n Ki = n Ki. 
iEl j<iG? j<iEI j<iEZ 

Since for arbitrary indices j 5 j’ the subgroup Nj is contained in Njl, induction 
on 111 shows for an arbitrary index j 

(*) NjnKi = n Ki. 
iEI j<iET 

By definition N/ is a normal subgroup. Therefore, Lagrange’s lemma gives 

(**) [G: r)Ki] = [G:NjnKi].[Nj: (NjnnKi)]. 
iG? iEZ iEZ 
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By the first part of the proof and by induction we obtain for the first factor 
on the right-hand side 

[G:N,n&] = [G: n Ki] = n [G:&]. 
iEl j<iEZ j<iCT 

Now let j be again the least element of 2. Since Nj I Ki for all i E Z - {j} 
and since Nj Kj = G the second factor on the right-hand side of (** ) satisfies 

[Nj: (nKinN,)] = [Nj: (KjnNj)] = [G:Kj]. 
iEZ 

The assertion follows immediately form a combination of the last two identi- 
ties. 0 

Now we describe the construction of the ordinal sum of two posets [ 12, 
Section 3.21. This construction will prove to be the key for the investigation 
of the topological behavior of S’ (G). For two posets P and Q the ordinal sum 
P $ Q is the poset on the disjoint union of P and Q which has the same order 
relations as P and Q and the additional relations x 5 y for x E P and y E Q. 
Obviously the operation $ is not commutative in general (i.e. P CB Q and 
Q $ P are in general not isomorphic). However, there is an obvious one-to-one 
correspondence between the chains in P $ Q and those in Q CD P; thus: 

Remark2.3. Let P = (...(PI$P2)@... @3 Pk_1) fI3 Pk) be an ordinal sum of 
the G-posets PI, . . . , Pk. Then for every permutation r~ in the symmetric group 

Sk the order complexes of P and (.‘. (P,,,, $Po(2)) $ . ..$Po(k_~))~Po(k)) 
are G-isomorphic. 

Tne prece&ing remark &rows %rat for homdiogicai an& ‘topdiogicai purposes 
we do not have to care about the non-commutativity of $. In order to have 
the poset @=, Pi well-defined we set 

fi= (...(pl~p2)~...$Pk_l)$Pk). 
i=l 

Now we are in position to state the key lemma for the analysis of the G- 
homotopy type of SP (G). We have formulated the lemma in very general terms 
in order to show that our results on S’ (G) generalize easily once sufficient 
group-theoretical knowledge is provided (see Section 5 (5.4)). For a set X of 
prcper srrbgrarqs aE a graup G we define 

KY = {U ] UN, = G and Nj-i 5 U, U E X} 

to be the set of X-supplements of the chief factor Nj /Nj- 1. By Zx we denote 
the set of all j for which KF is not empty. Of course if X = S’(G) then 
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Kj” = Kj and 1, = 1, for the sets Ki and 1, defined in the Introduction. As 
already mentioned before we have fixed a chief series throughout this paper. 

Lemma 2.4. Let X be a set of proper subgroups of the group G which is closed 
under conjugation by elements of G. We regard X as a poset ordered by inclusion. 
Assume that the following conditions are fulfilled 

(i) U E X implies Nj U E X u {G} for all normal subgroups Nj in the fixed 
chief series. 

(ii) If K E Kf and U E X such that K < UNj-1 then U n K is an element 
OfX. 

Under this hypothesis the following statements hold 
(a) For each U E X there exists exactly one index j (U) such that 

G = Njct_/, U > Nj(o)-1 U E K$o). 

(b) For K E Kf and U E X we have K < UN,_1 ifj(U) < j ( = j(K)) 
andK$UNj-1 ifj(U)>j. 

(c) The poset 

is a subposet of X. 
(d) The posets X, XC and ~iElx KY are G-homotopy equivalent (note that 

each set Kf can be regarded as a subposet of the poset X ). 

Proof. (a) As the normal subgroup Ni is a proper subgroup of Ni+i there is 
exactly one index j(U) such that 

NoU = U 5 Nj(“)_lU < Njcci)U = G. 

But in this case by (i) N,(u)_i U E X and Nj(u) (Nj(u)_lU) = G. Hence 
Nj(o)-1U is an element of K$o,. 

(b) Let K E Kf and U E X. If j(U) < j then K 5 G = UNj(o) = UN,_1. 
If j(U) > j then G = KNj(o)_l = KNj(o)-IU. SO K 2 Nj(o)_lU implies 
Nj(u,- 1 U = G contradicting the definition of j(U). 

(c) Now we prove XC C X. Let A E XC be an arbitrary subgroup in XC. Thus 
there is a set of indices Z and Ki E Kf, i E 2, such that A = n,,, Ki. Let j be 
the greatest index in Z. By induction we may assume B = niEl_(j) Ki E X. 
But by Lemma 2.2(ii) we obtain BNJ-l = G>Kj.ThusA=BnKjEXby 
assumption (ii). 

(d) In a first step we prove that if X satisties the conditions (i) and (ii) then 
XC satisfies the hypothesis too. From Lemma 2.2(ii) we infer condition (i) 
for the set XC. The verification of condition (ii) is a bit more involved. For 
U E XC there is a set Z and Ki E Kj for i E Z such that U = n,,, Ki. From 
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the assumption and Lemma 2.2(C) we conclude njliEZ Ki = UN,_i 2 K. So 
i > j implies i $ Z and if j E Z then Kj 2 K. Thus U rl K = nj,iErKi rl K is in 
XC. This completes the verification of condition (ii). Furthermore, it is easy 
to conclude from our argumentation that ZX = ZX, and Qr = @ for i E IX. 

Thus by the transitivity of G-homotopy equivalence it is enough to show 
that X and eiEzX Ica are G-homotopy equivalent. 

At this point it is convenient to have control over the actual ordering in 
$ iEaz Cf . By defi_nXon the ordering is constructed itera.tively hy C . . (Kc Q 

FL;_, ) @ . . .) $ Kc for the ordered index set { il < . . . < it} = IX. In order to 
distinguish between the order in the ordinal sum and the order in the subgroup 
lattice we write <@ for the order in the ordinal sum. For K, K’ E $iElx Ici we 
have defined: K <@ K’ if either j(K) > j(K’) or j(K) = j(K’) and K 5 K’. 
So, K se K’ if and only if K 5 N. ,(K)-IK’ (this is a special case of (b)). Now 
we consider the following map 

Since Nj(u)_ 1 is a normal subgroup the mapping f is G-equivariant. Moreover, 
it is trivia1 that U 5 H E X implies NjU 5 NjH. Thus f is a poset mor&ism 
(here the definition of <@ is crucial ) . 

Now we want to apply Proposition 2.1 (i) to the mapping f. Thus we 
have to show that for every K E $iElx XT the poset f-t (K)ze is NG (K)- 
contractible. We will prove this by an application of Proposition 2.1 (ii) to 

f-‘(K)Le for p = K. In order to prove that Proposition 2.1 (ii) applies 
we have to show that K n U is in f-‘(K)>, for U E f-‘(K)>,. Suppose 
U is a subgroup in f-l(K)?@, in particular Nj(K)_lU 2 K. By assump- 
tion {ii) we have U R K E X. Furthermore, Dedekirtd’s identtty shows that 
Nj(K)_i (U n K) = (Nj(K)-lU) n K = K holds. Thus j(K n U) = j(K) and 
therefore f<U n K) = K >o K. Finally we conclude UII K E f-‘(K)2e, 
which completes the proof. 0 

Now we prove that the preceding lemma applies to the set of subgroups 
whose index is a product # 1 of a fixed set of primes X. In particular we 
retrieve for II = {p} our poset SP (G). Let n be a set of primes and define 
S”(G) = {U 1 [G: U] = npElrpnp # l}. 

Proposition 2.5. Let x be a set of primes. Then the poset S” (G) is G-homotopy 
equivalent to the poset @jczs,,o, X~(G). 

Proof. By Lemma 2.4 (d) it will suffice to verify conditions (i) and (ii) of 
Lemma 2.4 for the poset X = Sn (G). Obviously UN E SntG) U {G} for 
any normal subgroup N and U E Sx (G). Now suppose U E Sx (G) and 
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K E XyZCG) are subgroups such that K 5 Ni-i U. By Lemma 2.4(b) we have 
to treat the following two cases. If j(U) < j(K) = j then Nj(u) 5 Nj-i 5 K. 
Thus UK = G and by Lemma 2.2 (i) U n K E Sn (G). In the second case 
j(U) = j(K) = j and K 5 UN,_1. This implies K = Nj_ I( U n K) and 
therefore 

[G: (UnK)] 

= [G: (UnK)Nj_1]* [(UnK)Nj_l: (UnK)Nj_,] 

= [G: K]. [Nj_‘, : (UnNj_1)]. 

But [Nj-i : (Un Nj_1)] = [UNj-1 : U] divides [G: U]. Hence every prime 
dividing[G:(UnK)]liesinnandthereforeUnKESn(G). 0 

The following corollary reduces the problem of deciding whether SK(G) is 

contractible or not to the problem of deciding whether one of the posets XTCG) 
is contractible or not. 

Corollary 2.6. The poset Sn (G) is contractible if and only if there is a j E zsz (G) 

for which Kj S”(G) is contractible. 

Proof. This observation follows immediately from the preceding proposition 
and the fact that the geometric realization of the ordinal sum of posets is the 
join of the geometric realizations of the summands. Now it is a well-known 
fact that the join of finitely many topological spaces is contractible if and only 
if at least one of the spaces is itself contractible. 0 

In the following we will return to the case IC = {p} for a single prime p. Of 

course in this case SJ’ (G) = SK (G) and AZi = h^TIG’. 

Proposition 2.7 (cf. [ 15, Satz 4.31). For all i E 2, the elements of Ki are max- 
imal subgroups of p-power index. Furthermore, every maximal subgroup of 
p-power index is contained in exactly one of the sets Kj. In particular, each set 
Kj regarded as a poset is an antichain. For each j E 1, and K, K’ E Kj we 
have [G : K ] = [G : K’ 1. Moreover, (Nj n K )/Nj_ 1 is a minimal element of 
Sp (Nj/Nj-1). 0 

We would like to remark that the proof of Proposition 2.7 is based on the 
classification of the subgroups of prime power index in finite simple groups 
by Guralnik [7]. Since his proof uses the classification of finite simple groups, 
our result also depends on this deep theorem. 

For a finite poset P we denote by p (P) its Mobius number. We refer the 
reader to the paper of Rota [ 111 for the definition and the basic properties of 
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p(P). We will use the notation [H, G] to denote the interval {U 1 H 5 U < G} 
and we write [H,G], for ([H,G] nSf(G))U{G}. 

In order to clarify the situation we state at this point a result of the first 
author which shows that Sf (G) is independent of the chosen chief series. 
Moreover, it gives a purely combinatorial characterization of the subgroups 
U E SP (G) which are elements of the subposet Sf (G). We do not need this 
theorem in its full strength but we think it might be helpful for an understanding 
of the situation. 

Proposition 2.8 (cf. [ 15, Satz 4.81). S{(G) is the set of all U E S’(G) fir 
which p ( [U, G] ) # 0. Thus Sf (G) is independent of the chosen chief series. 

This implies the following: Zf U E S! (G) and U 2 V, then V E S! (G) if and 
only if V is the intersection of all maximal subgroups containing V. 0 

In the next theorem we determine the homotopy type as well as the Mobius 
number of S’(G). 

Theorem 2.9. Let G be a finite group. Then SP (G) is homotopy equivalent to a 
wedge of n = niEZP ( JIciJ - 1) spheres of dimension ]I,1 - 1, In particular, the 
Mobius number of S’(G) is given by 

n(SP(G)) = - n (1 - I&]). 
&I, 

Proof. By Lemma2.4 we can work in the poset $iEz, Xi. Now it is a well- 
known fact that the ordinal sum of two posets has the same homotopy type 
as the topological join of their geometric realizations. By Proposition 2.7 the 
posets Kj are antichains. Hence they are homotopy equivalent to a wedge of 
]Kj] - 1 spheres of dimension 0. Now the join of a wedge of i-spheres and 
a wedge of j-spheres for two non-negative integers i and j is a wedge of 
(i + j + l)-spheres. The number of (i + j + I)-spheres in the join is the 
product of the number of i-spheres and the number of j-spheres. By induction 
this proves that SP (G) has the homotopy type of a wedge of niE5 (J&l - 1) 
spheres of dimension ]Z,] - 1. The formula for the Mobius number follows 
combinatorially since the Mobius number of an ordinal sum of two posets is 
(- 1) times the product of the Mobius numbers of the summands. Recall that 
the Mobius number of an antichain A is Id] - 1. By topological reasoning we 
obtain the Mobius number of a poset which is homotopy equivalent to a wedge 
of i-sphere as (- 1) i times the number of spheres. 0 

From the preceding theorem one easily derives the following analog of the 
Quillen Conjecture for SP (G). 
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Theorem 2.10. For a finite group G the following four statements are equivalent. 
(i) SP (G) is G-contractible. 

(ii) SP (G) is contractible. 
(iii) ,u(SP(G)) = 0. 
(iv) OP(G) # G. 

Proof. The implications (i) + (ii) and (ii) + (iii) are trivial. Now assume 
the hypothesis of (iii). From Theorem 2.9 we see that p (SP (G) ) = 0 implies 
that there is a chief factor N/M for which a unique subgroup U E SP (G) 
satisfies UN = G and M 5 U. But the group U is then necessarily normal in 
G. Therefore, Op (G) 5 U # G which shows (iv). 

Now we assume Op (G) # G. Then the element OP (G) of S’(G) satisfies 
the assumptions of Proposition 2.1 (ii) and we are done. 0 

As an easy consequence of part (iii) of the equivalence we have that the 
Lefschetz module A (SP (G) ) = ‘&c (- 1 )i8i (CSP (G) ) vanishes if and only 
if OP (G) # G. We would like to mention that for a G-poset P the module 
/1 (P) is in general a virtual module. Since in our case only one homology 
group does not vanish either /1 (SP (G) ) is a usual module or -/i (SP (G) ) is a 
usual module. 

Before we proceed to the determination of the representation of G on the 
non-vanishing homology group of S’ (G), we will exhibit that the homotopy 
equivalence between X = SP (G) and X, = Sf (G), implicitly described in 
the proof of Lemma 2.4 (d), can be chosen to be a deformation retraction. 
The special structure of S’(G) comes into play through the following group- 
theoretical lemma which is of independent interest. 

Lemma 2.11. Let U be an element of S’(G). Then there is a unique element 
of K E Kj(u) which contains U. 

Proof. Suppose that K and K’ are two subgroups in Kj(u) which contain H. 
Hence Nj(~)__l _ < K, K’ and Nj(u,-1U is a subgroup of K n K’. But UNj(u,-1 
is also a subgroup in Kj(u). By Proposition 2.7 the set Kj(u) is an antichain. 
Thus K = Nj(u,U = K’. 0 

Lemma 2.12. The poset Sf (G) is a deformation retract of SP (G). The corre- 
sponding homotopy equivalence is G-equivariant. 

Proof. We have to prove that the inclusion i : Sf (G) L) SP (G) induces a G- 
homotopy equivalence. For an element U E SP (G) the preimage i-l ( U)? = 
{H 1 H ES{(G),H 2 U} is {n,,--Ki 1 U 5 Ki E Ki,8# ZcZp}. 

Let K denote the unique element in Kj(u, containing U (see Lemma 2.11). 
By definition of S$’ (G) for each H E i-l (U) there is a set Z c 1, and Ki E Ki, 
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i E 2, such that H = niEzKi. AS U 5 H we conclude U 5 Ki. If j(U) E Z 
then K = Kj(u) and H fl K = H. If j ( U) $Z Z then again by the definition of 
S!(G) we conclude HnK E S!(G) and U 5 HnK. This proves that KnH is 
in i-l (U) for all H E i-’ (U). Now Proposition 2.1 (ii) shows that i-l (U) is 
NG (K)-contractible. But Lemma 2.11 implies that every element of G which 
normalizes U also normalizes K. Therefore, i-’ ( U) is also NG ( U )-contractible. 

So i is a G-homotopy equivalence by Proposition 2.1 (i). 0 

So far we have related the poset eiEz, Ici to the poset S’(G). Our next 
project is to determine the representation of the group G on the homology 

of @iEZ, Ici. Before we can do that we will state some general results on the 
homology of ordinal sum of antichains. 

3. Homology representations of automorphism groups of ordinal sums of 
antichains 

In this section we will determine the representation of a group G on the 
reduced simplicial homology of the order complex of an ordinal sum of an- 
tichains on which the group G acts. 

The results will remind the reader about some facts about semimodular 
lattices [ 4,131. Indeed, ordinal sums of antichains belong to the class of totally 
semimodular posets which generalize semimodularity to non-lattices. Since our 
intention is mainly the determination of the representation of G on fii (S* (G) ) 
we will confine ourselves to the particular situation (ordinal sum of antichains) 
occurring here. 

For a simplicial complex d we denote by fii(d) the reduced simplicial 
homology of A. In general we assume that the coefficient ring is the ring of 
integers Z. 

So for the rest of this section let Al,. . . , dk be antichains which are G-sets 
for a finite group G. The main application of this situation will of course be 
the case di = Ici. The first part of the following remark is a well-known fact. 
The second part follows immediately from the first together with Lemma 2.4 
(see also Theorem 2.9). 

Remark 3.1. Let P = @fcl di be an ordinal sum of k antichains. Then 

Hj (CP) = 0 if i # k - 1 and jjk-1 (CP) is a free Z-module of rank 

(-l)k-l.p(P) = n~=,(Idil-l).Inparticular,iij(CS*(G)) = Oifif 12,1-l 

and &_,(CsP(G)) is a free Z-module of rank (-l)lZpl-l .p(CS*(G)) = 
~\~j(Wl). 

In the following theorem the representation of G on the reduced homology 
gi (CP) for P = @f= 1 di is determined. 
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We denote for a G-set X the permutation module over Z with basis X by ZX. 
The augmentation map E : ZX + Z is the unique Z-module homomorphism, 
that sends x to 1 for all x E X. Let I(X) denote the kernel of E. We would like 
to thank the referee for the permission to include his proof and his formulation 
of the following theorem. His results simplify our previous approach which 
was inspired by results given in [ 5 1. 

Theorem 3.2. Let P = @f=I Ai be an ordinal sum of antichains Ai. Assume 
that the antichains Ai are G-sets for a group G. Then 

Hk-1 (CP) g I(A1) @ I(A2) 8 .. .@ I(Ak), 

as G-modules. 

Proof. We verify the claim by induction on k. Clearly & (CA1 ) E I(Al ). Let 
Q = @z: Ai. By C, (P) we denote the augmented chain complex of P, so that 
C_,(P) = Z and we write 8p: C,(P) + C, (P) for the boundary operator. 

NOW the mapping al < a2.. . < ak_l < ak H al < a2.. . < q-1 8 ak for 
ai E Ai yields an isomorphism: 

ck-, (p) g &-2(Q) 8 co(&). 

Similarly we obtain: 

%2(p) g (%3(Q) ‘8 co(&)) Cf3 (c&z(Q) @c-l(&)). 

Via these isomorphisms we can represent the boundary operator 13p : Ck_ 1 (P) --+ 
ck-2tP) by the homomorphism (6Q @ id) 83 ( (-l)k id@8dk ) (note that ad, : 
CO (Ak ) + C- 1 (Ak ) is the augmentation map). As Ck (P) = 0 we get 

f&-I (CP) = Ker(& : ck_, (p) + c,_,(p)) 

g Ker((dQ@id)@ ((-l)kid@.ddk)) 

= Ker(dQ @id) n Ker( (-l)k id@,,) 

= Ker(dQ c3 id) fl Ker(id@ad,). 

The short exact sequence 0 + I (Ak ) + Co(&) + c_,(Jtk) + 0 Splits 

over Z and therefore remains exact after tensoring with an arbitrary module. 
Moreover, the exact sequence 0 -+ fik_2 (Q) -+ Ck_2 (Q) + Ck_, (Q) (as 
Ck_ 1 (Q ) = 0) remains exact after tensoring with a free Z-module (in particular 
with Ci (Ak 1). The following diagram is therefore a commutative diagram of 
exact sequences. 
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0 0 0 

I I I 
0-&-2(Q) @I(dk)-- &-2(Q) @ Co(d&+&_2(Q) 8 C_i(dk)-o 

I I I 
o- %-2(Q) @I(dk)- C~-2(Q)~Co(d~+Ck-2(Q)~C_1(dk)-0 

I 
id 8’8.4, 

8Q @ id 

%3(Q) E+ Co(dk) 

&-2(Q) @ I(-%) 

z K‘d&dQ, @Co(dk) + &Z(Q) C3 C-i(dk)) 

Z Ker(dQ 8 id) n Ker(id@dk) 2 &._i (CP). 0 

If we fix some xc E X, then {x - xc 1 x0 # x E X} is a Z-basis of I(X). Thus 
I(X) is free as a Z-module and the matrix representation of G with respect to 
this basis has entries 1, - 1 or 0. This implies the following corollary. 

Corollary 3.3. The representation of G on i&-l (CP) fir P = @f=, di can be 
realized by matrices with entries + 1, - 1 and 0. 0 

By Theorem 2.9 and Lemma2.4 we can apply the results of this section to 
CSP (G). This gives: 

Theorem 3.4. Let G be a group. 
Then &(CSP(G)) is zero for k # lIpI - 1 and 

&&CSP(GH 2 I(K,) @I(Ic2) @...@I(+,l) 

as G-modules. 
Moreover, the representation of G on g( CS’ (G) ) can be realized by matrices 

with entries + 1, -1 and 0. 0 

Note that G acts by conjugation on Ici. Thus the orbits of G on Kc~ are just 
the conjugacy classes of subgroups in Xi. 

For K E Ki the action of G on the orbit of K is isomorphic to the action 
of G on the cosets of (the normalizer) No (K ) in G. As K is a maximal 
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subgroup, we conclude that either NG (K) = K or that K is normal (and then 
&(CSP(G)) = 0 for all k). 

4. Combinatorial properties of a subposet of S’(G) 

Having seen the nice topological behavior of Sf (G) it is natural to ask 
whether this is caused by more combinatorial structure than revealed so far. 
This is actually true. In this section we will prove that 5’: (G) is a CL-shellable 
poset if either p # 2 or p = 2 and G has no composition factor isomorphic 
to some PSL(2, q) for q + 1 a 2-power, in other words q is a Mersenne 
prime. In the sequel we abbreviate the second condition by (notPSL). As one 
consequence of the fact that a poset is shellable we would like to mention that 
the geometric realization of its order complex is a Cohen-Macaulay space [ 2 1. 

As every CL-shellable poset is homotopy equivalent to a wedge of spheres of the 
same dimension, this improves the results of Section 2. More combinatorial, 
topological and algebraic (in particular the connections to Cohen-Macaulay 
rings) implications can be found in [ 2 ] and [ 121. 

The shellability of parts of the subgroup lattice has been investigated by the 
second author in [ 171. Applied to our situation this result implies that the 
intervals in S! (G) are EL-shellable if G is a solvable group. It will turn out 
that we do not need to employ the methods developed in [ 171 in our particular 
situation since proper upper intervals [U, G], in $’ (G) are geometric lattices 
for groups satisfying (notPSL) (see Proposition 4.7). It is well known [2] that 
geometric lattices are shellable posets. On the other hand the global structure 
of $’ (G) is far less trivial and for general groups G also the structure of the 
intervals in S’{ (G) is not known at all. 

Recall that a poset P is bounded if there is a unique minimal element 0~ 
and a unique maximal element lp in P (i.e. P = [ Op, lp ] ). If P is a bounded 
poset, we call a E P an atom if [Op, a] has exactly two elements. A poset P is 
graded if it is bounded and all maximal chains have the same length. 

Definition 4.1. A recursive atom ordering of a bounded poset P is a linear 
ordering catom of the atoms of P which satisfies: 

(Cl ) Let x be an element of P such that for the atoms y and z the relations 
y < x and z < x hold. If y catom z then there is an atom w catom z of 
P and an atom zi of the interval [z, x ] such that zi covers w. 

(Cl) Let y be an atom of P. Then there is a recursive atom ordering of 
[y, 1 ] such that the atoms of [y, 1 ] which cover some atom z of P 
preceding y in catom come tirst. 

Proposition 4.2 (Bjorn and Wachs [ 2, Theorem 3.21). A graded poset is CL- 
shellable if and only if it admits a recursive atom ordering. 0 
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D&me S$ I G) = S,P I C> U 5 G, I} (here I is the IriviaJ s~bgoup), We wiM 
prove that S{ (G j is a graded poset which (if p # 2 0~ (n0tPSL j Adds j admits 
a recursive atom ordering. It is well known that adding (resp. removing) a 
least or greatest element from a CL-shellable poset leaves a CL-shellable poset. 
There&e, S$’ (G> is ‘Z&s’rt&a’o1e i? anir o&y i’? Sj iG> is an& the exhi’oition UC 
a reccursive atom orbering Ear S$I G) satis5es in order ID prove C5_&xSh~5ty 

of S:(G). 

PrOlpOdibOIl X3. L&Z ,z” CT& be IWO if&X S&S an& ‘l& Xi E ‘iii jar i E 1 an& 
Ki E Ki for i E 1’ be p-supplements. Suppose n,,, Ki is a subgroup of niEZ, KI. 
Then the set 2’ is a subset of 2. If in addition Z = 2’ then n,,, Ki = n,,, Kf. 

Suppose 1 < U, < . . . < Ut < G is a maximal chain in Sf (G). Then there is 
an fenumeration Si, i7 ~ .,. _,. . . .~Lz,I> = 2, and K.,;.. E X.4. such Snaz U,p = ,Q~,zKy~._ - 
Furthermore, $’ (G) is a graded lattice. 

ProtoE. se1 xj = G ‘ior i 9 Z ano X;. = G for i ,rJ 3’. Then we jn5er from 
Dedekind’s law n,,, KiNi- = njliEZ Ki 5 njliEx, Ki for all j E Z,. Thus 

(nKi)N,-1nNj = NjnKj<NjnKj. 
iEZ 

Hence Ki = G implies 5; = G. This shows the indusion Z’ C 2. If Z = I’ 
then n,,, Ki = n,,, Ki since Proposition 2.7 gives 1 n,,, Ki( = 1 n,,, K/I. 

Now we fix a maximal chain 1 < VI < . . . < VI < Gin$(G).As Uk ES:(G) 
we have uk = l&r, Kk,i for SOme & s 1, and SOllle Kk,i E Ki, i E &. AS 

uk < Uk_l we get (as just proved) Zk_ 1 C 1,. Fix some ik E & \ &__I. Thus 
uk 5 t’k- 1 n && E S,p. kt uk_ 5 n xc,& < & 1 t$‘% propktiol? 2.7 ), and 30 
the maximality of our chain gives uk = uk-r II Kk,ik. 

By setting Ki, = Kk,ik the preceding reasoning inductively proves uk = 

nk<i Ki,- 

7%~ it is obvious that S{ (G) is a graded poset. 
1% A and B are tn S? { Gj’> 3 1) t&n the Irrteoscc& of-& _VX&Jsa~ SXl&Y~ 

containing both A and B is the join of A and B in S! (G) (see the second part 
of Proposition 2.8,1. As I is contajned in A and 1,. .th9. $k af _all Ckm 
contained in A and B is the meet of A and B. Hence Sf (G) is a lattice. 0 

Now we introduce the crucial ordering 5 atom on the atoms of S?(G). For 
this purpose we fix for each set Kj U {G}, j 5 kc, a linear ordering <i such that 
G is the greatest element. For H E S{ we define Hj to be the least element 
(with respect to sj) of Kj U {G} which contains H as a subgroup. 

From Proposition 4.3 we deduce that H = njEZP Hj = njlkc Hj, and that 

H E 3: )G> u G ‘1s an arom jn Z$!. ) E> ‘3 z$ DUQY if xi f G 3m iB j f&, 
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Definition 4.4. For two different atoms U, H E 5’: (G) let j0 E 1, be the 
minimal index, such that Hj = Uj for all j0 < j 5 ko. We set H catom U if 
Hi0 <j. ujo. 

Obviously catom is a linear ordering of the atoms of S{ (G). 

Lemma 4.5. Let VI <atom VI be atoms of S! (G). Let j, 5 kc be the index such 
that U/ = U,i’ for jO < j 5 kc and Uk # U$. Then there is no K E Icj, such 

that K 2 U1 and K L Uz. 

Proof. Assume such a K exists. Thus this K satisfies Uz <j,, K and Nj,_l 5 K. 
From the assumption we infer Nj, VI = njOcj U{ = Nj, Uz. 

Furthermore, VI Nj, n K 2 U1 NjO-l = njo,j UI’ and equality holds by Propo- 
sition 4.3. But Uz 2 U2Nj0 = U1 NjO, SO that U2 5 UlNj, n K 5 (Ul)jo. 
Therefore, ( U2 )jo <jO (VI )jo, contradicting U1 catom U2. 0 

Proposition 4.6. The poset S! (G) with the atom ordering catom satisfies condi- 
tion (Cl ) of Definition 4.1. 

Proof. Assume the situation of condition (C1 ). Hence let VI catom U2 be two 
atoms of S{ (G) and let H be another subgroup in Sf (G) which contains VI 
and U2. Let j0 E 2, be the index such that U{ = Vi for j, < j 5 ko and 

Uf # U2/0. Lemma 4.5 gives Hjo = G. 
NOW we define subgroups Wj E Icj for j E 2, as follows: 

[Hj ifj<joandHj#G, 

Hi = G, 

l Ui if j > jo. 

Set u/’ = njEZ, wj. As VI and U2 are atoms of S{(G) we deduce that 

U[ # G and Vi # G for all j E 1,. Thus Wj # G for all j E 2,. By definition 
W is a subgroup in Sf (G) u {G}. Hence we conclude from Proposition 4.3 
that W is an atom of Sf (G). By definition Wj <j Wj <j Vi for j 2 jo. From 
this observations we infer W sat,,,,, U2. Now we set V = njO,,EZ, Wj. Here 
Proposition 4.3 implies that I/ is an atom of the interval [ W, G],. Analogously 
we deduce from Wj 2 U2 for j. # j 5 ko that V is an atom of the interval 

[ U2, G],. So far we have shown that V covers W and U2 in the lattice S!(G). 
It remains to prove that V is a subgroup of H. 

For the verification of this claim we will use Lemma 2.2(ii): 
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As u2 5 H we conclude Nj,,H 2 Nj, Uz = Nj, V by definition of V. For 
j < j,, we have Wj 5 Hj and as I$,, = G = Hjo we get: 

V=N,,Vn Wj<Nj,HnHj=H. 0 
j-G0 i-30 

In the sequel we denote by 1~ TG the [F,G-module induced from the trivial 
U-module 1” of a subgroup U of G. The definition of the prime p will always 
be obvious from the context. Furthermore, we denote by J the radicaI of ffp G. 

Proposition 4.7 (cf. [ 15, Satz 5.81). Supposep # 2 or G fuljZls (notPSL). Let 
[lu TG J/J*] be the lattice of ail submodules of 1~ TG J/J*. Then for U E Sf (G) 
the lattices [U, Glc and [lu TG J/J*] are isomorphic. 

Since 1~ TG J/J* is semisimple, the lattices [U,G], and [IV TG J/J*] are 
geometric lattice. 0 

As geometric lattices are upper semimodular, the next lemma applies to the 
interval [U, Glc under the assumptions of the preceding proposition: 

Lemma 4.8 (Bjorn and Wachs [2, Theorem 5.11). Suppose P is upper semi- 
modular. Then every linear ordering of the atoms of P is a recursive atom 
ordering of P. 0 

Thearem 4.9. 3x1 G be a J?YD~D. Thm Sl! 1 G) is a graded la1Jjce. Ijp is aB odd 
prime or if G satisfies (notPSL), then &,,,-, is a recursive atom ordering of 
S{ (G). In particular, the poset Sf (G) is CL-shellable. 

ProcoE. BY Pro@rimn 4D ‘rhe poser S> ‘,cl ‘1s _arabeb Propo&on 4.b 1eUs 11s 
that satom satisfies condition (Cl) of Definition 4.1. 

TO verify conrljtion IC,> assume that y 3s an atom of Sf! j G) and choose a 
linear ordering < atom’ of the atoms of [y, Glc such that the atoms that cover 
some atom of 4(c) preceding y in latorn come first. 

As [y, Glc is a geometric lattice (Proposition 4.7) the ordering latomt is 
a recursive atom ordering (Lemma 4.8). Thus condition (C2) holds. So far 
we have shown that <atom is a recursive atom ordering. Now by Proposi- 
tion 4.2 the poset S{(G) is CL-shellable, and so is Sf (G) (see the remark 
after Proposition 4.2). 0 

However, Proposition 4.7 is not true in every group, as the following coun- 
terexample shows: 

We define G as the semidirect product of PSL(3,2) E PSL(2,7) (so, 

as ezx_oecteb G hoes no1 fnY%SS )nr$E%)) anrS tine tiec1 sm Y B W oJ 
two non-isomorphic irreducible 3-dimensional If*-modules V and W. Since V 
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and W are irreducible, every chief series of G has three chief factors whose 
order is divisible by 2. We may assume that the chief series has the form 
1 5 Nr = V 5 A$ = V @ W < Ns = G. Some computations show that 
there are two conjugacy classes of complements of the first and of the second 
chief factor. Since there is only one conjugacy class of subgroups of 2-power 
index in PSL(2,7), the third chief factor has exactly one conjugacy class of 
supplements. Fix a 2-complement H in G. Then in every conjugacy class of 
maximal subgroups of p-power index there is exactly one subgroup containing 
H. The following figure depicts the interval [H, GIC described above: 

G 

We see that one pair of atoms generates G and the other pairs do not. But 
the poset [H, G], has rank 3. Since in an upper semimodular lattice of rank 3 
two atoms generate a rank-2 element, the depicted poset (indeed a lattice) is 
not upper semimodular and hence not geometric. 

Indeed we have provided an atom H E Sf (G) such that the interval [H, GIC 
is not upper semimodular. 

Finally we will give the explicit structure of Sf (G) for a special class of 
groups. The intention is to give the reader a feeling for this poset in particular 
cases. 

Proposition 4.10. For a group G let PI (G) be the projective cover in EPG of the 
trivial G-module. Assume that two different irreducible submodules of PI (G) J/J2 
are not isomorphic G-modules. Then for a subgroup U E S{ (G) andfor an index 
i E 2, there is at most one Ki E Ici such that U 5 Ki. 

Especially if K1, . . . Kl, Ki, . . . , K;, are maximal subgroups of p-power index 
and ni<rKi = flj<lJ K;, then 1 = 1’ and there is a permutation II such that 
Ki = K:(i). - 

Proof. Let N denote a minimal normal subgroup of G and K, K’ E Sp (G) such 
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that NK = NK’ = G and K n K’ E SP (G). Using induction, it is enough to 
prove K = K’. 

As [N: (KnK’nN)] divides [G:KnK’] we have NnK = NnK’by 
Proposition 2.7. Now (K, K’) 5 No (K n K’ n N) (the normalizer of K n K’ n N 
in G) so either K = K’ or K n K’ n N = 1 and so INI = [G : K]. Thus we 
may assume that N is an elementary abelian p-group. (Now the assumptions 
imply that K and K’ are conjugate, but we do not need this.) 

Now we use the notation of Proposition 4.7 and use the arguments established 
in [15]. 

Note that K n K’ E SP (G) implies that l~n~l TG is an epimorphic image 
of ~K”K, lG. Let MK (resp. MK’) denote the kernel of the epimorphisms 
(induced from the embedding K n K’ c K) from ~K”KI tG onto 1~ tG /lo tG 
J2. As IK tG J/J2 2 N E 1K’ tG J/J2 we have loom, 1’ J/MK Z N and 
the same for K’. Thus, by our assumption on P1J/J2 we get MK = MK’. So 
MG # (MK, MK’) and G # (K, K’). In particular this implies K = K’. 0 

We would like to mention that for a solvable group the assumptions of the 
preceding proposition are satisfied if and only if for all i, j E 2, the G-modules 
Nj/Nj-t and Ni/Ni_r are not isomorphic for i # j. 

Corollary 4.11. If two different irreducible submodules of Pi (C)J/J2 are not 
isomorphic G-modules then the dual poset (i.e. the poset with the reversed 
order relation) of $ (G) u {G} and the order complex CP of the ordinal sum 

P = @iEZ, Ici (regarded as a poset ordered by set-inclusion) are isomorphic 
posets. In particular, S{ (G) is a shellable poset. 

Proof. By Proposition 4.10 we can establish a bijection q5 from Sf (G) U {G} 
onto the order complex of $i~l, Ici. The group G itself corresponds to the 

empty set. For a group H in S{ (G) the identity H = nKE+(njK holds and 
therefore 4(H) 5 4 (U) for subgroups U 5 H. This shows that $ is a monotone 
mapping between the dual of Sf (G) u {G} and the order complex of eicz, Xi. 

An analogous reasoning shows that q5-’ is monotone too. It remains to show 
that the order complex of $i~z, Ki is CL-shellable. Here we regard a simplicial 
complex as a poset with inclusion of sets as the order relation. Now a set A 
is an element of the order complex of $iEz, kZi if and only if ]A n lci] = 0,l 
for all i E 2,. This proves that the order complex of eiEz, Ici is the set of 
independent sets of the transversal matroid on the sets Ki, i E 1,. From this 
observation the shellability follows by [ 41. 0 
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5. Concluding remarks 

5.1. If G is a solvable group and x is a set of primes then the subgroups in 
S: (G) generalize the concept of Prefrattinisubgroups introduced by Gaschiitz 
[6] (see [9] and [18]). In this case, SF(G) = {n,,,U, < G 1 for some U, E 
Sf (G) u {G}}. Thus, studying S{ (G) is the first step in the analysis of SF (G) 
(of course only for solvable groups). 

Anyway, if 7~ is an arbitrary set of primes, Proposition 2.5 tells us that 
Sn (G) is contractible if and only if one of the posets KyXCG) is. Thus SK (G) 
is contractible if On(G) # G, but it remains open whether the converse is 

also true. Moreover, we regard the investigation of the posets KTCG) as a very 
challenging and interesting problem. 

5.2. In this remark we would like to stress the relation of the structure of S’ (G) 
to the representation theory of G. Let SJ’+ (G) denote the poset of all U < G 
for which 1~ tG is a factormodule of PI (G) (notation as in Proposition 4.10). 
Then SP (G) E Sp+ (G) (equality holds for p-solvable groups). Thus SP (G) 
gives information about S’+ (G) and PI (G). For example, we can show the 
following: 

1 is a factormodule of PI (G) J if and only if SP (G) is contractible. Moreover, 
SP+ (G) is contractible if S’(G) is. 

5.3. Besides S’(G) and S[ (G), there are several other interesting posets asso- 
ciated to a finite group: 

(i) The poset of all submodules of PI (C)J/J2 (this is a projective geom- 

etry). 
(ii) The G-invariant subgroups of eiEz, Ni/Ni+i. 

(iii) The orbit poset of S! (G) u {G} ( i.e. the poset on the conjugacy classes 
[H] = {W 1 g E G} of subgroups in S:(G) ordered by [H] I [U] e 
3g E G: Hg 5 U). 

(iv) Maximal intervals in Sf (G) u {G}. 

For p-solvable groups all these posets are isomorphic (the equivalence of 
the first two posets is a famous theorem of Gaschiitz, whereas the other 
equivalences follow from results in [ 15,16,19 ] ). On the other hand there exist 
groups, such that no two of these posets are isomorphic. Let for example be 
p = 2 and G be defined as G = Gr CD G2 where G1 is the group constructed in 
Section 4. Now a simple count of poset elements shows that only the posets 
in (iii) and (iv) can be isomorphic for Gt . If we choose GZ to be a group with 
two conjugacy classes of 2-complements the last two posets are not isomorphic 
for G2. 

5.4. Another interesting topic is the dependence of the sets Kci on the chosen 
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chief series. Obviously the sets Ici and 2, depend on the chief series. For the 
rest of this remark we write KF for Ici and q for 2, in order to stress the 
dependence of the sets on the chosen chief series R. It is easily seen that the 
set ic = UiEgKF of p-supplements and the cardinality IT] are independent 
of the choice of the chief series. In order to get an idea of how the single sets 
KP change, when the chief series changes, we define Trans” (G) to be the set 
of all subsets U of niEs XT such that I,?4 II XT] 5 1 for all i (see also the proof 

of Corollary 4.11). Note that there is a natural map v, from Transa (G) onto 
S!(G) u {G} sending U to nUEU U. 

Now Trans” (G) depends on the fixed chief series of G, and there are two 
ways to get rid of this dependence: 

(i) Let Trans( G) denote the union of all sets Trans” (G) where R varies 
over all chief series. 

(ii) Let Indep( G) denote the set of all subsets U s K such that [G : 
n,,,U] = I&,,, [G : U] (the definition might remind the reader to 
probability-theoretic independence). 

If G is solvable we have Trans( G) = Indep (G) (see [ 161). Moreover, the 
structure of Trans(G) is well known in this case. The set Trans(G) is the set of 
independent sets of a matroid, whose lattice of flats is isomorphic to the poset 
of conjugacy classes of subgroups in Sf (G) (see 5.3). Therefore, Trans (G) is 
the set of independent sets of a direct product of projective geometries [ 191. 

Note that under the assumptions of Proposition 4.10 the mapping a, (see the 
proof of Corollary 4.11) is a poset isomorphism and Trans(G) = Trans”(G). 
Thus studying Trans(G) might as well be useful in the analysis of Sf (G). 

5.5. We conjecture that S{ (G) is CL-shellable for every group. 
Note that S{ (G) is CL-shellable for the group defined in Section 4. Fur- 

thermore, we can deduce from [ 171 that the intervals [H, Glc g S! (G) are 
CL-shellable for all tinite groups. 
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