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Abstract

Weidner, M. and V. Welker, The combinatorics and the homology of the poset of subgroups
of p-power index, Journal of Pure and Applied Algebra 90 (1993) 253-274.

For a finite group G and a prime p the poset S? (G) of all subgroups H # G of p-power
index is studied. The Mobius number of the poset is given and the homotopy type of the
poset is determined as a wedge of spheres. We describe the representation of G on the
homology groups of the order complex of S? (G) and show that this representation can be
realized by matrices with entries in the set {+1,—1,0}. Finally a CL-shellable subposet of
SP (G) is exhibited for odd primes p.

1. Introduction

For a finite group G and a prime p we study the partially ordered set
S?(G) of all subgroups H # G of p-power index (i.e. [G : H] = p' for
some i # 0). We will write poset for partially ordered set in the sequel. We
obtain results on the algebraic combinatorics, the homology and the topology
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of the poset. In particular, we show that the homotopy type of the geo-
metric realization |CSP(G)| of the order complex CS?(G) of §7(G) is a
wedge of spheres of the same dimension. The order complex CP of a fi-
nite poset P is the set of all linearly ordered subsets (chains) of the poset
P, in particular CP is a simplicial complex. Thereby we can speak of a
poset in terms of algebraic topology (e.g. homotopy type) and homology.
There are various papers on topological properties of parts of the subgroup
lattice (see, e.g., [1,8,10,17]). Recently (see in particular [1]) there have
been efforts to prove the conjecture of Quillen which states that the poset
S,(G) = {H | |H| = p' for some i # 0} is contractible if and only if the
maximal normal p-subgroup O,(G) is not 1. We prove a dual of this con-
jecture (Theorem 2.10) for the poset S?(G) where the condition O,(G) # 1
is replaced by O?(G) # G for the minimal normal subgroup with p-power
index. The main source of motivation for the research on the Quillen con-
jecture is the interest in the representations of the group on the homology
groups of the order complex. Here we show that the representation of G on
the homology groups of the order complex of S?(G) reveals a lot about the
permutation representations of the group (Theorem 3.4). Thereby we can
show that the representation of G on the homology groups can be repre-
sented by matrices with entries 1, —1 and 0. We prove in Theorem 2.9 that
the poset SP(G) has the homotopy type of a wedge of spheres by giving a
homotopy equivalence to an ordinal sum of antichains. Each antichain corre-
sponds to the maximal subgroups of p-power index which supplement a fixed
chief factor. In Section 4 (Theorem 4.9) we determine a CL-shellable (chain
lexicographically shellable) subposet of S?(G) for p # 2 and for p = 2 in
the case that the group has no composition factor isomorphic to PSL(2,q)
and ¢ + 1 = 2" for some n. Since this shellable subposet is G-homotopy
equivalent to S?(G), our observation enables us to retrieve and understand
combinatorially the results on the homotopy type for “most” groups. Shella-
bility is a very strong combinatorial tool which has been of use in various
branches of group theory (e.g. theory of buildings, Bruhat orders of Coxeter
groups). Moreover, this shows that the combinatorial structure of S?(G) is
rather restricted. For general groups it remains open whether there is a CL-
shellable subposet of SP(G) which is G-homotopy equivalent to S?(G). We
refer the reader for an introduction to the theory of shellable posets to [2].
As a general reference for combinatorial tools used in this paper we recom-
mend [12].

Throughout this paper we fix a chief series R: 1 = Ng < -+ < Ny, = G
of the group G. In particular, we will write in the sequel k¢ for the length of
a chief series of the group G. By Z, we denote the set of indices j for which
the set

Kj={M|MN; =G and N,_, < M, M € $?(G)}
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is not empty. We call the elements of K; the p-supplements of the chief factor
N;/N;_i. We do not want to exclude the trivial case when Z, is empty by
an additional assumption in the formulation of our statements. Therefore we
define the product (resp. the sum) over an empty set to be 1 (resp. 0).

2. The homotopy type of the poset S?(G)

For a finite group G we will determine in this section the homotopy type
of S (G) and prove a dual of the Quillen Conjecture for S? (G). Although by
far not 173v12) 1he poset SP{G) s more easiy iraciable than S,{G) Jor which
a determination of the homotopy type seems to be evasive.

Befare we praceed aadivzing ite gaset SP{GY we give same gregacaiacy
definitions and results about the homotopy type of posets. Let P be a poset
on which a group & acts order preserving (i.e. for elements x,v € P for which
x <y holds and an element g € G the images x4 and y¢ also satisfy x8 < y¥).
We will call a poset with such a G-action a G-poset. Since we are interested
in group representations on the homology groups of the order complex of
a poset we Wi} anatyze the G-homowopy type of a poser P. Of course the
G-representations on the homology groups of the order complex of two G-
hommiopy epoyvaient DOSEIS are ISoMorEme. e wiie P Sor Tne bozd posel
of P (the poset on the elements of P which is obtained by reversing the order
relation of P). Since the order complexes CP and CP* are G-isomorphic,
the posets P and P* are G-homotopy equivalent (even G-homeomorphic).
Therefore, we may interchange “<” and “>” in the applications of the following
proposition,

Propesition 2.1 (Topological tools). Let P and Q be G-posets.

(i) (See [10, Theorem A] and [14, Theorem 1].) Suppose that f : Q — P is
a G-epuivoriont poses homomorphism. 15 Sor oll » € P she subposes S~1{pd> =
{x € Q| f(x)>p}ofQ is Stabg (p)-contractible then P and Q are G-homotopy
equivalent.

(ii) (See [3] and [18].) Let p € P be an element such that for all x € P
the infimum p A X exists in P then P is Stabg (p)-contractible.

Proof. The first assertion is the equivariant version [14, Theorem 1] of a result
of Quillen [10, Theorem A]. We sketch the proof of the second assertion in
order to give the reader a feeling for the topology of order complexes.

We consider the following map:

f:P—-Q={xAp|xeP}CP X— pAXx.

Obviausty f is a Stabg (g l-equivaciant gaget macotiusmt. Mareaver, ¢ satisfieg
f(x) € x for all x € P. One verifies that in this case f induces a Stabg (p)-
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homotopy equivalence from P to f(P) = Q (This is a special case of an
equivariant formulation of the Homotopy Property in [10, (1.3)].) Now p
is the greatest element of Q and therefore the order complex of Q is a cone
with apex p. This shows that @ is Stabg (p) contractible. By composing these
homotopy equivalences one shows that P is Stabg (p)-contractible. [

The argumentation in the proof of Proposition 2.1(ii) actually shows that f
induces an equivariant conical contraction in the sense of [10, (1.5)].

In the next lemma we recall some well-known facts about intersection of
supplements of chief factors. Since the results are fundamental for our further
investigations we will also provide the proofs.

Lemma 2.2 (Group-theoretical tools). (i) If U and H are subgroups of G such
that UH = G, then

[G:(UnH)]=[G:U]-[G:H].

(ii) Let T C {0,...,kg} be a set of indices of normal subgroups N; in the
fixed chief series. Let K; for i € T be subgroups such that N;_, < K; and
K;N; = G. Then for all indices

NN Ki= () Ki and [G:()Ki]=]]IG:K:].

ieT j<ieT ieT ieT

Proof. The first assertion is just a special form of Lagrange’s lemma since in
this case |G| = |[UH| = (|U|-|H|)/|U n H|.

The essential ingredient of the proof of the second assertion is Dedekind’s
modular law: For 4,B € G and N < B the identity (NANB) = N(ANB)
holds.

Now let j be the least element of the set Z. Then for all j' € Z — {/} the
subgroup N; is contained in K;.. By assumption N;K; = G holds. Hence an
application of Dedekind’s law proves

Ny Ki=NjkK;n () K) =NKn [ Ki= ()] K&
i€eT J<i€el J<i€Z J<ieT

Since for arbitrary indices j < j the subgroup N; is contained in N, induction
on |Z| shows for an arbitrary index j

x) N[k = () K.
i€T J<i€T
By definition N, is a normal subgroup. Therefore, Lagrange’s lemma gives

() [G:(Kil=[G:N; (K- [N;: (N;n[)K)].

i€l i€l €T
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By the first part of the proof and by induction we obtain for the first factor
on the right-hand side

G:NOK1=1G: ) Kil= [] [G:K:l.
i€ j<i€T j<ieT
Now let j be again the least element of Z. Since N; < K; for all i € T — {,}
and since N;K; = G the second factor on the right-hand side of (x*) satisfies

[N;: (Y Kin N1 = [N;: (K;nN)] = [G: K.
ieT
The assertion follows immediately form a combination of the last two identi-
ties. O

Now we describe the construction of the ordinal sum of two posets [12,
Section 3.2]. This construction will prove to be the key for the investigation
of the topological behavior of S (G). For two posets P and Q the ordinal sum
P @ Q is the poset on the disjoint union of P and Q which has the same order
relations as P and Q and the additional relations x <y for x € P and y € Q.
Obviously the operation @ is not commutative in general (i.e. P ® Q and
Q@ P are in general not isomorphic). However, there is an obvious one-to-one
correspondence between the chains in P & Q and those in Q@ & P; thus:

Remark 2.3. Let P = (- (P& P,) ® - & Px_) ® P) be an ordinal sum of
the G-posets Py, ..., P,. Then for every permutation ¢ in the symmetric group
Sk the order complexes of P and (- (Ps(1) ® Fo2)) @ -+ ® Pok—1)) @ Po(iy)
are G-isomorphic.

The preceding remark shows that Tor nomologicdl and topologicdl purposes
we do not have to care about the non-commutativity of @. In order to have
the poset Q}f:, P; well-defined we set

k
PP=( (PLoaP)o - oP_)eR).
i=1

Now we are in position to state the key lemma for the analysis of the G-
homotopy type of S? (G). We have formulated the lemma in very general terms
in order to show that our results on S?(G) generalize easily once sufficient
group-theoretical knowledge is provided (see Section 5 (5.4)). For a set X of
preger subgraugs af a graug & we define

K¥={U|UN; =Gand N;_; < U, U € X}

to be the set of X-supplements of the chief factor N;/N;_;. By Ty we denote
the set of all j for which £F is not empty. Of course if X = S$?(G) then
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K¥ = K; and Ty = I, for the sets K; and Z, defined in the Introduction. As
already mentioned before we have fixed a chief series throughout this paper.

Lemma 2.4. Let X be a set of proper subgroups of the group G which is closed
under conjugation by elements of G. We regard X as a poset ordered by inclusion.
Assume that the following conditions are fulfilled:

(i) U € X implies N;U € X U{G} for all normal subgroups N; in the fixed
chief series.

(ii) If K € K¥ and U € X such that K < UN;_, then UNK is an element
of X.

Under this hypothesis the following statements hold:

(a) For each U € X there exists exactly one index j(UY) such that

G = Nj(U)U > Nj(U)_lU € ’C}Y(U).

(b) ForKele and U € X we have K < UN;_; if j(U) <j (= j(K))
and K L UN;_; if j(U) > J.
(c) The poset

Xe={[)K;|0#TCIxand K; €K}
Jex
is a subposet of X.

(d) The posets X, X, and @z, KX are G-homotopy equivalent (note that
each set K¥ can be regarded as a subposet of the poset X).

Proof. (a) As the normal subgroup N, is a proper subgroup of N;, | there is
exactly one index j(U) such that

NU = USNj(U)_1U<Nj(U)U =G.

But in this case by (i) Nj(U)—lU € X and Nj(U)(Nj(U)—lU) = (. Hence
Njw)-1U is an element of ICj‘(U).

(b) Let K e Kf and U € X. If j(U) < j then K < G = UN;y) = UN;_;.
If j(U) > j then G = KNj(U)—l = KNj(U)_lU. So X £ JVj(U)—lU implies
Nj)-1U = G contradicting the definition of j(U).

(¢c) Now we prove X, C X. Let 4 € X, be an arbitrary subgroup in X,. Thus
there is a set of indices 7 and K; € Kf, i € Z, such that 4 = ;.7 K;. Let j be
the greatest index in 7. By induction we may assume B = (;cz_(;; Ki € X.
But by Lemma 2.2(ii) we obtain BN;_; = G > K;. Thus 4 = BN K; € X by
assumption (ii).

(d) In a first step we prove that if X satisfies the conditions (i) and (ii) then
X, satisfies the hypothesis too. From Lemma 2.2(ii) we infer condition (i)
for the set X,. The verification of condition (ii) is a bit more involved. For
U € X, there is a set 7 and K; € K{ for i € T such that U = [, K;. From
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the assumption and Lemma 2.2(ii) we conclude ;;c.; Ki = UN;_; > K. So
i > jimplies i ¢ 7 and if j € 7 then K; > K. Thus UNK = (},,c;KiNK is in
X.. This completes the verification of condition (i1). Furthermore, it is easy
to conclude from our argumentation that Iy = Zx, and KX = K for i € Zy.

Thus by the transitivity of G-homotopy equivalence it is enough to show
that X and @,.;, K are G-homotopy equivalent.

At this point it is convenient to have control over the actual ordering in
@ieetz; Kff . By definitiaa the ardering is canstructed iteratively by (- (Kf,‘: 2]
Kfde--de K for the ordered index set {i; < --- < i;} = Ix. In order to
distinguish between the order in the ordinal sum and the order in the subgroup
lattice we write <g for the order in the ordinal sum, For K, K’ € ®i€Ix Ki we
have defined: K <g K’ if either j(K) > j{K’) or jJ(K)} = j{K') and K < K".
So, K <g K’ if and only if K < Nj)-1K’ (this is a special case of (b)). Now
we consider the following map

f:X-’ @’C;Y, UHNj(U)_lU.

icTy

Since N;(y)—; is a normal subgroup the mapping f is G-equivariant. Moreover,
it is wivial that U < ¥ € X implies N;U < N H. Thus f is a poset morphism
(here the definition of <g is <ruciall.

Now we want to apply Proposition 2.1(i) to the mapping f. Thus we
have to show that for every K € @,.7, KF the poset f~!(K)>, is Ng(K)-
contractible. We will prove this by an application of Proposition 2.1(ii) to
f~HK)», for p = K. In order to prove that Proposition 2.1(ii) applies
we have to show that KN U is in f~1(K)», for U € f~!(K)5,. Suppose
U is a subgroup in f‘l(K)Z$, in particular N;x)-1U > K. By assump-
tion {1t} we have U X ¢ X. Furthermare, Dedekind's identity shaws that
Nijky-1(UNK) = (Njik)-1U)N K = K holds. Thus j(KNU) = j(K) and
therefore f{UNK)} = K >¢ K. Finally we conclude UNK € f_l(K)Ze’
which completes the proof. [

Now we prove that the preceding lemma applies to the set of subgroups
whose index is a product # 1 of a fixed set of primes n. In particular we
retrieve for 7 = {p} our poset S?(G). Let = be a set of primes and define
SYG) ={U|[G: U] = [[e . p™ # 1}

Proposition 2.5. Let n be a set of primes. Then the poset S™(G) is G-homotopy
equivalent to the poset P eZsr ) f @)

Proof. By Lemma 2.4(d) it will suffice to verify conditions (i) and (ii) of
Lemma 2.4 for the poset X = S*(G). Obviously UN € §* @ y {G} for
any normal subgroup N and U € S$*{G). Now suppose U € S*{G) and
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K e IC;?E(G) are subgroups such that K < N;_;U. By Lemma 2.4(b) we have
to treat the following two cases. If j(U) < j(K) = j then N;y) < N;—; < K.
Thus UK = G and by Lemma 2.2(i) UnN K € S*(G). In the second case
JWU) = j(K) = j and K < UN;_;. This implies K = N;_; (UNnK) and
therefore

[G: (UNK)]
= [G (UOK)Nj—l] . [(UﬂK)Nj_l . (UﬂK)Nj_l]
= [G:K]- [Nj—.‘l : (UﬂNj__l)].

But [N;_; : (UNN;_;)] = [UN;_,: U] divides [G: U]. Hence every prime
dividing [G: (UNK)] lies in © and therefore UNK € S*(G). [O

The following corollary reduces the problem of deciding whether S*(G) is
contractible or not to the problem of deciding whether one of the posets ICJS @
is contractible or not.

Corollary 2.6. The poset S™(G) is contractible if and only if there is a j € TIs=(g)
Jor which IC}WG) is contractible.

Proof. This observation follows immediately from the preceding proposition
and the fact that the geometric realization of the ordinal sum of posets is the
join of the geometric realizations of the summands. Now it is a well-known
fact that the join of finitely many topological spaces is contractible if and only
if at least one of the spaces is itself contractible. []

In the following we will return to the case n# = {p} for a single prime p. Of
course in this case $?(G) = S™(G) and k; = K5 (9.

Proposition 2.7 (cf. [15, Satz 4.3]). For all i € T, the elements of K; are max-
imal subgroups of p-power index. Furthermore, every maximal subgroup of
p-power index is contained in exactly one of the sets K;. In particular, each set
K; regarded as a poset is an antichain. For each j € I, and K,K' € K; we
have [G : K] = [G : K'). Moreover, (N;NK)/N,_, is a minimal element of
SP(N;/N;_1). O

We would like to remark that the proof of Proposition 2.7 is based on the
classification of the subgroups of prime power index in finite simple groups
by Guralnik [7]. Since his proof uses the classification of finite simple groups,
our result also depends on this deep theorem.

For a finite poset P we denote by u(P) its Mobius number. We refer the
reader to the paper of Rota [11] for the definition and the basic properties of
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1 (P). We will use the notation [H, G] to denote the interval {U | H < U < G}
and we write [H,G], for ([H,G1NS?(G)) U {G}.

In order to clarify the situation we state at this point a result of the first
author which shows that S?(G) is independent of the chosen chief series.
Moreover, it gives a purely combinatorial characterization of the subgroups
U € S?(G) which are elements of the subposet S?(G). We do not need this
theorem in its full strength but we think it might be helpful for an understanding
of the situation.

Proposition 2.8 (cf. [15, Satz 4.8]). SZ(G) is the set of all U € S?(G) for
which u([U,G1) # 0. Thus S? (G) is independent of the chosen chief series.

This implies the following: If U € S?(G) and U <V, then V € S?(G) if and
only if V' is the intersection of all maximal subgroups containing V.. [

In the next theorem we determine the homotopy type as well as the Mobius
number of S?(G).

Theorem 2.9. Let G be a finite group. Then SP (G) is homotopy equivalent to a
wedge of n = [z (IKi| — 1) spheres of dimension |I,| — 1. In particular, the
Mobius number of SP(G) is given by

u(s?(G)) = - [[a-ixih.

i€Z,

Proof. By Lemma2.4 we can work in the poset EDie:r, K;. Now it is a well-
known fact that the ordinal sum of two posets has the same homotopy type
as the topological join of their geometric realizations. By Proposition 2.7 the
posets K; are antichains. Hence they are homotopy equivalent to a wedge of
|Kj| — 1 spheres of dimension 0. Now the join of a wedge of i-spheres and
a wedge of j-spheres for two non-negative integers i and j is a wedge of
(i + j + l)-spheres. The number of (i + j + 1)-spheres in the join is the
product of the number of i-spheres and the number of j-spheres. By induction
this proves that S? (G) has the homotopy type of a wedge of HieI,, (ki1 =-1)
spheres of dimension |Z,| — 1. The formula for the Mobius number follows
combinatorially since the Mobius number of an ordinal sum of two posets is
(—1) times the product of the Mdbius numbers of the summands. Recall that
the Mobius number of an antichain A4 is |.4| — 1. By topological reasoning we
obtain the Mobius number of a poset which is homotopy equivalent to a wedge
of i-sphere as (—1)! times the number of spheres. []

From the preceding theorem one easily derives the following analog of the
Quillen Conjecture for S?(G).
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Theorem 2.10. For a finite group G the following four statements are equivalent.
(i) SP(G) is G-contractible.
(ii) S?(G) is contractible.
(iii) u(S?(G)) = 0.
(iv) OP(G) # G.

Proof. The implications (i) = (ii) and (ii) = (iii) are trivial. Now assume
the hypothesis of (iii). From Theorem 2.9 we see that x4 (S?(G)) = 0 implies
that there is a chief factor N/M for which a unique subgroup U € SP(G)
satisfies UN = G and M < U. But the group U is then necessarily normal in
G. Therefore, O (G) < U # G which shows (iv).

Now we assume OF (G) # G. Then the element OP (G) of S?(G) satisfies
the assumptions of Proposition 2.1(ii) and we are done. [

As an easy consequence of part (iii) of the equivalence we have that the
Lefschetz module A(S?(G)) = ¥,50(~1)'H;(CS?(G)) vanishes if and only
if 0?(G) # G. We would like to mention that for a G-poset P the module
A(P) is in general a virtual module. Since in our case only one homology
group does not vanish either 4(S? (G)) is a usual module or —4(S?(G)) is a
usual module.

Before we proceed to the determination of the representation of G on the
non-vanishing homology group of S? (G), we will exhibit that the homotopy
equivalence between X = SP(G) and X, = S%(G), implicitly described in
the proof of Lemma 2.4(d), can be chosen to be a deformation retraction.
The special structure of S?(G) comes into play through the following group-
theoretical lemma which is of independent interest.

Lemma 2.11. Let U be an element of SP(G). Then there is a unique element
of K € Ky which contains U.

Proof. Suppose that K and K’ are two subgroups in X;y) which contain H.
Hence Nj(U)—l <K, K’ and Nj(U)—lU is a subgroup of KN K'. But UNj(U)—l
is also a subgroup in K;y,. By Proposition 2.7 the set K;(y) is an antichain.
Thus K = Nj(U)U =K. 0O

Lemma 2.12. The poset S2(G) is a deformation retract of SP(G). The corre-
sponding homotopy equivalence is G-equivariant.

Proof. We have to prove that the inclusion i : S7(G) — S?(G) induces a G-
homotopy equivalence. For an element U € S?(G) the preimage i~ ! (U )> =
{H|HeS?(G),H>U}is {N;er Ki|lU<K; € K;,0# I CIp}.

Let K denote the unique element in K;(y) containing U (see Lemma 2.11).
By definition of S? (G) for each H € i~!(U) there is a set Z C 7, and K; € K,
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i €I, such that H = ;.7 K;. As U < H we conclude U < K;. If j(U) eI

then K = Kj(yy and HNK = H. If j(U) ¢ T then again by the definition of

S?(G) we conclude HNK € S?(G) and U < HN K. This proves that KN H is

in i~1(U) for all H € i~'(U). Now Proposition 2.1(ii) shows that i~1(U) is

Ng (K )-contractible. But Lemma 2.11 implies that every element of G which

normalizes U also normalizes K. Therefore, i~! (U) is also Ng (U )-contractible.
So i is a G-homotopy equivalence by Proposition 2.1(i). O

So far we have related the poset ®iel}, K; to the poset S?(G). Our next
project is to determine the representation of the group G on the homology
of @z, Ki. Before we can do that we will state some general results on the
homology of ordinal sum of antichains.

3. Homology representations of automorphism groups of ordinal sums of
antichains

In this section we will determine the representation of a group G on the
reduced simplicial homology of the order complex of an ordinal sum of an-
tichains on which the group G acts.

The results will remind the reader about some facts about semimodular
lattices [4,13]. Indeed, ordinal sums of antichains belong to the class of totally
semimodular posets which generalize semimodularity to non-lattices. Since our
intention is mainly the determination of the representation of G on H;(S? (G))
we will confine ourselves to the particular situation (ordinal sum of antichains)
occurring here.

For a simplicial complex 4 we denote by H;(4) the reduced simplicial
homology of 4. In general we assume that the coefficient ring is the ring of
integers Z.

So for the rest of this section let A4,,..., A; be antichains which are G-sets
for a finite group G. The main application of this situation will of course be
the case A; = K;. The first part of the following remark is a well-known fact.
The second part follows immediately from the first together with Lemma 2.4
(see also Theorem 2.9).

Remark 3.1. Let P = @i-;lAi be an ordinal sum of k antichains. Then
ﬁj(CP) = 0if i # k-1 and Hy_(CP) is a free Z-module of rank
(-1l u(P) = Hf=1(|A,-|—1). In particular, fI,-(CSP(G)) =0ifi # |Z,|-1
and 1~{|zp|_1(CSP(G)) is a free Z-module of rank (—1)%I-1. 4 (CS?(G)) =
[1/%I0RI=D,

_In the following theorem the representation of G on the reduced homology
H;(CP) for P = @f=1 A; is determined.
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We denote for a G-set X the permutation module over Z with basis X by ZX.
The augmentation map ¢ : ZX — Z is the unique Z-module homomorphism,
that sends x to 1 for all x € X. Let I(X) denote the kernel of ¢&. We would like
to thank the referee for the permission to include his proof and his formulation
of the following theorem. His results simplify our previous approach which
was inspired by results given in [5].

Theorem 3.2. Let P = @F_, A; be an ordinal sum of antichains A;. Assume
that the antichains A; are G-sets for a group G. Then

Hi_((CP) 2 1(A) @I(A) ® - @ I(A).

as G-modules.

Proof. We verify the claim by induction on k. Clearly ﬁo(C Ar) 21(A4;). Let
Q= @f:ll Ai. By C. (P) we denote the augmented chain complex of P, so that
C_1(P) = Z and we write 9p : C.(P) — C.(P) for the boundary operator.

Now the mapping a; < @3... < @y_| < @ — a; < Q... < Ax_1 ® a; for
a; € A; yields an isomorphism:

Cr1(P) = C2(Q) ® Co(Ap).
Similarly we obtain:
Cr—2(P) 2 (Cr_3(Q) ® Co(Ag)) & (Cr2(Q) ® C_1 (Ax)).

Via these isomorphisms we can represent the boundary operator 8p : Cy_ (P) —
Cik—2(P) by the homomorphism (Jp ® id) & ((-Dkid ®0.4,) (note that 94, :
Co(Ar) — C_1(Ay) is the augmentation map). As Ci (P) = 0 we get

H,_|(CP) = Ker(dp : Ct—y (P) = Cy_2(P))
= Ker((8g ®id) @ ((—1)*id®d.4,))
= Ker(dp ® id) NKer((-1)*id®d.4, )
= Ker(dp ®id) NKer(id ®.4, ).

The short exact sequence 0 — I(A4;) — Co(Ax) — C_;(Ax) — O splits
over Z and therefore remains exact after tensoring with an arbitrary module.
Moreover, the exact sequence 0 — Hy_>(Q) — Ci_2(Q) — Ci_3(Q) (as
Cir_1(Q) = 0) remains exact after tensoring with a free Z-module (in particular
with C;(Ax)). The following diagram is therefore a commutative diagram of
exact sequences.
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0 0 0

0 — Hy_»(Q) ® 1(A)— Hi_2(Q) ® Co(Ax— Hy_»(Q) ® C_; (A)—=0

0 —— Cr_2(Q) @ I(Ag ) — Cr—2(Q) ® Co (A }— Ci—2(Q) ® C_1 (A )—0
id®0.4,

3Q®id

Cr-3(Q) ® Co(Ag)

Now

Hi_2(Q) ® 1(Ay)
=~ Ker(Hy_»(Q) ® Co(Ar) — Cr2(Q) ® C_1 (Ag))
> Ker(8p ®1id) NKer(id®34,) & Hy_(CP). O

If we fix some xg € X, then {x — X | Xo # x € X} is a Z-basis of I(X). Thus
I(X) is free as a Z-module and the matrix representation of G with respect to
this basis has entries 1, —1 or 0. This implies the following corollary.

Corollary 3.3. The representation of G on H,_,(CP) for P = @i-;l A; can be
realized by matrices with entries +1, —1 and 0. [

By Theorem 2.9 and Lemma2.4 we can apply the results of this section to
CS?(G). This gives:

Theorem 3.4. Let G be a group.
Then H,(CS?(G)) is zero for k # |I,| — 1 and

Hiz, -1 (CSP(G)) 2 1(K) @ I(Kp) ® - ® (K z,))

as G-modules. N
Moreover, the representation of G on H(CS? (G)) can be realized by matrices
with entries +1, —1 and 0. [J

Note that G acts by conjugation on K;. Thus the orbits of G on K; are just
the conjugacy classes of subgroups in X;.

For K € K; the action of G on the orbit of K is isomorphic to the action
of G on the cosets of (the normalizer) Ng(K) in G. As K is a maximal
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sybgroup, we conclude that either Ng(K) = K or that K is normal (and then
H (CS?(G)) = 0 for all k).

4. Combinatorial properties of a subposet of S?(G)

Having seen the nice topological behavior of S?(G) it is natural to ask
whether this is caused by more combinatorial structure than revealed so far.
This is actually true. In this section we will prove that S? (G) is a CL-shellable
poset if either p # 2 or p = 2 and G has no composition factor isomorphic
to some PSL(2,q) for ¢ + 1 a 2-power, in other words g is a Mersenne
prime. In the sequel we abbreviate the second condition by (notPSL). As one
consequence of the fact that a poset is shellable we would like to mention that
the geometric realization of its order complex is a Cohen-Macaulay space [2].
As every CL-shellable poset is homotopy equivalent to a wedge of spheres of the
same dimension, this improves the results of Section 2. More combinatorial,
topological and algebraic (in particular the connections to Cohen-Macaulay
rings) implications can be found in [2] and [12].

The shellability of parts of the subgroup lattice has been investigated by the
second author in [17]. Applied to our situation this result implies that the
intervals in S?(G) are EL-shellable if G is a solvable group. It will turn out
that we do not need to employ the methods developed in [17] in our particular
situation since proper upper intervals [U, G]. in S? (G) are geometric lattices
for groups satisfying (notPSL) (see Proposition 4.7). It is well known [2] that
geometric lattices are shellable posets. On the other hand the global structure
of S?(G) is far less trivial and for general groups G also the structure of the
intervals in S? (G) is not known at all.

Recall that a poset P is bounded if there is a unique minimal element Op
and a unique maximal element 1p in P (i.e. P = [0Op, 1p] ). If P is a bounded
poset, we call a € P an atom if [Op,a] has exactly two elements. A poset P is
graded if it is bounded and all maximal chains have the same length.

Definition 4.1. A recursive atom ordering of a bounded poset P is a linear
ordering <aiom Of the atoms of P which satisfies:
(Cy) Let x be an element of P such that for the atoms y and z the relations
¥y < x and z < x hold. If y <z1om z then there is an atom w <aom z Of
P and an atom z; of the interval [z, x] such that z; covers w.
(C;) Let y be an atom of P. Then there is a recursive atom ordering of
[v,1] such that the atoms of [y,1] which cover some atom z of P
preceding y in <zom come first.

Proposition 4.2 (Bjorn and Wachs [2, Theorem 3.2]). 4 graded poset is CL-
shellable if and only if it admits a recursive atom ordering. O
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Define SZ1G) = SZ{G) L §G, 1) {here 1 5 the 1rivia) subgroup). We wilh
prove that 57 (G) 1s a graded poset which (if p £ 2 or (notPSL) hoids) admiis
a recursive atom ordering. It is well known that adding (resp. removing) a
least or greatest element from a CL-shellable poset leaves a CL-shellable poset.
Theretare, 32 (G 15 CL-shetidoie 1€ and any € S? (&) 15 and the exaiotian of
a recurs)ve 21om oroenng for SZ9G) sanshes n order 10 prove CL-SHENIDMLY
of SZ(G).

Promosiiion 37, Ler 2,7 T, ve two tndex sets and ter Ky € i jor 1 €2 ana
K} € K; for i € I' be p-supplements. Suppose ;.1 K; is a subgroup of N;cz K
Then the set T' is a subset of I. If in addition T = I' then ;c.; K; = ﬂ,eI
Suppose 1 < U; < --- < Uy < G is a maximal chain in SZ(G). Then there is
an enumerniion 3'1,),.'1_9, Sy =3 o Ky e X, such thy Uy = ey X

Furthermore, S? (G) is a graded lattice.

Prowi. Se1 X; = G Jor 2 83 and X! = U Jor 2 2 3. Tnen we mier from
Dedekind’s law (;c7 KiNj-1 = (jiez Ki £ Nj<jep Ki for all j € Z,. Thus

((VK)N,-inN; = N;nK; < N;nK,.

i€
Hence X; = G implies X} = G. This shows the inclusion 7/ C 7. If 7 = T”
then (.7 Ki = (V;c7 K| since Proposition 2.7 gives | ;.7 Ki| = |z K]l

Now we fix a maximalchain 1 < U; < --- < U; < Gin S (G). As U, € SZ(G)
we have Uy = (;cz, Kk, for some I, C 7, and some K ; € K;, i € I. As
Ur € Uiy we get (as just proved) T;_, C Zy. Fix some i € T; \ Z;_,. Thus
U <y Ky €852 But Up_ Ky, < Uy {see Proposition 2.7}, and 30
the maximality of our chain gives Uy = Up_; N Kg,.

By setting K;, = K, the preceding reasoning inductively proves U, =
ﬂk<_,.‘K,-j.

Now it is obvious that S¥(G) is a graded poset.

Iff 4and B are in SP{GTL{L} then the tntersection of alt maximat sudhgrauns
containing both 4 and B is the join of 4 and B in S?(G) (see the second part
of Praposition 2.8). As [ is contained in 4 and B, the join of all elements
contained in 4 and B is the meet of 4 and B. Hence S?(G) is a lattice. [J

Now we introduce the crucial ordering <aom on the atoms of S?(G). For
this purpose we fix for each set C;U{G}, j < kg, a linear ordering <; such that
G is the greatest element. For H € S we define H’ to be the least element
(with respect to <;) of X; U{G} which contains H as a subgroup.

From Proposmon 4.3 we deduce that H = (¢, H = j<ke H/, and that
H & 35T 0T s an 210m 10 325D T and pr)y 5§ 9> 2 Djo)ué))) EJ,.



268 M. Weidner, V. Welker

Definition 4.4. For two different atoms U,H € S?(G) let jo € I, be the
minimal index, such that H/ = U/ for all jj < j < kg. We set H <agom U if
H < o U Jo,

Obviously <aom iS a linear ordering of the atoms of S? (G).

Lemma 4.5. Let U; <aom U, be atoms of S¢(G). Let jo < kg be the index such
that Ul = Uj for jo < j < kg and U{® # U3*. Then there is no K € K;, such
that K > U, and K > U,.

Proof. Assume such a K exists. Thus this K satisfies U; <j, K and N;,_; < XK.
From the assumption we infer N;,U; = N;,.; U] = N;, U

Furthermore, Uy N;j,NK > U/ N;_; =) o</ U,’ and equality holds by Propo-
sition 4.3. But U, < U)N;, = UNj,, so that U, < UN;, N K < (Up)h.

Therefore, (U,)% <, (U;), contradicting U; <atom U. O

Proposition 4.6. The poset SF (G) with the atom ordering <aom satisfies condi-
tion (Cy) of Definition 4.1.

Proof. Assume the situation of condition (C;). Hence let U; <atom U> be two
atoms of S?(G) and let H be another subgroup in S?(G) which contains U
and U,. Let j, € Z, be the index such that Ulj = U2j for jo < j € kg and
Ulo # Uf. Lemma 4.5 gives Ho = G.

Now we define subgroups W; € K; for j € I, as follows:

H/ if j < joand H’ £ G,
U] ifj<joand H =G,
vl if j = Jjo,
Uuj if j > jo

W, =

Set W = ez, Wj- As Up and U, are atoms of SZ(G) we deduce that

Ul # G and UJ # G for all j € T,. Thus W # G for all j € Z,. By definition
W is a subgroup in S?(G) U {G}. Hence we conclude from Proposition 4.3
that W is an atom of S?(G). By definition W/ <; W; <; Uj for j > jo. From
this observations we infer W <uom U;. Now we set V' = [ oot jez,,Wj' Here
Proposition 4.3 implies that V' is an atom of the interval [W, G].. Analogously
we deduce from W; > U, for jo # j < kg that V' is an atom of the interval
[Us, Glc. So far we have shown that V' covers W and U, in the lattice SP(G).
It remains to prove that V is a subgroup of H.
For the verification of this claim we will use Lemma 2.2(ii):
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As U, < H we conclude NjH > N; U, = N; )V by definition of V. For
j < jo we have W; < H/ and as Vj, = G = H’ we get:

V=NV W<N,H(H =H 0O

J<Jo J<jo

In the sequel we denote by 1y 19 the F,G-module induced from the trivial
U-module 1y of a subgroup U of G. The definition of the prime p will always
be obvious from the context. Furthermore, we denote by J the radical of ,G.

Propasition 4.7 (cf. {15, Satz 5.81). Suppose p # 2 or G fulfills (notPSL). Let
[1y 19 J/J?] be the lattice of all submodules of 1y 1¢ J/J2. Then for U € S? (G)
the lattices [U,G]. and [1y 19 J/J?*] are isomorphic.

Since 1y 1¢ J/J?* is semisimple, the lattices [U,G]. and [1y 16 J/J?] are
geometric lattice. [

As geometric lattices are upper semimodular, the next lemma applies to the
interval [U, G]. under the assumptions of the preceding proposition:

Lemma 4.8 (Bjorn and Wachs [2, Theorem 5.1}). Suppose P is upper semi-
modular. Then every linear ordering of the atoms of P is a recursive atom
ordering of P. [

Theorem 4.9, 1es G be o group. Then SEYGD 15 o grodes Jopice. 35 p s on pbb
prime or if G satisfies (notPSL), then <aom is a recursive atom ordering of
S2(G). In particular, the poset SE(G) is CL-shellable.

Prowh. By Troposiion 87 ine posel 330D 15 grabed. Proposmon 5.5 16Ds s
that <aom satisfies condition (C;) of Definition 4.1.

To venlfy condinon {C;) assume 1hat » 35 an a1om of SE1G) and thoose 2
linear ordering <,om' Of the atoms of [y, G]. such that the atoms that cover
some atom of S? (G) preceding y in <aom come first.

As [y,G]. is a geometric lattice (Proposition 4.7) the ordering <aom i
a recursive atom ordering (Lemma 4.8). Thus condition (C,) holds. So far
we have shown that <uom is a recursive atom ordering. Now by Proposi-
tion 4.2 the poset S?(G) is CL-shellable, and so is S?(G) (see the remark
after Proposition 4.2). O

However, Proposition 4.7 is not true in every group, as the following coun-
terexample shows:

We define G as the semidirect product of PSL(3,2) = PSL(2,7) (so,
as expecied U does npr TN i»od®IL)) and Yoe dreny sum YV W o
two non-isomorphic irreducible 3-dimensional F;-modules V' and W. Since V'
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and W are irreducible, every chief series of G has three chief factors whose
order is divisible by 2. We may assume that the chief series has the form
Il <N =V <N, =VaW < N3y = G. Some computations show that
there are two conjugacy classes of complements of the first and of the second
chief factor. Since there is only one conjugacy class of subgroups of 2-power
index in PSL(2,7), the third chief factor has exactly one conjugacy class of
supplements. Fix a 2-complement H in G. Then in every conjugacy class of
maximal subgroups of p-power index there is exactly one subgroup containing
H. The following figure depicts the interval [H, G']. described above:

We see that one pair of atoms generates G and the other pairs do not. But
the poset [H, G]. has rank 3. Since in an upper semimodular lattice of rank 3
two atoms generate a rank-2 element, the depicted poset (indeed a lattice) is
not upper semimodular and hence not geometric.

Indeed we have provided an atom H € S? (G) such that the interval [H, G],
is not upper semimodular.

Finally we will give the explicit structure of S?(G) for a special class of
groups. The intention is to give the reader a feeling for this poset in particular
cases.

Proposition 4.10. For a group G let P1(G) be the projective cover in F,G of the
trivial G-module. Assume that two different irreducible submodules of Py (G)J /J?
are not isomorphic G-modules. Then for a subgroup U € S? (G) and for an index
i € I, there is at most one K; € K; such that U < K.

Especially if Ky,...K;,K],...,K}, are maximal subgroups of p-power index
and N;<;Ki = Ni<p K|, then | = I' and there is a permutation © such that
K; = Kz’r(i)-

Proof. Let N denote a minimal normal subgroup of G and K, K’ € $?(G) such
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that NK = NK' = G and K N K’ € S (G). Using induction, it is enough to
prove K = K'.

As [N: (KNK'nN)] divides [G: KNK'] we have NNK = NNK' by
Proposition 2.7. Now (K, K’} < Ng(KNK'NN) (the normalizer of KNK'NN
in G) so either K = K’ or KNK'NN =1 and so [N| = [G: K]. Thus we
may assume that N is an elementary abelian p-group. (Now the assumptions
imply that K and K’ are conjugate, but we do not need this.)

Now we use the notation of Proposition 4.7 and use the arguments established
in [15].

Note that K N K’ € S?(G) implies that 1xnk 19 is an epimorphic image
of 1xnx 1¢. Let MK (resp. MK') denote the kernel of the epimorphisms
(induced from the embedding K N K’ ¢ K) from 1gnx: 19 onto 1 1¢ /1 1€
J2. As 1x 19 J/J? = N = 1k 19 J/J? we have 1xgng 19 J/MK = N and
the same for K’. Thus, by our assumption on P;J/J? we get MK = MK'. So
MG # (MK,MK') and G # (K, K'). In particular this implies K = K’. 0O

We would like to mention that for a solvable group the assumptions of the
preceding proposition are satisfied if and only if for all i, j € Z, the G-modules
N;j/N;_, and N;/N;_, are not isomorphic for i # j.

Corollary 4.11. If two different irreducible submodules of Py(G)J/J?* are not
isomorphic G-modules then the dual poset (i.e. the poset with the reversed
order relation) of SZ(G) U {G} and the order complex CP of the ordinal sum
P = @ierp K; (regarded as a poset ordered by set-inclusion) are isomorphic
posets. In particular, S? (G) is a shellable poset.

Proof. By Proposition 4.10 we can establish a bijection ¢ from S?(G) U {G}
onto the order complex of ®iezp K;. The group G itself corresponds to the
empty set. For a group H in S?(G) the identity H = NkepnyX holds and
therefore ¢ (H) < ¢(U) for subgroups U < H. This shows that ¢ is a monotone
mapping between the dual of S? (G) U {G} and the order complex of @iez,, K.
An analogous reasoning shows that ¢! is monotone too. It remains to show
that the order complex of €9, K: is CL-shellable. Here we regard a simplicial
complex as a poset with inclusion of sets as the order relation. Now a set 4
is an element of the order complex of ®iel',, K; if and only if [ANK;| = 0,1
for all i € Z,. This proves that the order complex of @iezp K; is the set of
independent sets of the transversal matroid on the sets K;, { € Z,. From this
observation the shellability follows by [4]. [
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5. Concluding remarks

5.1. If G is a solvable group and z is a set of primes then the subgroups in
S7(G) generalize the concept of Prefrattinisubgroups introduced by Gaschiitz
[6] (see [9] and [18]). In this case, ST (G) = {NpezUp < G| for some U, €
S (G) U{G}}. Thus, studying S?(G) is the first step in the analysis of S7(G)
(of course only for solvable groups).

Anyway, if # is an arbitrary set of primes, Proposition 2.5 tells us that
S™(G) is contractible if and only if one of the posets IC;SW(G) is. Thus S™(G)
is contractible if O"(G) # G, but it remains open whether the converse is
also true. Moreover, we regard the investigation of the posets IC;WG) as a very
challenging and interesting problem.

5.2. In this remark we would like to stress the relation of the structure of S? (G)
to the representation theory of G. Let 7+ (G) denote the poset of all U < G
for which 1y 19 is a factormodule of P; (G) (notation as in Proposition 4.10).
Then §?(G) € SP*(G) (equality holds for p-solvable groups). Thus S?(G)
gives information about $?*(G) and P,(G). For example, we can show the
following:

1 is a factormodule of Py (G)J if and only if S7 (G) is contractible. Moreover,
SP* (G) is contractible if S? (G) is.

5.3. Besides S? (G) and S?(G), there are several other interesting posets asso-
ciated to a finite group:
(i) The poset of all submodules of P;(G)J/J? (this is a projective geom-
etry).

(ii) The G-invariant subgroups of @iezp N;/Ni;1.

(iii) The orbit poset of S¥(G) U{G} (i.e. the poset on the conjugacy classes
[H] = {H® | g € G} of subgroups in S?(G) ordered by [H] < [U] &
JgeG: HE <U).

(iv) Maximal intervals in S?(G) U {G}.

For p-solvable groups all these posets are isomorphic (the equivalence of
the first two posets is a famous theorem of Gaschiitz, whereas the other
equivalences follow from results in [15,16,19]). On the other hand there exist
groups, such that no two of these posets are isomorphic. Let for example be
p = 2 and G be defined as G = G| & G, where G, is the group constructed in
Section 4. Now a simple count of poset elements shows that only the posets
in (iii) and (iv) can be isomorphic for G,. If we choose G, to be a group with
two conjugacy classes of 2-complements the last two posets are not isomorphic
for G,.

5.4. Another interesting topic is the dependence of the sets X; on the chosen
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chief series. Obviously the sets K; and Z, depend on the chief series. For the
rest of this remark we write K for K; and ZF for I, in order to stress the
dependence of the sets on the chosen chief series R. It is easily seen that the
set K = UieIpIC,R of p-supplements and the cardinality || are independent
of the choice of the chief series. In order to get an idea of how the single sets
KR change, when the chief series changes, we define Trans™ (G) to be the set
of all subsets U of ;cz, CF such that [UNKF| <1 for all i (see also the proof

of Corollary 4.11). Note that there is a natural map ¢ from Trans®(G) onto
S?(G) U{G} sending U to Ny, U.

Now Trans®(G) depends on the fixed chief series of G, and there are two
ways to get rid of this dependence:

(i) Let Trans(G) denote the union of all sets Trans® (G) where R varies
over all chief series.

(ii) Let Indep(G) denote the set of all subsets 4 C K such that [G :
NueuUl = Tlyeu G : Ul (the definition might remind the reader to
probability-theoretic independence).

If G is solvable we have Trans(G) = Indep(G) (see [16]). Moreover, the
structure of Trans{G) is well known in this case. The set Trans(G) is the set of
independent sets of a matroid, whose lattice of flats is isomorphic to the poset
of conjugacy classes of subgroups in S? (G) (see 5.3). Therefore, Trans(G) is
the set of independent sets of a direct product of projective geometries [19].

Note that under the assumptions of Proposition 4.10 the mapping ¢ (see the
proof of Corollary 4.11) is a poset isomorphism and Trans(G) = Trans® (G).
Thus studying Trans(G) might as well be useful in the analysis of S? (G).

5.5. We conjecture that S? (G) is CL-shellable for every group.

Note that S?(G) is CL-shellable for the group defined in Section 4. Fur-
thermore, we can deduce from [17] that the intervals [H,G]. C SZ(G) are
CL-shellable for all finite groups.
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