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Novel Biomarkers, Oxidative Stress,
and the Role of Labile Iron Toxicity in
Cardiopulmonary Bypass-Associated Acute Kidney Injury

Michael Haase, MD,*† Rinaldo Bellomo, MD,† Anja Haase-Fielitz, PHARMD*†

Melbourne, Australia; and Berlin, Germany

Cardiac surgery-associated acute kidney injury (AKI) is common and carries a poor prognosis. Hemodynamic and
inflammatory factors and the release of labile iron, contributing to oxidation from reactive oxygen species are
among the major determinants of cardiac surgery-associated AKI. The diagnosis of AKI is typically delayed be-
cause of the limitations of currently used clinical biomarkers indicating loss of renal function. However, several
novel renal biomarkers, which predict AKI or protection from AKI after cardiopulmonary bypass (CPB), have been
identified as early markers of kidney injury. In this state-of-the-art review, the authors analyze the pathophysio-
logical implications of recent findings regarding novel renal biomarkers in relation to CPB-associated AKI. Neu-
trophil gelatinase–associated lipocalin, liver-type fatty acid-binding protein, and alpha-1 microglobulin predict the
development of CPB-associated AKI, while hepcidin isoforms appear to predict protection from it, and these
biomarkers are involved in iron metabolism. Neutrophil gelatinase-associated lipocalin participates in local
iron transport. Liver-type fatty acid–binding protein and alpha-1 microglobulin function as high-affinity heme-
binding proteins in different species, while hepcidin is central to iron sequestration and when increased in the
urine appears to protect from CPB-associated AKI. Free iron-related, reactive oxygen species–mediated kidney
injury appears to be the unifying pathophysiological connection for these biomarkers. Such novel findings on
renal tubular biomarkers were further combined with other lines of evidence related to hemolysis during CPB,
the associated excess of free heme and iron, knowledge of the effect of free iron on renal tubular cells, and re-
cent trial evidence targeting free iron-mediated mechanisms of AKI. Novel biomarkers point toward free iron-
mediated toxicity to be an important mechanism of AKI in patients receiving cardiac surgery with CPB. (J Am
Coll Cardiol 2010;55:2024–33) © 2010 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.12.046
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cute kidney injury (AKI) is a common and severe com-
lication in hospitalized patients and is associated with
ncreased morbidity and mortality (1–4). Cardiac disease
nd cardiac surgery are both common precipitants (5–7). In
ritically ill patients, after sepsis, cardiac surgery with
ardiopulmonary bypass (CPB) is the second most common
ause of AKI (8). According to a recently published classi-
cation system (9), this condition can be classified as a form
f cardiorenal syndrome type 1, a bidirectional condition
hat reflects an abrupt worsening of renal function secondary
o acute cardiac disease or procedures, and vice versa.
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Cardiac surgery-associated AKI is a particular type of
ype 1 cardiorenal syndrome for which no clear understand-
ng of pathogenesis exists (10) and no proven effective
rophylaxis or treatment has yet been established. Further-
ore, existing renal markers that confirm loss of renal

unction in this setting are only very late markers for the
iagnosis of AKI. Recently, several novel biomarkers have
merged that show reasonable sensitivity and specificity for
he prediction of AKI after CPB (11–13) and for the
rediction of protection from CPB-associated AKI (14).
nderstanding of the physiological roles, and the responses
f novel biomarkers to CPB and to interventions offer an
pportunity to expand our understanding of the pathogen-
sis of CPB-associated AKI.

Previous studies have reported injury to red cells and
elease of free hemoglobin during CPB (15–17). Beside
omplete red blood cell fragmentation, there can also be
ublethal red cell damage, resulting in altered rheological
roperties. Increased levels of free red blood cell constituents
ogether with an exhaustion of their scavengers, transferrin and

aptoglobin, result in a variety of serious clinical sequels, such
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s increased systemic vascular resistance, altered coagulation
rofile, platelet dysfunction, renal tubular damage, and in-
reased mortality (18). Such injury raises concernsthat CPB-
ssociated AKI may be a form of renal sideropathy and
hat free or inappropriately liganded iron-related toxicity
ay play a role.

ources of Evidence

n an attempt to explore whether and to what extent
romising novel renal biomarkers point toward common or
nifying mechanisms of AKI, we systematically searched
he published research for novel renal biomarkers predicting
KI after CPB.
Two investigators (M.H., R.B.) independently searched
edline (via the PubMed interface), Embase, CENTRAL,

he reference lists of obtained reports, and congress abstracts
to August 31, 2009) to identify potentially relevant reports
r abstracts. We used the following search string: “biomar-
er” AND “acute kidney injury” OR “acute renal dysfunc-
ion” AND “cardiac surgery” OR “cardiopulmonary bypass”
R “coronary revascularization.” We selected this type of
KI because patients are relatively homogenous and well

haracterized, the timing of renal injury is known, and the
urden of disease is high (8). We included original studies
n humans reporting on biomarkers that were found to be
redictive of post-operative renal function after cardiac
urgery with the use of CPB (Fig. 1). In a second step of our
earch, the biomarkers identified were combined with the
earch string “physiology” OR “pathophysiology” OR
mechanism” exploring what is known about the mecha-
isms of AKI they may contribute to or protect from.

iomarker Evidence

eutrophil gelatinase-associated lipocalin (NGAL). Using
enomic, transcriptomic, and proteomic screening tech-
iques for novel renal biomarkers (19,20) and innovative
esearch on embryonic tissues (21), NGAL has been re-
ently described as an early, highly sensitive and specific
enal biomarker and to be implicated in the differentia-
ion of kidney epithelia. NGAL was nephroprotective
hen administered simultaneously with renal ischemia-

Figure 1 Flow Diagram of the Search Strategy Used
dto Produce the Review of Published Research
eperfusion (22,23). Kidney epi-
helia express and excrete mas-
ive quantities of NGAL when
amaged by ischemia-reperfusion
njury, nephrotoxins, and sepsis,
s demonstrated initially in rats,
ice, and pigs and then in human
eonates, children, and adults
11,20,21,24 –26).

In a prospective landmark
tudy of 71 children undergoing
PB, AKI (defined as a 50%

ncrease in serum creatinine) oc-
urred in 28% of the subjects, but
he diagnosis using serum creat-
nine was possible only 1 to 3
ays after surgery (11). In marked contrast, NGAL mea-
urements revealed a 10-fold or greater increase in the urine
nd plasma within 2 to 6 h of surgery in patients who
ubsequently developed AKI. Both urine and plasma
GAL were independent predictors of AKI, with areas

nder the receiver-operating characteristic curves (AUCs)
f 0.998 for the 2-h urine NGAL measurement and 0.91 for
he 2-h plasma NGAL measurement (11). The results of
his study were confirmed in several further studies in
ediatric cardiac surgery (Table 1) (11,27,28,30,31). In
dults, several trials showed NGAL to be of varying value
or subsequent AKI, with AUC values ranging from 0.56 to
.96 (Table 1) (26,27,29,31,33,34). In a recent meta-
nalysis of diagnostic test studies on the performance of
GAL for AKI after cardiac surgery including 10 studies
ith 1,204 patients, the mean AUC was 0.78 (range 0.67 to
.87) (35).
NGAL is a siderophore-binding lipocalin involved in

schemic renal injury and repair processes. In mice and rats,
GAL is expressed at very low levels in neutrophils and

timulated epithelia, including kidney, heart, lung, trachea,
iver, colon, stomach, and brain (36). Plasma NGAL in AKI
ppears to be derived from distal tubular back leakage into
he blood and from extrarenal sources as a result of “organ
ross-talk” of the injured kidney (37). After glomerular
ltration of NGAL, endocytosis via receptors such as
egalin receptor (38) and 24p3 receptor into proximal

ubules or secretion with the urine may occur.
Urinary NGAL is derived from local synthesis in distal

arts of the nephron after injury or by excessively filtered
lasma NGAL (20).
Lipocalins are a diverse group of ligand-binding proteins

hat share a conserved structure including an 8-stranded calyx,
r cup-shaped structure, enclosing the ligand binding site.

Siderophores are small, iron-containing molecules pro-
uced from bacteria and plants that, through iron transport
nd supply, are involved in cellular growth and survival.
everal hundreds of microbial siderophores have been iden-
ified (39), with the most common one in medical use,

Abbreviations
and Acronyms

AKI � acute kidney injury

�1MG � alpha-1
microglobulin

AUC � area under the
receiver-operating
characteristic curve

CPB � cardiopulmonary
bypass

L-FABP � liver-type fatty
acid-binding protein

NGAL � neutrophil
gelatinase-associated
lipocalin
eferoxamine, being such a bacteria
l product. However, no



h
a
a
r
s
c
t

a
r
a
r
s
l
g
l
s
i
d
u
H
H
r
s
n
N
O
h
o
I
d
s

c
k

e
c
a
b
p
s
h
q
f
r
t
t
p
i
c

n
c
t
i
c

h
n
fl
s
a
i
b
f
e
c
h
A

g chara

2026 Haase et al. JACC Vol. 55, No. 19, 2010
Novel Biomarkers and Iron Toxicity in Cardiac Surgery AKI May 11, 2010:2024–33
uman siderophore has yet been chemically identified,
lthough siderophore-like activities were detected decades
go (40,41). Under aerobic conditions, ferrous ions will
eact with oxygen to produce ferric ions. Siderophores can
olubilize and sequester iron (mainly ferric iron) such that it
an be internalized via suitable transporter molecules within
he plasma membrane (42).

A schematic overview of the potential roles of labile iron
nd the iron metabolism regulators NGAL and hepcidin at
enal tubular cells is shown in Figure 2. Siderophore:iron-
ssociated NGAL delivers iron into the cell. After megalin
eceptor-mediated uptake, NGAL traffics in acidic endo-
omes, which promote the release and cytoplasmic accumu-
ation of iron, resulting in the regulation of iron-dependent
enes (21). Siderophore:iron-free NGAL captures intracel-
ular iron and transports it via a hypothetical intracellular
iderophore to the extracellular space (43). Depletion of
ntracellular iron pools may lead to apoptosis. Hepcidin, a
own-regulator of ferroportin (iron efflux channel), contrib-
tes to an increase in intracellular iron.
epcidin. Using a hypothesis-free analytical approach,
o et al. (14) investigated proteins detected in urine that

eflect underlying tubular injury. They enrolled 44 cardiac
urgery patients in a nested cohort study and identified 3
ovel biomarkers of renal function after cardiac surgery:
GAL, hepcidin, and alpha-1 microglobulin (�1MG).
f interest, hepcidin, a central systemic regulator of iron

omeostasis, was substantially up-regulated in the urine
f patients not developing AKI after cardiac surgery (14).
n contrast, urine hepcidin has been shown to increase
uring inflammation and decline as inflammation re-
olved (44).

Hepcidin is a peptide hormone synthesized in hepato-
ytes and with lower expression detected in the normal

Paired Sensitivity and Specificity ofIndividual Studies for NGAL to Predict AKI AfterTable 1 Paired Sensitivity and Specificity of
Individual Studies for NGAL to Pred

First Author (Year) (Ref. #) Sensitiv

Mishra et al. (2005) (11)* 70.0 (45.7–

Mishra et al. (2005) (11)† 100.0 (80.0–

Wagener et al. (2006) (27) 68.8 (41.5–

Dent et al. (2007) (28) 84.4 (69.9–

Wagener et al. (2008) (29) 64.7 (52.1–

Bennett et al. (2008) (30) 78.8 (69.2–

Xin et al. (2008) (31) 76.9 (46.0–

Koyner et al. (2008) (32)* 44.4 (22.4–

Koyner et al. (2008) (32)† 66.7 (41.2–

Lima et al. (2008) (33) 83.3 (36.5–

Tuladhar et al. (2009) (34)* 77.8 (40.2–

Tuladhar et al. (2009) (34)† 88.9 (50.7–

Haase-Fielitz et al. (2009) (26) 78.3 (55.8–

Sample size-weighted mean
(AKI: 313/total patients: 1,204)

75.5 (70.2–

Values are % (95% confidence interval). *Measured in plasma. †Meas
AKI � acute kidney injury; AUC � area under the receiver-operatin

gelatinase-associated lipocalin.
idney, heart, and brain (45). The human hepcidin gene k
ncodes a precursor protein of 84 amino acids, preprohep-
idin (46), which undergoes enzymatic cleavage, resulting in
protein of 64 amino acids, prohepcidin. Hepcidin-25, the
iologically active 25-amino acid form, is then produced by
ost-translational processing. Additional degradation re-
ults in the production of 2 isoforms, hepcidin-20 and
epcidin-22 (47). Hepcidin mediates intracellular iron se-
uestration by binding to the cellular iron export channel
erroportin receptors on hepatocytes, enterocytes, and mac-
ophages, leading to ferroportin endocytosis and degrada-
ion, and thereby decreases iron efflux from iron-exporting
issues into plasma. Within the kidney, hepcidin is ex-
ressed in the apical tubular epithelium of the thick ascend-
ng limb of the loop of Henle, connecting tubules, and
ortical collecting duct (48).

Overall, there is a complex interplay between positive and
egative regulation and the distribution of iron caused by
hanges in hepcidin concentration (49), with, in many cases,
he hypoxic response (decreased hepcidin) seeming to dom-
nate the response because of inflammation (increased hep-
idin) even when iron levels are high (50,51).

Zhang et al. (52) demonstrated intrarenal expression of
epcidin by infiltrating leukocytes in patients with lupus
ephritis, raising the possibility that during renal disease
are, hepcidin is produced within the kidney, rather than
imply being filtered. Of interest, urinary hepcidin-20
nd hepcidin-25 showed different patterns of expression
n relation to injury and repair (52,53). However, the
iological roles of these 2 isoforms of hepcidin need to be
urther investigated. Also, it would be of interest to
xplore what role genetic variants of siderophores, hep-
idin, or ferroportin may play in the regulation of iron
omeostasis and AKI.
lpha-1 microglobulin. Alpha-1 microglobulin is a 26-

I After CPB

Specificity AUC

94.1 (82.8–98.5) 0.91 (0.88–0.92)

) 98.0 (88.2–99.9) 0.99 (0.95–1.00)

64.6 (51.7–75.8) 0.73 (0.51–0.97)

93.6 (85.0–97.6) 0.96 (0.93–0.98)

52.0 (46.7–57.2) 0.64 (0.51–0.70)

91.8 (83.9–96.1) 0.95 (0.88–0.99)

70.4 (49.7–85.5) 0.86 (0.78–0.93)

75.9 (62.1–86.1) 0.56 (0.38–0.68)

64.8 (50.6–77.0) 0.68 (0.53–0.80)

73.9 (58.6–85.3) 0.71 (0.29–0.96)

68.3 (51.8–81.4) 0.85 (0.78–0.93)

78.1 (62.0–88.9) 0.94 (0.85–0.97)

77.9 (66.8–86.3) 0.80 (0.67–0.86)

75.1 (65.2–86.3) 0.78 (0.67–0.87)

urine. Modified with permission from Haase et al. (35).
cteristic curve; CPB � cardiopulmonary bypass; NGAL � neutrophil
CPB
ict AK

ity

87.2)

100.0

87.9)

93.0)

75.6)

86.1)

93.8)

68.7)

85.6)

99.1)

96.1)

99.4)

91.7)

82.4)

ured in
Da plasma and tissue glycoprotein and binds heme in
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ifferent species (54). The protein has a heterogeneous
ellow-brown chromophore consisting of small, uniden-
ified prosthetic groups localized to a free thiol group and

lysyl residues around the entrance to a hydrophobic
ocket.
It was recently reported that the lipocalin �1MG can bind

eme and that a C-terminally processed form of �1MG
egrades heme (55). Increased urinary excretion of �1MG
as been shown to indicate proximal tubular injury (56).
lpha-1 microglobulin was markedly increased during the

arly post-operative phase in patients subsequently develop-
ng AKI (14). Urinary excretion of �1MG had high diag-
ostic accuracy (AUC � 0.89) in identifying patients
eveloping AKI after pediatric cardiac surgery (n � 365)
13). In critically ill adults, urinary �1MG had an AUC of
.86 for the identification of patients requiring renal re-
lacement therapy (57).
Alpha-1 microglobulin contributes to heme degradation

y a still unknown mechanism. Heme is highly toxic to

Figure 2 Schematic Overview of Renal Iron Metabolism

At the local tissue level, neutrophil gelatinase-associated lipocalin (NGAL) mediate
NGAL-bacterial siderophore (Sid)-iron complex. Siderophore:iron-associated NGAL (
promote the release and cytoplasmic accumulation of iron, resulting in regulation
iron and transports it via a hypothetical intracellular siderophore to the extracellula
down-regulator of ferroportin (FPN) (iron efflux channel), contributes to an increase
receptor.
enal tissue because it is capable of catalyzing free radical s
ormation and is also a major and readily available source of
ron for pathogenic organisms (58).
atty acid-binding proteins. Fatty acid-binding proteins
re intracellular carrier proteins of 14 kDa with different
xpression in the kidney. So far, 2 types of fatty acid-
inding proteins have been isolated from the human kidney.
iver-type fatty acid-binding protein (L-FABP) is another
ember of the lipocalin superfamily. It is reabsorbed by the

roximal tubule via megalin-dependent endocytosis and is
ocalized in the cytoplasm of proximal renal tubular cells and
n the liver and the small intestine. By contrast, heart-type
atty acid-binding protein is localized in the renal distal
ubules, heart, small intestine, and skeletal muscles. Both
roteins facilitate the transport of intracellular long-chain
atty acids. Fatty acid-binding proteins are endogenous
ntioxidants by promoting free fatty acid metabolism and by
inding long-chain fatty acid oxidation products (59).
Portilla et al. (12) demonstrated that L-FABP predicts

he development of AKI in children undergoing cardiac

trapping in the proximal tubule cell through megalin receptor endocytosis of an
GAL) delivers iron into the cell. NGAL then traffics in acidic endosomes, which
-dependent genes. Siderophore:iron-free NGAL (apo-NGAL) captures intracellular
e. The depletion of intracellular iron pools may lead to apoptosis. Hepcidin, a
acellular iron. DMT � divalent metal ion transporter; FeTfR � iron transferrin
s iron
holo-N
of iron
r spac
in intr
urgery. They found that increases of this biomarker within
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h after cardiac surgery anticipated the subsequent devel-
pment of AKI with an accuracy of 81%. In human
-FABP transgenic mice, urinary L-FABP levels allowed

he accurate and earlier detection of both histological and
unctional insults in ischemia-induced AKI (60). Inter-
stingly, L-FABP is also a high-affinity heme-binding
rotein (37). Urinary cystatin C (57), interleukin-18
61,62), and kidney injury molecule-1 (63,64) are other
ovel tubular biomarkers. How these biomarkers are in-
olved in iron metabolism is currently unknown or has not
et been investigated.

athophysiological Aspects of CPB

he pathogenesis of cardiac surgery-associated AKI is
omplex and multifactorial and includes several injury path-
ays: ischemia and reperfusion, exogenous and endogenous

oxins, inflammation, oxidative stress, and hemodynamic
actors (Fig. 3). These mechanisms of injury are likely to be
ctive at different times with different intensities and prob-
bly act synergistically (10).

The use of a CPB pump has been associated with an
pstream insult such as an elevation in levels of systemic
nflammatory factors compared with off-pump operations
65). Oxidative stress is one of the major initiators of
yocardial injury during experimental ischemia and reper-

usion (66) and is believed to be also an important mecha-
ism of renal injury. Ischemia-reperfusion injury during

Figure 3 Renal Free Iron Toxicity and Biomarkers in Cardiac Su

Overview of the roles of ischemia and reperfusion during cardiopulmonary bypass
iron, and iron metabolism regulators in affecting renal injury. GFR � glomerular filt
PB may further exacerbate oxidoinflammatory stress in
he setting of free circulating labile iron. Free labile iron is
apable of inducing multiple changes in renal tubular
pithelial function, including impaired proliferation (67)
nd the induction of free radical injuries, such as lipid
eroxidation and protein oxidation. The generation of
ydroxyl radicals is catalyzed by free iron ions and most
ctive at acid pH (Fig. 4).

CPB creates a hemodynamic state of loss of pulsatile flow
nd microembolism. Hemodynamic instability may occur
uring the transition from full hemodynamic support with
PB to full circulation by the patient’s own cardiovascular

ystem. A low-cardiac output state contributes to general-
zed hypoperfusion and renal ischemia.

Length of time on CPB is a well-recognized risk factor
or the development of AKI. This association may relate to

reactive oxygen species (ROS), poorly liganded
rate; RAAS � renin-angiotensin-aldosterone system.

Figure 4 Haber-Weiss and Fenton Reactions

The superoxide-driven Haber-Weiss describes 1 possible mechanism in the
generation of hydroxyl radicals, is catalyzed by free iron ions, and is most
active at acid pH. Another important reaction of hydrogen peroxide with (free or
inappropriately liganded) Fe2� is the Fenton reaction, leading to the very reac-
tive and damaging hydroxyl radical. Reprinted, with permission, from Haase et
al. (92).
rgery

and of
ration
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emolysis or rhabdomyolysis and the generation of intra-
ascular free hemoglobin and free toxic iron secondary to
echanical trauma to red cells within the bypass system

nd surgical suction devices (68,69). Pigment nephropa-
hy is known to result from hemoglobinuria and myoglo-
inuria (15,16,68,70 –72). During CPB, plasma-free he-
oglobin increased, correlated with early post-operative

ubular injury, and was significantly and independently
ssociated with the development of subsequent loss of
enal function (73).

he Duration of CPB and
he Extent of Kidney Injury

wide range of causative factors is involved in the release of
ree hemoglobin or free myoglobin into the serum, includ-
ng hemolysis from extracorporeal circulation (e.g., CPB),
ut also mechanical fragmentation of red cells induced by
alvular prosthesis, transfusion reactions, or genetic defects
redisposing to reduced erythrocyte membrane stability
70). Increased free hemoglobin levels of greater than
everal-fold above the upper physiological range have been
bserved during the use of CPB until several hours post-
peratively (74). The detrimental effect of CPB on red cell
estruction is accentuated by prolongation of CPB time
75,76). Thus, the longer the duration of CPB, the more
emolysis should occur and the more free hemoglobin is

ikely generated. This may be of importance to the current
linical situation, in which complex surgery of the aortic
rch and aortic valve is performed and an increasing number
f cardiac surgical centers have implemented time-
onsuming arterial coronary revascularization, aiming to
mprove long-term results. Interestingly, there is strong
vidence that a longer duration of CPB is independently
ssociated with an increased likelihood of and more severe
KI (77,78). In addition, the use of CPB appears to have a

lose relation to hemolysis-induced gallstone formation
fter open cardiac surgery (79).

ree Hemoglobin and Iron Release

PB exposes blood to nonphysiological surfaces and shear
orces that lead to mechanical destruction of red blood cells
ith release of free hemoglobin into the circulation (80).
ree hemoglobin combines with haptoglobin to form a
omplex, which is carried to the liver, bypassing the kidney,
nd is metabolized (81).

In the presence of oxidants such as hydrogen peroxide
nd superoxide, free iron is released from heme molecules
nto the circulation (82). Heme contains redox-active iron,
hich is able to participate in organic and inorganic oxygen

adical reactions, such as stimulating lipid peroxidation and
atalyzing the formation of damaging hydroxyl radicals,
ith subsequent tissue damage (83). In 1 study, labile iron
as released from the injured heart and was a prognostic

iomarker of vascular injury (84). Therefore, the main s
ource of labile iron release during syndromes of ischemia-
eperfusion should be recognized.

eme Handling

he cellular content of heme, derived either from the
elivery of filtered heme proteins such as hemoglobin and
yoglobin or from the breakdown of ubiquitous intracellu-

ar heme proteins, is regulated via the heme oxygenase
nzyme system. Heme oxygenases catalyze the rate-limiting
tep in heme degradation, resulting in the formation of iron,
arbon monoxide, and biliverdin, which is subsequently
onverted to bilirubin by biliverdin reductase. Recent atten-
ion has focused on the biological effects of products of this
nzymatic reaction, which have important antioxidant, anti-
nflammatory, and cytoprotective functions (85,86). The
tress-response protein heme oxygenase-1 plays an essential
ole in the prevention of renal injury and has been involved
n many clinically relevant disease states, including AKI, as
ell as others. The beneficial role of heme oxygenase-1 has
een implicated in protection from experimental ischemia-
eperfusion injury and inflammation or immune dysfunc-
ion, and heme oxygenase-1 thus has emerged as a key
arget molecule with therapeutic implications (87).

oxicicity of Heme-Carrying
nd Iron-Carrying Pigments

emoglobin has a heme protein chemical core structure. At
he center of the heme group is the iron metal ion.

emoglobin consists of 4 protein chains and 4 heme
roups. Given the ability of heme molecules to release free
ron, which can act as nephrotoxin, one can assume similar
athogenetic mechanisms in the development of hemoglo-
inuric and myoglobinuric AKI (68,70).
The association between hemoglobinuria and the devel-

pment of AKI has been acknowledged in past and current
linical research (15,16,68,71,88 –90). Hemoglobin-
nduced AKI may be a clinically relevant cause for CPB-
ssociated renal injury given a clinical study convincingly
inking hemolysis and hemoglobinuria with renal injury
73). It is further conceivable that excess use of red blood
ell transfusion is associated with increased incidence of
KI and mortality (91) because of increased iron toxicity.
herefore, it is possible that CPB-induced AKI may be at

east in part a renal sideropathy with free iron as the central
oxic element.

abile Iron and Tubulotoxicity

oorly liganded iron has the potential (82,92) to catalyze the
aber-Weiss and Fenton reactions (Fig. 4), whereby super-

xide radical and hydrogen peroxide yield hydroxyl radical
88). It is known that an acid environment typical of tubular
rine enhances the formation of reactive hydroxyl radicals,
s the Haber-Weiss reaction is pH dependent with a right

hift when pH decreases. There is little argument that
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ydroxyl radicals are injurious in a wide variety of settings
88,93).

In animal studies, the infusion of free hemoglobin and its
onversion to methemoglobin induce renal sideropathy and
ause AKI (68,71). Aciduric conditions facilitate this con-
ersion. Tubular obstruction may allow greater time for
ndocytotic uptake of free hemoglobin into proximal tubu-
ar cells, which is associated with proximal tubular cell
ecrosis (71). The infusion of hemoglobin under alkalinuric
onditions causes virtually no renal injury, and urine alka-
inization attenuates renal failure in animal model (71,94).

Physiologically, recycled and absorbed iron is delivered to
he main iron-transporting protein in blood, transferrin.
ransferrin binds free iron and minimizes its potential

oxicity. However, in some cases, the release of free iron can
xceed the iron-binding capacity of transferrin. Also, free
erum hemoglobin is able to scavenge endothelium-derived
itric oxide, leading to vasoconstriction, decreased blood
ow, platelet activation, increased endothelin-1 expression,
nd AKI (95). Some free hemoglobin will also pass through
he glomerulus, will appear in urine, will release free iron
which is involved in the generation of reactive oxygen
pecies), and may cause the occlusion of renal tubules with
emoglobin casts and necrosis of tubular cells (81,96). At
his point, all iron-binding antioxidant capacity is lost, and
he serum displays pro-oxidant features (97). How often this
ccurs during CPB is not fully known, but it may be as high
s in 25% of cases (98,99). There is also evidence indicating
hat the generation of reactive oxygen species may contrib-
te to the initiation and maintenance of acute tubular
ecrosis (100). Oxidative stress has been shown to have a
ey role in the development of toxic and ischemic AKI. Iron
ree radicals are considered to be an important cause of renal
njury and capable of aggravating tubular damage. They may
e derived from intravascular hemolysis in the setting of
PB or released from injured mitochondria in the renal

ubule (101,102). Reperfusion injury during CPB may
xacerbate further the oxidant stress in the setting of free
irculating iron.

In a rat model of gentamicin-induced AKI, free radical
amage was mitigated with deferoxamine, an iron chelator
103). Furthermore, decreased serum levels of the iron chelator
erritin are associated with human AKI after CPB (69).

trategies Targeting Iron Toxicity
nd Renal Protection

he administration of haptoglobin has been shown to have
rophylactic and therapeutic effects on renal injury second-
ry to hemolysis (16,104,105). Also, iron chelation with
eferoxamine has been found to be protective against
igment nephropathy in some animal models (68,71,106).
n the basis of these data, clinical trials of deferoxamine are

lanned to prevent AKI (NCT00870883).
The role of NGAL, as a siderophore-binding agent, is
hus consistent with the widespread recognition that iron- a
nduced radical generation is intimately involved in a variety
f renal and other diseases (107,108). It is suggested that its
ain role is in sequestrating iron via a human siderophore to

top inappropriately liganded iron from producing damag-
ng oxygen radicals. Intriguingly, NGAL infusion simulta-
eous to renal injury prevents ischemic AKI (22).
The beneficial effect of higher tubular pH by urinary

lkalinization, achieved for example with the use of sodium
icarbonate infusion, was protective in a rat model of acute
enal failure (94). Urinary alkalinization with sodium bicar-
onate might protect from the pathophysiological mecha-
isms causing CPB-associated AKI. There is evidence from
double-blind randomized controlled trial that bicarbonate
ight attenuate CPB-associated AKI, potentially directly

ffecting iron-related toxicity, as indicated by a smaller
ncrease in urinary NGAL (109). At neutral or alkaline pH,
ree ferric ions precipitate as insoluble ferric hydroxide,
hich is excreted as inert complex in the urine. More

lkaline urine reduces the generation of injurious hydroxyl
adicals and lipid peroxidation (88,110,111). Bicarbonate
irectly scavenges hydroxyl ions and, as a not well adsorb-
ble anion compared with chloride, causes more rapid
olume excretion and thereby reduces the contact time
etween injurious radicals and renal tubules.
Once confirmed in large prospective studies, highly pre-

ictive renal biomarkers for CPB-related AKI should be
sed in randomized controlled trials of preventive and
herapeutic interventions in cardiorenal syndromes. It is
ossible that not a single biomarker but rather a combina-
ion or a ratio such as the NGAL/hepcidin ratio may further
mprove diagnostic ability. Finally, given the view that AKI

ay be a renal sideropathy, future research should be
irected toward identifying and characterizing human sid-
rophores and investigating if there are siderophore disor-
ers in cardiorenal syndromes. As suggested, “ironing out”
he pathogenesis of CPB-associated AKI (112) or the
onsequent use of off-pump techniques may be the logical
ext step for clinical trials in patients at risk.

onclusions

nimal models as well as human studies have contributed to
ur knowledge about novel renal biomarkers of AKI and
oint toward iron-mediated toxicity as a common mechanism
f AKI. The lines of evidence supporting this notion include
he known effect of CPB on red cells, the associated release of
eme and iron, knowledge of the effect of poorly liganded iron
n renal tubular cells, information from studies of novel renal
iomarkers, and evidence from recent trials targeting free
ron-mediated mechanisms of AKI. It is intriguing, in the
etting of CPB surgery, to further advance such views and
rame a new hypothesis on the role of iron toxicity and
iderophores in the pathogenesis of AKI. Finally, we would
ike to stress that while the pathogenetic role of radical oxygen
pecies in AKI has been previously considered, that of iron as

major contributor and mediator of CPB-associated AKI has
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ot been generally appreciated. Such appreciation has begun to
ield targeted interventions and may open the door to effective
reventive or therapeutic strategies.
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