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Abstract

We formulate honcommutative self-dull = 4 supersymmetric Yang—Mills theory iB = 2 + 2 dimensions. As in the
corresponding commutative case, this theory can serve as the possible master theory of all the noncommutative supersymmetric
integrable models in lower dimensions. As a by-product, noncommutative selfvda# supersymmetric Yang—Mills theory
is obtained inD = 2+ 2. We also perform a dimensional reduction of fie= 2 theory further intaVv =(2,2)in D =1+1, as
a basis for more general future applications. As a typical example, we show how noncommutative integrabl¥ eaattx)
supersymmetric KdV equations in = 1+ 1 arise from this theory, via the Yang—Mills gauge gro@tgn, R) or (21, R).
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1. Introduction

Noncommutative geometry has attracted attention nowadays, after the discovery of its importance in terms of
noncommutative gauge theories [1] associated with M-theory and/or superstring theory.

Based on a completely different motivation, there has been a long-standing conjecture [2] that all of the
integrable systems in lower dimensions, such as KdV equations, KP hierarchies, Liouville equations, or Toda
theories, are generated by four-dimensional (4D) self-dual Yang—Mills (SDYM) thé8fywhich serves as a
‘master theory’ of lower-dimensional integrable models. We can also ‘supersymmetrize’ this conjecture, i.e., all the
supersymmetric integrable models in lower dimensions are from self-dual maxisallg supersymmetric Yang—

Mills theory in 4D [4,5]. In fact, we have shown in Ref. [6] how supersymmetric self-dual Yang—Mills (SSBYM)
theories in 4D can really produce supersymmetric integrable systems in lower dimensions. Other supersymmetric
integrable models, such as supersymmetric KP systems are also shown to be generated from SSDYM in 4D [7].

E-mail addresses: hnishino@csulb.edu (H. Nishino), rajpoot@csulb.edu (S. Rajpoot).
1 The phrase ‘self-dual’ in this Letter can also include the case of ‘anti-self-dual’ theories, unless the difference is not essential.
2 We use the abbreviation SSDYM instead of SDSYM, in order to elucidate spacetime ‘supersymmetry’ in front.
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Motivated by these two different developments, there have been works combining noncommutative gauge
theories and integrable models [8]. Also a formulation of noncommutative SDYM has been established, with
dimensional reductions to chiral field model and Hitchin equations [9].

Considering these developments, it is a natural step to seek a possible honcommutative version of ‘master
theory’ generating all the integrable supersymmetric systems in lower dimensions. In this Letter, we take the first
step in such a direction, namely, we first establish a Lagrangian formulation for noncommmatideSSDYM
in D =2+ 2 dimensions. After showing how a truncation of this theory iNte= 2 works within 4D, and how
a subsequent dimensional reduction from 4D into 2D works, we will present how noncommutative Matrix
supersymmetric KdV (SKdV) equations in 2D [10,11] are generated out of such reduced system, which in turn is
a descendant theory from the original noncommutative 4 SSDYM as a typical example.

2. Noncommutative N =4 SSDYM in 4D

As usual in noncommutative gauge theories [1],stfproducts [12] are defined by

o0

Frg=rexp(i 9,6" 3,)g=.

n=0

T\
% GHIVL. .. GHnvn (8/L1 s aunf)(aul cee avng)v (2-1)
wheref*" is a ‘constant’ tensor.

The field content of noncommutativf = 4 SSDYM is the same as in the commutative case [4,6]:
(Apl, Guvl a4l pal, ST, T;1), whereA, ! is a real vector YM gauge field with the adjoint indicks/, ... =
1,2,...,g, G,/ is a second-rank tensor auxiliary field in the adjoint representatigh,is a Weyl spinor
with negative chirality with the indiced, B,... =1,..., 4 for the spinoriall-representation 080(3) x SO(3),
while ps! is a Weyl spinor auxiliary field with positive chirality;! and 7;/ are both scalars with the indices
i,j,...=1,2, 3in the3 of one of theSO(3)’s. The introduction of the auxiliary field&i** makes the Lagrangian
formulation possible for a self-dual field strength, which otherwise could have no kinetic term [4,5].

Our total action/ = [ d*x £ for N = 4 SSDYM in 4D has the Lagrangian

1 1 1 1
L= tl’|:+§G’” * (Fuy - EE;UJPO-F,OO') — E(DHS,)E + E(DN’Tl)E
—2i(p*xy"Dur) +i(hx ik, Sile) +i (1 * BilA, T,-]*)}, (2.2)
where[A,Bl,=A+B — B« A, andS; = S;'t;, T;! = T;'t; are generator-valued for the generatorsof a
gauge Lie groug which can be either compact or noncomp&Ebr a compact gauge group, all the generatprs

are anti-Hermitian, and all the fields such4g’ are Hermitian. However, for a noncompact group, we have the
Hermitian conjugations

)= —t'=—y1,, (A/LI)TEA/LI EUIJA/LJ’ (2.3)
for the Cartan—Killing metria); ; for the groupG [13] and its inverse)!’ defined by
p g—p

. — N ——
tr(ryty) = —cnry = —cdiag++--+,——---=) (c>0), nn’*=6F, (2.4)

3 We need to consider some noncompact groups, su€i.as R) for practical embedding of integrable models.
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whereg is the dimension of the gauge group, whilés the number of anti-Hermitian generators (in the compact
directions). Accordingly, we have the anti-hermiticity

(A/L)T = (A/LI)T(TI)T = (nIJA/LJ)(_nIKTK) = _(UJIUIK)A/LJTK = _A/LITI =—Ay, (2.5)

for the generator-valued potential, = AM’r,. Similarly, S;r = -3, Tt = —T;, and [A, B]I = —[A, B], for

L
arbitrary generator-valued fields= A’ t; =y’ A;t; andB = B t1; = n!’/ B;t;, whereAT = —A andBT = —B.
For a gauge group other thdh(N), we have to regard all the fields and group transformation parameters to
be depending o#*’ a la Seiberg—Witten map [1,14]as will be discussed shortly. We also use the universal
n

——
notation such agl” = A x--- x A, with appropriate metric tensor multiplied for contracted dummy indices. The
field strengthF is defined by

Fon=09,A,—0,A, +[A, Al (2.6)
and the covariant derivativ@,, is defined by

Dyi=0,+[Ay, Ay, Dyp=0,p+[Ay, pls,

D;LS[ Ea/},Si +[A;u Silx, D/J,Ti EauTi +[A;L, Til.. (2.7)
The matricesy;, 8; satisfy theSO(3) x SO(3) algebra and its corresponding Clifford algebra:

{ai, o} =+28;51, {Bi, Bj} =+25;1, [, o0j] = +2i€jjrag, [Bi, Bj1=+2i€ijiPr.

(@i)ap = —(i)Ba, (Bi)ap=—(Bi)Ba:

1 1
(@) ap =+=€eas“ (@b, (Bas =—=€eas“P(Bi)cp. (2.8)

2 2
Our action/ is invariant under supersymmetry

SoA = —i(€yuh) (ysh = —A, ¥5p =+p, y5€+ = E€x),
. i i,
80G v = +2i(€yuDvipB) + E(eai Ylp, Sili) + E(eﬂimu[p, Til),
1 v 1 © 1 "
dop = 27 €+Gpy — S%Y e-D,S; — Eﬂn/ e-D,T;
[ ijk [ ijk 1
+ Y aier[S;, Skl — 7€ Bie+T;, Trls — Eajﬂkf-&-[sj» Ti s,
1 ) 1 " 1 u
doh = i e_Fyuy — 2%Y €+Dy S + 5,31‘)/ ey D, T;,
808 =+i(ea;ip) +i(ea;d), SoT; =+i(eBip) —i(eBiM). (2.9
The complete set of field equations in our system is

Fuy = +%€w}po Foo, (2.10a)
DG = 3 .G 42 P~ [5. D451, + [, 047, =0 (2100
Du*(DILS[)+l.(Ol,')AB{)\,aA,)\.aB}*iO, (2.10c)
Dy x (D"T;) —i(Bi)ap{A" A, hap}, =0, (2.10d)

4 In this Letter, we omit the standatet-symbols for specifying the#" and Ay -dependence [1,14].
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iy" Dy =0, (2.10e)
2iy" Dyp —iailri, Sile —ifili, Tile =0, (2.10f)

where= stands for a field equation. Eq. (2.10a) is nothing but the self-dualit},of accompanied by other
superpartner field equations f&f = 4 supersymmetry. For deriving these field equation, we vary first the
Lagrangian based on relationships, such as

SF/LV = D/L((SAV) - DV((SA/L)’ S(D/Lsi) = D/L((SSI') + [(6A/L)v Si]*v (2-11)

for arbitrary variations of these fields. These forms are valid, even for noncommutative case. Using these combined
with the identities, such as

/d4x [A, B}, =0, fd4x [A,B}**szd4xA*[B,C}*,

/d4x tr(Ax D, B) = —/d4x tr[(D.A) * B], (2.12)

we can get the field equations above. Hete B}, = A x B — (—1)A2 B » A with the indicesA and B are for the
respective Grassmann parities of the fieddand B.

The hermiticity of our Lagrangian (2.2) can be confirmed by the general ¢fleg)" = ¢ « 7T, and (2.12).
Note that our Lagrangian (2.2) has relatively simple structures, with no higher-order terms like quartic terms, when
expressed in terms of covariant derivatives and anti-Hermitian commutators. This simplifies the confirmation of its
hermiticity, which might be more difficult in some other supersymmetric theories such as supergravity.

We mention a subtlety related to the choice of our gauge gwyhich is not restricted to aty (N), thanks
to Seiberg-Witten maps [1], as clarified in [14]. Without Seiberg—Witten map, the major difficulty is that for a
general Lie group, the commutatfr’ z;, 8/ 7,1, contains not only the usual commutafey, z,] but also anti-
commutator{z;, t;}, as enveloping algebra. However, as shown in [14], any gauge grotgm be consistently
made noncommutative by the use of Seiberg—Witten map [1]. This is because Seiberg—Witten maps delete anti-
commutatorsyia field-dependent an@“’-dependent transformation parameters, making the algebra close within
commutators.

A typical question is whether the gauge algebra is closed consistency with Seiberg—Witten map allowing field-
dependent gauge parameters. To be more specific 26t/ r; be the parameter of the gauged grawpacting on
fields as

SGA/L = Duf = 3“5 + [A/Lv &ls,
8¢Guv =&, Guvls, dep = —Il§, pls, dch = —[§, Alx,
SGSi = _[é’ Si]*’ SG’Tl = _[é’ T‘i]*’ (213)

where all the fields and the paramejeare6”” and A, -dependent a la Seiberg—Witten map [1,14]:
=0 %9““{%“’), AQ) +0(6?), (2.14)

where £© is the gauge parameter in the commutative case. Now the question is the commutator between
supersymmetry and gauge transformations, e.gs,; bn

[80.861S; =8¢ (—[£. Sil.) — 8c[i(€atip) +i(Eaid)]
=—[£.iGaip) +iEaN)], —[(608). Si], +i(Eail€, pla) +i(€ail&, A1)
=—[(608). Si], = —IE. Sil. = 855:. (2.15)
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Thus the new effect df*¥ is the nonvanishing commutator from the supersymmetric variatigrvdiich is now

A, -dependent. Hence the original commutdi&y, ] results in a modified gauge transformatigm with the
new parametef = 80&. Needless to say, th#s; arises consistently in the closures on all other fields. This implies
that the closure of gauge algebra works, as long as we allow new modified gauge transformations.

3. Reduction from N =4 into N = 2 noncommutative SSDYM in 4D

Our noncommutativeV = 4 SSDYM which may well serve as the ‘master theory’ of all the loweér
supersymmetric noncommutative integrable theories. As a simple application of thi4 theory, we give here a
reduction (truncation) into noncommutative SSDYM with smaNe& 2 supersymmetry.

As is well known, reductions of this kind should also be consistent with the remaMia@® supersymmetry.
Our ansatze for such a reduction can be summarized by the set of constraints [6]:

G =0, p =0, (3.1a)
A1 A1
A A

(h4) = )é = 02 . (3.1b)
A4 0

S1=82=0, T1=T>=0, S3=—-T3=T, (3.1¢)
€1 €1

(ea) = Z =12 (3.1d)
€4 0

where = stands for constraints for our dimensional reduction. All of these fields carry the generators, e.g.,
S; = S;'7;, etc. Substituting these ansatze into the field equations (2.10), we can get the avigindlsystem

into the N = 2 field contenl(A,/, real, TT) wherex has only negative chiral components as in the commutative
case [6]. The complete set &f = 2 field equations

1
F;w = Eﬂwpa Fpa» (32a)
iy*Dyr =0, (3.2b)
Dy (D*T) — {29, xqa}, =0. (3.2¢)
In this section, the indice4, B, ... =1, 2 are for the2 of Sp(1), contracted by the metrig, 3, like A%4 % g4 =

194 % 1, Bepa. Needless to say, we still maintain the noncommutativity, suck,asdefined by (2.6).
Relevantly, theVv = 2 supersymmetry transformation rule for this system is

oA, = —i(EAyH)\A), (3.3a)
1 1

Soha = —Zy’”e_AFﬁ;) — E[(ag + ,33))/M€+]ADMT, (3.3b)

80T =—+(*14), (3.3¢)

F\}) is the self-dual part of this field strength.
The consistency of this system withi = 2 supersymmetry (3.3) can be easily confirmed by imposing these
constraints directly on the transformation rule (2.9), and study any inconsistencies or agreements with the rule
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(3.3) above. For example, the transformatiorGof, under supersymmetry must vanish:

2 o [ _
0= 3QG/L1) =42 (GV[/LDV]/O) + Eﬂﬁw([ﬂv o; il + [p, ,Bsz]*) = 0, (34)

upon the constraint (3.2a), as desired. These confirmations are rather ‘routine’ to be skipped in this section.

4, Dimensional reductioninto N = (2, 2) in 2D

We next establish a general dimensional reduction ofNhe (2, 2) system above into 2D, i.eD =1+ 1,
which may have more applications to noncommutative integrable models in the future. Our ansatze for such a
reduction are specified by the set of constraints parallel to the commutative case in [3,6]. First, we choose the
original 4D coordinates to be#) = (z, x, y, t) with the metric

ds® =+2(dz)(dx) + 2(dy)(d?). (4.1)

This leads to the constraints and the convenient re-naming of fields [3,6], as

Fu =0, Fy, =0, Fox = Fyy, (4.2a)

A=A, 20, (4.2b)

Ay =P, A. = B, (4.2¢c)
1 (- iXA)

A4 = — : , 4.2d

) V2 (VfA +ixa (4.2d)

where all the fields are generator-valued. Eq. (4.2a) satisfies the self-duality (3.2a), while (4.2b) is motivated by
the ‘pure gauge’ equatiofi,; = 0 in (4.2a). Eq. (4.2c) gives some nontrivial components in the field strength.
Substituting (4.2) into the field equations in (3.2) yield the complete set of noncommuYativ2 supersymmetric

field equations that are potentially generativig= (2, 2) integrable systems in 2D:

[P, B], =0, (4.3a)
P+ B =0, (4.3b)
VA= 1) (4.3¢c)
[P, xalx+[B. ¥al. =0, (4.3d)
[B, Tl +[P. Tl + [¥*, xal. =0, (4.3€)

where theprime’ anddot * denote respectively the derivativex andd/d:.
In a way parallel to the commutative case [6], this systemMas (2, 2) supersymmetry

80P =—v2(t44),  SoB=~2(¢c"xa),
SoVa=—CaP — AP + 20T, Soxa=maB+laB +2¢aT,
80T =—(7"xa) — (£*¥a), (4.4)

wherer; and ¢; are defined byna = (e, + €2,)/v2, ta = —i(e}, — €2 )/V2, iia = (e, + €2 )/V2,
ta=—i(el, —€2,)/V216].
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5. Embedding noncommutative matrix N = (1, 0) SKdV equationsin 2D

Even though the system (4.3) with = 2 supersymmetry (4.4) is much smaller than the orighiat 4 SSDYM
in 4D, this system is large enough to generate many noncommutative supersymmetric integrable models in 2D. As a
typical example of generating an integrable system, we give here an example of noncommutativd mattixl)
SKdV equations in 2D [11] as the noncommutative generalization [8] of matrix SKdV equations [10] which in turn
are the supersymmetric generalizations of matrix KdV equations [15] The noncommutative Matrifd, 0)
SKdV equations in 2D are given by

.. 3 3
Un = u)) + 3up xu, + 3ul, *u, + Eé,’l/*én — Efn *& =a, (5.1a)
. 3 3 3 3
En =8+ 5“'@ *&n + Sin *E + 55,2 * ity + 56 * i, =B, (5.1b)

whereprime anddot are respectively/dx andd/az, while the subscript denotes an arbitramy x n matrix. Thus
the fieldsu,, andé&, are respectively bosonic and fermionic n real matrix fields. They,, andpg, are defined by

3
an=u" 4+ 3u, *u, — E(Sn * & — & x &),

3
Bn EE;;/"'E(un*En + &0 *un). (5.2)

The equations in (5.1) are integrable [11], consistent with the presence of an infinite set of conserved quantities
and bicomplexes, and linked to reduced linear systems [16] embedded into SDYM [11]. Some known smaller
integrable systems in the past can be also re-obtained by certain truncations of (5.1). First, by setting the constant
6"¥ to zero, we get the matrix SKdV equations [10]. Second, by choosiagl, we get single-component
noncommutative SKdV equations [8,11]. Third, choosing 1 and setting*’ to zero, we get single-component
SKdV equations [17] Fourth, setting= 1 also with deletingt’s, we get noncommutative KdV equations [18]

Fifth, keeping general while setting, and6*" to zero, we get matrix KdV equations [15].

The noncommutative SKdV equations (5.1) are covariant uider(1, 0) supersymmetry [10]

Souy = €&, 80&n = €up. (5.3)

Our objective here is to generate (5.1) out of the equations (4.3). As a guiding principle, we use the results in
[10] for embedding (5.1) into nonsupersymmetric SDYM in 4D, based on super@bagn). The difference,
however, is that our system is based on SSDYM in 4D, so that the original gauge group3k (usR) instead of

the supergrou@L (n|n). Therefore, we expect the fermionic components in the supergroup case in [10] to be absent
now. We have thus found the following anséatze are consistent with our field equations (4.3) and supersymmetry
transformation rule (4.4):

P =0, B = —6p,, (5.4a)
Y1=0u,,  x1=0a, (5.4b)
Y2 = x2=0, (5.4c)

.1
T _—_pg,. 5.4d
7 &n (5.4d)

As in [10], we introduced an anti-commuting Grassmann constaatisfying
02=0, 6=+460, 0& =—&,0, (5.5)

where thebarred 6 is the complex conjugation @f. Even though thi® looks ‘artificial’ or ad hoc at first glance,
such a Grassmann constant has been generally used in the corresponding commutative cases in the past [3,10,11
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and it is also analogous to a fermionic coordinate for superfields. The complex conjugation&l be consistent
with the reality of fields. Relevantly, we need an additional lemma

(AxB)=(-1)*8B«A, (5.6)

for two fieldsA and B. For example, we see thé, x &/ — &/ x&,) =&, x & — &, x &, and(e&,) = +(€&,), etc.
The reality of all the fields are also consistent within the Lie algebr@laf:, R). Since we have formulated our
starting theory in 4D, as compatible with any noncompact (as well as compact) gauge group, the choice of the
noncompact grouL (n, R) poses no problem here.

As can be easily seen, the substitution of (5.4) into (4.3) yields the noncommutative matrix SKdV equations
(5.1). First, all the commutator equations in (4.3) are satisfied by the nilpoteney0. Next (4.3b) and (4.3c)
yield respectively (5.1a) and (5.1b).

For our embedding to be consistent with supersymmetry (5.3), we need to have the identifications

1
NZ)
For example, we have to confirm the vanishing of the all the variations of (5.4), sugh(#s — Ou,,) Z0and

8oV Z 0 under (4.4), (5.3) and (5.7). Despite the simple nature of our embedding (5.4), the choice of parameters
in (5.7) is quite nontrivial for the former to be consistent with supersymmetry.

We can try a similar but different embedding now into the gauge g&uig», R), instead ofGL (n, R), under
the ansatze:

~ % ~ % 1 *

rE e, 220, LEe  LE——e  EiZo0 (5.7)

« ( Oy on> ( Ou on> ( On 0n>
P = , B = ) T = )
(%n O ~0pn Oy 500 O
(O O (00 On XX
V1= (9un On> . o= (Qan On> , V2= x2=0. (5.8)

As is desired, all of thesen2x 2n matrices are traceless and real. In a way similar to the previous embedding, we
can confirm that (5.8) yields (5.1) under (4.3), as desired.

6. Concluding remarks

In this Letter, we have presented the formulation of noncommutative4 SSDYM in D = 2 + 2 for the first
time. This may well serve as the ‘master theory’ of all the lower-dimensional noncommutative supersymmetric
integrable models, as the corresponding commutative case [4—6] can do.

It sometimes happens that a difficulty arises in the noncommutative generalization of a supersymmetric theory.
This is because the non-trivial orderings of fields in the Lagrangian pose some problem in the action invariance.
A typical problem arises in the attempt of the non-commutative generalization of supergravity in 4D, caused by
the ordering between the-dependent paramete(x) of supersymmetry and other fields. Such a difficulty might
happen even for global supersymmetry, when dealing with higher-order terms in fields. Fortunately, in our SSDYM
theory in 4D did not suffer from such a difficulty, thanks to the simple structure of the Lagrangian (2.2) which is
close enough to ‘linear’ structures. In particular, we have also seen that the closures of supersymmetry and gauge
group algebra are all made consistent a la Seiberg—Witten maps [1,4].

We have also shown how a truncation of tiNs= 4 theory intoN = 2 works within 4D, which may be of
some use for more practical applications in the future. Subsequently, we have also performed a relatively general

5 We use only complex conjugation instead of Hermitian conjugation in this section, due to the ‘real’ property of theGirou) and
L (2n, R).
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dimensional reduction scheme ind = (2, 2) in 2D as a basis for future applications. As a typical example,
we have shown how noncommutative integrable maifix (1, 0) SKdV equations can be generated out of this
reduced theory in 2D.

Note that the nhoncommutative integrable matkix= (1, 0) SKdV equations (5.1) are so large that our result
is automatically valid for any other smaller integrable systems. For example, our embeddings or dimensional
reductions can cover a wide range of systems such as commutative matrix SKdV equations [10], commutative
single-component SKdV equations [17], noncommutative KdV equations [18], or non-supersymmetric matrix KdV
equations [15], after appropriate truncation®6f, n and/or &,’s.

Compared with the conventional approaches [3,10,11] starting with hon-supersymmetric SDYM equations in
4D with supergroups [3,10,11], our method of generating noncommutative integrable matrix SKdV looks much
simpler, as seen in the last section. This also suggests it is more natural to staN with SSDYM theory
with spacetime supersymmetries built-in, than nonsupersymmetric SDYM theories [3,10,11]. As has been also
mentioned in the Introduction, our philosophy is that if a lower-dimensional integrable system has supersymmetry,
then it is more natural to consider spacetime supersymmetry in the starting SDYM in 4D, such as noncommutative
maximally N = 4 SSDYM in 4D [4,5], as we have accomplished in this Letter.

The results in this Letter indicate many more applications in the future. Because our results show not only

that such maximallyv = 4 SSDYM is possible inD = 2 + 2, but also that it has more potential applications as
noncommutative integrable systems in lower dimensions. The reason is that higher-dimensional ‘master theory’
such as noncommutativé = 4 SSDYM in 4D theory can provide a good guiding principle to control the system.
As a matter of fact, we can think of mimicking the commutative cases for embedding other supersymmetric
integrable models irD < 3, such as supersymmetric KP systems, topological theories, supersymmetric Chern—
Simons theory, Wess—Zumino—Novikov—Witten models, super-Lax equations [7], and the like, generalized to
noncommutative cases [8,11,18].
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