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l. Introduction. The first systematic treatment of separation 
axioms is due to URYSOHN [7]. A more detailed discussion was given by 
FREUDENTHAL and VAN EsT [2] in 1951. Both of these investigations are 
concerned with separation axioms stronger than T1. The only separation 
axiom between To and T1 known heretofore was introduced by J. W. T. 
YouNGS [9] who encountered it in the study of locally connected spaces. 
Another axiom was suggested to us by an observation of C. T. YANG 
(see [4, p. 56]) that the derived set of every set is closed iff the derived 
set of every point is closed. 

After introducing some tools which will play an important role through­
out the article, we use these to give a new proof of a result of M. H. 
STONE [6] which states that by identifying "undistinguishable" points 
in a topological space every space can be made into a To-space. Next, we 
introduce a number of new separation axioms, giving equivalent forms 
for some, analyse their inclusion relations, and observe that they all can 
be described in terms of the behavior of derived sets of points. In the 
remaining sections some applications are considered. These include 
consideration of homogeneity, normality, behavior under a strengthening 
of the topology, and relation to discrete spaces of Alexandroff. 

We employ the terminology and notation used by KELLEY [4]. By a 
degenerate set we shall mean a set which contains at most one point. 

2. Preliminary considerations. To characterize separation ax­
ioms between To and T1 it is convenient to take as a point of departure 
the concept of weak separation [8, p. 78]. A set A is said to be weakly 
separated from B (notation: A f- B) iff there exists an open set G ::> A 
such that G fl B=O. Instead of [x] f- [y] we shall simply write x f- y 
and say that x can be weakly separated from y. It is then immediately 
clear that: 
The closure of a point x (or more precisely of the set [x]), which will be 

denoted by [x], consists of those and only those points y of the space for 
which y 'rf- x. The derived set of a point, denoted by [ x ]', consists of all 
y =I= x for which y f-1- x. 

It is of interest also to characterize those sets for which, for a fixed x, 
x f-1- y. We are thus led to the following definitions. 
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Definition 2.1. The set of all y for which x f-1- y is called the 
kernel of x and is denoted by [~]. The set [~] "' [x] is called the shell of x 
and is denoted by [x]. 

It is well known that 

(2.1) [x] = n [0 : 0 closed, x E 0]. 

An analogous result holds for [~]. 

(2.2) [~]=n [G: G open, x EG]. 

Before proceeding to give some of the basic properties of point closures, 
derived sets, kernels, and shells we make one more set of definitions. 

Definition 2.2. By Nn we shall mean the set of all x in a topological 
space (x, ff) for which [ x ]' = 0. Similarly N s is the set of all x for which 
[x] = 0. Finally, we define 

(x)= [x] n [~]. 

The following basic relations hold in arbitrary topological spaces. 

Theorem 2.1. Let x andy be elements of a topological space (X, ff) 
then 
(a) y E [x] implies [y] C [x], 
(b) y E [~] implies [Y] C [~], 
(c) y E (~] iff X E (Y], 
(d) y E (X] iff X E [y]', 
(e) for every x EX [x] is degenerate iff for all x, y EX, x=1=y [x]' n [y]' = 0, 
(f) y E (x) implies (y) = (x), 
(g) for all x, y EX either (x) n (y)=O or (x)=(y). 

Proof: Assertions (a) and (b) follow from formulas (2.1) and (2.2), 
respectively. Statement (c) is an immediate consequence of the definition 
of [x] and [~]. (d) is derived from (c) if one observes that y E [x] implies 
y=l=x. (e) is established by observing that z E [x]' n [y]' is true iff x, 
y E [i]. To prove (f) we note that y E [x] implies [y] C [x] and x E (Y]. 
The last relation yields [~] C [:if]. Similarly, y E [~] leads to (Y] C [x] 
and [x] C [y]. Putting these results together we obtain [x]= [y] and 
(~] = [y] from which (f) follows. Statement (g) is an immediate consequence 
of (f). 

In terms of the sets (x) we can now prove the result of Stone mentioned 
earlier. We shall call two topological spaces (X, ff) and (Y, 01/) lattice 
equivalent iff a one-to-one order preserving map can be established 
between the elements of .r and those of 011. 

Theorem 2. 2. Let (X, ff) be an arbitrary topological space. Let R 
be the equivalence relation on X x X defined by (x, y) E R, iff y E (x). Then 
X I R with the quotient topology .r R is a To-space, and the two spaces are 
lt.rllice equivalent. 
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Proof: Recall that the quotient topology .r R of X/ R consists of 
those and only those collections GR of sets (x) which satisfy 

U [(x): (x) E GR]=G E .r. 
To show that the two topologies .r and .r R are lattice equivalent we define 

qJ(G)= [(x): x E G], 

where the (x) are considered as elements of X I R, and qJ(G) is thus a 
subset of X f R. qJ(G) E .r R, for x E G implies [~] C G, which in turn implies 
(x) CG. So U [(x): x EG]=G, 

here the (x) are considered to be subsets of X. qJ(G) is one-to-one, because 
in view of the above relation ~P( G1) = ~P( G2) implies G1 = G2. ~P( G) is onto .r R· 
Let GREffR then U[(x):(x)EGR]=GEff and hence GR=qJ(G). 
Clearly qJ is order preserving. 

Let (x)#-(y) be two elements of X IR. If (x) H- (y) then every 
open set GR which contains (x) also contains (y). In view of the discussion 
given above this means that every open set G of .r which contains x also 
contains y. Hence y E [~]. Similarly the assumption (y) H- (x) leads to 
the conclusion x E [y], or equivalently y E [x]. It follows that y E (x) 
.Jhich is a contradiction. Hence either (x) f- (y) or (y) f- (x) ~ust 
hold and (X I R, .r R) is a To-space. 

For our later work it will be helpful to have various equivalent forms 
for the To and T1 separation axioms. 

Theorem 2. 3. A space (X, 9"") is a T 0-space iff one of the following 
conditions holds : 
(a) for arbitrary x, y EX, x#-y either x f- y or y f- x, 
(b) y E [x] implies X¢ [jl], 
(b)' y E [x]' implies [Y] C [x]', 
(c) y E [~] implies x ¢ (Y], 
(c)' y E [x] implies [Y] c [x], 
(d) ([x] n [y]) u ([y] n [x]) is degenerate (YouNGS [9]), 
(e) for every x EX [x]' is the union of closed sets, 
(f) for every x EX [x]' n [x]=O, 
(g) for every x EX (x)= [x]. 

Proof: It is easily seen that each one of these conditions, except (e), 
is a simple restatement of condition (a) in a different terminology. To 
prove statement (e) we observe that for every z E [x]' in a To-space there 
must exist an open set G containing x and not containing z. But then 
z E ""G which is closed and does not contain x. Also z E (~) n [x] which 
is a closed set contained in [x]'. If condition (e) is satisfied then every 
z E [ x ]' is contained in some closed set 0 not containing x, but then ""0 
is an open set containing x and not z. If z ¢ [x]' and z#-x then z E ""[x] 
which is an open set not containing x. It follows that the space is To. · 
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Theorem 2.4. A space (X, .r) is a T1-space iff one of the following 
conditions holds : 
(a) for arbitrary x, y EX, x=!=y, 
(b) for every x EX [x]= [x], 
(b') for every x EX [x]' = 0, 
(c) for every x EX [x] = [x], 
(c)' for every x EX [x]=O, 
(d) for arbitrary x, y EX, x=!=y 
(e) for arbitrary x, y EX, x=!=y 
(f) ND=X, 
(g) Ns=X. 

X f- y, 

[x] n [;y]=O, 
[x] n [Y]=O, 

Proof: Most of these statements are clearly equivalent tostatement(a). 
To clarify those conditions stated in terms of kernels or shells we might 
point out that by Theorem 2.1 (c) and (d) [x] can contain points other 
than x iff there exists a [Y] which contains x=/=y, and that [x]' is non­
empty iff there exists a non-empty [y]. That conditions (d) and (e) are 
satisfied in a T1-space is clear. That they ensure that the space is T1 
follows from the fact that the conditions imply, respectively, x ¢ [Y] 
and y ¢ [x], each of which means x f- y. 

3. New separation axioms. The first group of new axioms which 
we are about to introduce is based on the observation that in a To-space 
[x]' is the union of closed sets for every x (Theorem 2.3 (e)), while in a 
T1-space [ x ]' = 0, and hence closed, for all x. Also in a T1-space [ x ]' n [y ]' = 0 
for x=/=y. This suggests introducing three new axioms as follows. 

Definition 3 .l. A space (X, .r) will be called a TuD-space iff for 
every x EX 

[ x ]' is the union of disjoint closed sets. 

The space will be called a T D-space 1) iff for every x E X 

[ x ]' is a closed set. 

The space will be called a T DD-space iff it is a T D-space and iff in addition 
for all x, y EX, x=/=y. 

[x]' n [y]'=O. 

It is clear that the following inclusion relations hold among these spaces 

T1 CTDD CTD CTuD CTo. 

Here, and later, the notation T"' C T f1 is understood to mean that every 
T .. -space is a Tp-space. 

For the separation axiom T D there is an interesting equivalent formulation. 

Theorem 3.1. A space (X, .r) is a TD-space iff for every x EX 
there exists an open set G and a closed set C in the space such that 

[x]=G n C. 
1) The combination of axioms b), 10, 2°, 50 mentioned by FRECHET in an 

article in Bull. des Sc. Math. 42, p. 156 (1918) can be proved to be equivalent 
to those of a TD-space. 
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Proof: If the space is TD it suffices to set G=,....,[x]' and O=[x]. 
If the conditions of the theorem are satisfied then one can replace 0 in 
[x]=G n 0 by [x]. Hence 

[x]'=[x],...., [x]= [x] ,....,Q n [x]=[x] n (X ,....,Q). 

Thus [ x ]' is the intersection of two closed sets, and hence is closed. 
The two axioms in the second group arise from a consideration of weak 

separation of finite sets. It is easily seen that, given two finite sets F1 
and Fz, with F1 n Fz=O, in a T1-space then F1 f- Fz and Fz f- F1. 

Definition 3.2. A space (X, .9'"') will be called a Trspace iff, given 
any point x and any finite set Fin X, such that x ¢: F, then either x f- F 
or F f- x. A space will be called a TFrspace iff, given two arbitrary 
finite sets F1 and Fz in X, with F1 n Fz=O, then either F1 f- Fz or 
Fz f- F1. 

Equivalent forms for the two axioms are given in the following theorems. 

Theorem 3.2. A space (X, .9'"') is a TF-space iff either 
(a) for every x and every set F consisting of at most two points only x f- F 
or F f- x holds 
or 
(b) for every x EX, y E [x]' implies [y]'=O. 

Proof: We first show that (a) implies (b). For a given x let y E [x], 
and z E [x]' and denote [x, z] by F. Then y f- F is impossible. Hence 
F f- y must hold. It follows that for every y E [x]' there exists a closed 
set Oy,z which contains y and does not contain x and z. Hence 

[y]=n [Oy,z, z E [x]', z#y] n [x] ::> [y], 

and y E [x]' implies [x]' = 0. If [x]' contains only one element y then 
[ x] f- [y] holds and hence [y] C [ x ]', that is [y ]' = 0. 

Now assume that (b) holds and consider x and a finite set 

where Yl to Yk are assumed to be in [x]' and Z1 to Zm in ,....,[x]. By (b) x 
can be in the closure of another point only if [x]' = 0. Hence, unless the 
set of y is empty, x cannot be in the closure of a Zk, so that 

k m 
( U '""' [yn]) U ( U '""' [Z;]) 
n=l 

is an open set (the sets [Yn)= Ly;] by (b)) containing x and not F. If 
there are no y then ,....,[x] is an open set containing F and not x. To complete 
the proof of the theorem it suffices to point out that the original definition 
of a Trspace clearly implies condition (a). 

By analogous arguments one establishes the result below. 
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Theorem 3.3. A space (X, Y) is a TFF space iff one of the following 
requirements is satisfied. 
(a) Given any two sets F 1 and F2, in X which both consist of at most two 
points and which are such that F1 n F 2 = 0 then either F1 1- F2 or F 2 1- F1. 
(b) either of the following cases holds: 

(i) [x]' = 0 for all but at most one x EX, 
(ii) [x]=O for all but at most one x EX. 

Condition (b) of Theorem 3.2 can be rephrased as follows: if x has a 
non empty derived set it is not in the derived set of another point, which 
is another way of saying that its shell is empty. This in turn is equivalent 
to the statement 

NsUNn=X. 

Assume that X is a TF space and that y E [x]. Then x E [y]'. If[?}] is not 
empty, then y is in the derived set of some point, but then [y]' is empty, 
which is a contradiction. Hence y E [x] implies [!/] = 0. In the above 
argument one can replace shell by derived set and derived set by shell 
and thus conclude that if y E [x] implies [ij] = 0 we have a Tp-space. 

The condition [ x ]' n [y] = 0 for all xi= y also characterizes a T p-space. 
For, if z E [x]' n [y] in a Tp-space then [z]' = 0 so that z cannot be in 
the shell of another point. This contradicts the assumption z E [y]. Hence 
in a TF [x]' n [y]=O. If this condition holds then any point which is 
in the derived set of one point cannot be in the shell of another, that is 
the first point must have an empty derived set and the space is a Tp-space. 
We have now established the result below. 

Theorem 3.4. A space +X, Y) is a Tp-space iff one of the conditions: 
(a) Ns u Nn=X, 
(a)' for all x, y EX [£:] n [y] is degenerate or [x] n [y] is degenerate 
(b) for every x EX y E [x] implie!_ [y]=O, 
(c) for all x, y EX, xi=y [x]' n [y]=O, 

holds. 

Condition (b) of Theorem 3.3 is easily seen to be equivalent to the 
requirement given below. 

Theorem 3. 5. A space is a TFF -space iff either 

Ns=X "-'[a] or Nn=X"-'[b]. 

Finally, the inclusion relation 

T1 CTFF CTp CTo 
is self evident. 

A third group of separation axioms is formed by Youngs' axiom and 
a slightly stronger version. 

Definition 3. 3. A space (X, Y) is called a Ty-space iff for all 
x, y EX, xi=y [x] n [y] is degenerate. A space is called a Ty8 -space iff 
for all x, y EX, xi=y, [x] n [Y] is either 0 or [x] or [y]. 
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Equivalent formulations of these two axioms are stated in the next 
two theorems. 

Theorem 3. 6. A space (X, .9"") is a Ty-space iff one of the following 
conditions is satisfied. 
(a) The space is TF and for all x, y EX, x=t=y [x]' n [y]' is degenerate, 
(b) the space is TF and for all x,yEX,x=t=y [xln [y] is degenerate, 
(c) for all x, y EX, x=t=y [~] n (Y] is degenerate. 

Proof: Let y E [x] in a Ty-space then [Y] n [x]= [y] so that [y]' =0. 
Hence every Ty-space (and also every Tys) is a Trspace. That [x]' (""\ [y]' 
is degenerate in a Ty-space is obvious. If condition (a) is satisfied then 
either [x]' n [y]'=O in which case the space is Ty since x andy cannot 
both be in [x] n [y]; or [x]' n [y]'=[z] then [x] n [Y]=[z]. Assume it 
also contained x then x E [y]' and hence (since the space is TF) [x]= [x] 
so that [x] n [Y] = [ x] which is a contradiction since z =1= x. This proves 
the equivalence of condition (a). 

We now turn to condition (c). If the space is Ty then the assumption 
z, wE [~] n [y] implies x, y E [z] n [w] which is a contradiction. Hence 
in a Ty-space condition (c) is satisfied. If (c) is satisfied one can turn 
around the argument above to conclude that the space is Ty. Finally one 
shows the equivalence of (b) and (c) by an argument analogous to the 
one used to establish (a). 

Theorem 3. 7. A space (X, .9"") is a Tys-space iff one of the following 
conditions holds : 
(a) the space is TF and for all x, y EX, x=t=y [x]' n [y]' = 0, 
(b) the derived sets of any two distinct points are separated, 
(c) the closure of the derived sets of any two distinct points are disjoint. 

Proof: That condition (a) is equivalent to the defining condition for 
a Ty8 -space is established by an argument very similar to the one given 
for condition (a) of Theorem 3.6. Now in a Tys-space either one of the 
points has an empty derived set or [x] n [Y]=O hence (b) and (c) are 
satisfied. Clearly (c) implies (b) so it suffices to prove that (b) implies Tys. 
If [x]' is closed ([x]') n [y]'=O implies [x]' n [y]=O or [y]. If it is [y] 
then [y] is closed and [x] n [y]= [y]. If [x]' n [Y]=O then [x] n [y]=O 
or [ x ]. If [ x ]' is not closed then its closure is [ x] so that we have [ x] n [y ]' = 0 
but then [x] n [Y] is at most [y] so that in each case the space is Tys. 

It is of interest to note that the axioms TF, TFF and Ty are self dual 
under the exchange "shell" for "derived set of point" and "kernel" for 
"point closure". That Tys does not have this property follows from the 
example below. 

Example 3.1. Let X be the set of real numbers. In addition to X 
and the null set let all [ x ], x =1= 0, and their unions be open. 

An analysis of the axioms introduced above shows that most of them 
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can be built up of certain basic requirements expressed in terms of the 
behaviour of derived sets and shells of points. These basic axioms are 
the following: 

0 for every x E X [ x ]' is the union of closed sets, 
Ll for every x EX [x]' is the union of disjoint closed sets, 
r for every X EX [x]' is closed, 
~ for every x E X [ x ]' consists of points y such [y ]' = 0, 
{3 for every x E X [ x ]' is degenerate, 
y for every x EX [x]' is the union of disjoint point closures, . 
{) for every x E X [ x ]' is a point closure, 
e for all x, y EX, x=Fy [x]' n [y]' is degenerate. 

For the last five conditions dual statements in terms of kernels and shells 
can also be made, they are listed below. For the first three statements 
no meaningful dual statements can be given since in general the kernel 
of a point is neither open nor closed. 

~' for every x EX [X] consists of points y such that IJj] = 0, 
{3' for every x E X [x] is degenerate, 
y' for every x E X [x] is the union of disjoint kernels, 
{)' for every x E X [x] is a kernel, 
e' for all x, y EX, x=Fy [x] n IJj] is degenerate. 

Recall (Theorem 2.1 (e)) that "[x] is degenerate for every x EX" is 
equivalent to "for all x, y EX, x=Fy [x]' n [y]'=O". Similarly "[x]' is 
degenerate" is equivalent to "[x] n [y] = 0". If by T( ) we denote a 
space that satisfies the requirements listed in the parentheses, we arrive 
at the following relations. 

Tn =T(F), 
TF =T(~)=T(~)'. 
Ty =T(~. e)=T(~', e'), 
Tun=T(LJ), 
Tnn =T(r, {3'), 
Tys =T(~, {3'). 

TFF cannot be stated solely in terms of these conditions. Other combina­
tions of these basic conditions lead to further new separation axioms. _ 
Those involving only {3, {3', e, e' may not be T0• All the remaining combina­
tions are clearly between To and T1. Note that different combinations 
do not always lead to different axioms. 

The conditions y and {) and their duals, which we had not encountered 
before, were included, because in the spaces satisfying them the partial 
ordering (see [8, p. 83]) that can be defined by x C y iff x E [y]' has a 
..-ery interesting discrete structure. The axioms y and y' can also be 
thought of as weaker forms of T F· 

3 Series A 
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4. Ordering of the axioms. On the basis of the results of the 
preceding section the following inclusion relations between the separation 
axioms we have discussed are evident. 

To :J Tun :J Tn :J Tnn :J Tt, 

Tun :J TF :J Ty :J TFF :J T1, 

Ty :J Tys :J Tnn :J T1. 

We might also mention the following additional inclusion relations. 

Tun :J T(y) :J TF, 

T(y) :J T( o), 
Tn :J T(o) :J T(ex., {3). 

Next we construct a number of examples to show that, at least our main 
axioms, are distinct. In all examples X is the set of real numbers and it 
is understood that the null set and the set X are closed. 

Example 4.1. Let the closed sets be all [x] for x#O and all finite 
unions of these sets. 

This space is Tun, TF, Ty, and Tys but not Tn (and not Tnn). Hence · 
Tun and Tn are distinct as are Tys and Tnn. 

Example 4.2. Let every set containing x=O as an element be closed .. 
This is a TFF, Tn, and Ty-space but not a Tys space. We thus see that. 

Ty is distinct from Tys and that TFF is distinct from Tys. 

Example 4.3. Let the sets [x, -x] and [x], for x>O, as well as: 
their finite unions be closed. 

This space is Tnn, Ty, Tys but not Tpp. It follows that TFF is distinct 
from Tnn and Ty. 

Example 4.4. Let the sets Oa and Da, defined respectively by 
x >a and x >a, be closed. 

This is an example of a space which is Tun and Tn but not TF and Tnn. 
Thus TF is distinct from Tun and Tn and Tn is distinct from Tnn. 

Example 4. 5. Let only the sets Oa of the previous example be closed .. 
This is a T 0-space which is not a Tun-space. 

Example 4.6. Let A be the set of all reals which are not integers. 
Let the closed sets of the space be all finite subsets of A and all sets of 
the form A U N, where N is a finite set of integers. 

This space is TF and Tn but not Ty. 
Since none of the examples given are T 1-spaces, T 1 is distinct from all 

of them. The following chart shows the ordering relation between our 
main separation axioms. 

T1----------~ Tnn 

1 ~ 

Tys 
~ 

-----+ Tn 

1 
T FF ----------~ Ty ----+ T F ----+ Tun ----+ To 
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We saw in Example 4.1 that there exist Ty-spaces which are not Tn­
spaces. Example 4.4 shows that there are also T n-spaces which are not 
TF and hence surely not Ty so that no inclusion relation can exist between 
Tn and Ty. In Example 4.2 we encountered a Tpp-space which is not a 
Tnn-space. In Example 4.3 we have a Tnn-space which is not a TFF· 
Hence no inclusion relation can exist between this pair of axioms. All 
other conceivable inclusion relations, other than the ones already 
established, are also excluded. It may also be of interest to note that 
Ty n Tn=!=-Tnn and that TFF n Tnn=!=-T1. This is shown in the examples 
given below. However, it is easily seen that Tys n Tn=Tnn. 

Example 4. 7. With A as defined in Example 4.6, let [x] be ciosed 
for all x E A, in addition let the sets n= 1/2 < x < n+lf2=Nn and Nn- [n] 
be closed for all integers n. Finally let all finite unions of sets of these 
types be closed. 

This space is Tn and Ty but not Tnn. 

Exam pIe 4. 8. Let all sets not containing x = 0 be closed. 
This space is TFF and Tnn but not T1. 
It is clear from these examples that another source of new separation 

axioms between To and T1 is provided by certain unions or intersections 
of axioms already defined. 

5. Further properties of T n-spaces. The theorem of YANG 

mentioned in the introduction can now be restated as follows. 

Theorem 5.1. A space (X,./) is a Tn-space iff for all sets A C X 
A' is closed. 

Proof: If every A' is closed then [xj' is closed for all x EX and 
the space is Tn. Now assume that the space is a Tn-space. Let x be a 
limit point of A', then every Nx and in particular (,....._,[x]') n Nx con­
tains points of A~ other than x. Let y=/=-x be in A' and in ('"'-' [x]') n Nx 
then (,....., [ x]) n N x is a neighborhood of y which is contained in N x· Since 
yEA' this neighborhood contains points of A other than y, say z. Clearly 
Z=/=-X. Hence every Nx contains points of A (z in particular) other than x 
it follows that x E A' and A' is closed. 

A space is called a discrete space of Alexandroff iff it is a T 0-space and 
for every A C X 

A=u[[x]: x EA]. 

Theorem 5.2. Every discrete space of Alexandroff ~s a Tn-space. 

Proof: In a To-space y E [x]' implies [Y] C [x]' (Theorem 2.3(b)). 
Hence in a discrete space of Alexandroff 

[x]'=U [[y]: y E [x]']=([x]'). 

Corollary 5.1. Every finite To-space is a Tn-space. 
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That not all T D-spaces are discrete spaces of Alexandroff is shown by 
Example 4.3. However this space could have been made into such a 
space by extending the family of closed sets to include arbitrary unions 
of point closures. 

It is also of interest to note that there exist homogeneous T D-spaces 
which are not T1-spaces. A space is called homogeneous [5, p. 53] iff given 
two points x and y of the space there exists a homeomorphism of the 
space onto itself carrying x into y. Example 4.4 describes a homogeneous 
T D-space which is not a Tr-space. 

We conclude this section by stating a result, the proof of which will 
appear elsewhere. 

Theorem 5.3. If the spaces (X, 5") and (Y, ~)are lattice equivalent 
and are both T D-spaces then they are homeomorphic. 

6. Further properties of T p-spaces. Contrary to TD-spaces 
T p-spaces differ but little from Tr-spaces. This is so in at least two ways. 

Theorem 6.1. Every homogeneous Tp-space is a T1-space. 

Proof: Clearly a point with a non-empty derived set cannot correspond 
under a homeomorphism to a point with an empty derived set. Every 
T p-space contains points of the second kind, so in order to be homogeneous 
it cannot contain any points of the first kind, that is it must be a T1-space. 

Theorem 6. 2. If (X, 5") is a Tp-space then (X,§"'), where §"' is the 
topology generated by §" u [N D] as a subbase, is a Tr-space. 

Proof: Assume [x]' # 0 in (X, 5"). Let y E [x]' then yEN D· Hence in 
(X,§"')yE[x]'. It follows that [x]'=O in (X,§"'). 

7. Miscellaneous observations. It is known that the property 
of being a To or a T1-space is preserved under a strengthening of the 
topology. The same is true for our major new separation axioms. In most 
cases this follows from the original definitions of the axioms. For the 
case of the T D axiom it becomes clear if one considers the equivalent 
form given in Theorem 3.1. To what extent this invariance under 
strengthening of the topology should be considered as essential for a 
separation axiom is open to question. T2 satisfies the requirement but 
T3 and T4 (see [8, pp. 80, 87]) do not. The requirement does not seem to 
be essential even for axioms between To and T 1. The axiom T( b) does 
not satisfy this condition as the following example shows. 

Example 7 .1. Let X be the set of natural numbers. Let the closed 
sets of (X, 5") be all sets of the form x > n. Then (X, 5") is a T(b)-space. 
Now add as new closed sets the sets of even numbers > 2n. In the new 
space the derived set of 2n-l is the set x;> 2n which is not a point closure. 

A Ta-space is usually defined as a regular T1-space. It is known (see 



37 

[3, p. 109]) that it can also be characterized as a regular To-space. This is 
immediately clear if one considers condition (e) of Theorem 2.3 as the 
definition of a T0-space. The question has been raised whether there 
exists a separation axiom T"' weaker than T1 such that a normal T "'-space 
is T4• None of the separation axioms introduced here can serve as such 

aT"'. 
The best result we can prove along this line is the following. 

Theorem 7 .1. Every normal Tun-space is a Tn-space, and every 
normal Trspace is a Ty and a T<tx,fl>-space . .A completely normal Tp-space 
is a Tys and Tnn-space. 

Proof: The second assertion easily follows from the first. To prove 
the first assertion we observe that in a normal space [;v ]' cannot contain 
two disjoint closed sets. A completely normal Trspace is a Ty-space. 
One shows that [ x] fl [y] = z * x, y is impossible if the space is to be 
completely normal. It follows that the space is a Tys -space and since 
it is also a Tn-space it is a Tnn-space. 

Note that there are normal Tn-spaces which are not T1 and hence not 
regular. It suffices that the space have no disjoint closed sets. Such a 
space is described in Example 4.4. 

We conclude with a final remark about the Tn-axiom which shows 
that, in a certain sense, this axiom is an asymmetric form of the T1-axiom. 

A topological space is a Tn-space (T1-space) iff given any two points 
x and y of the space there exists a closed set .A C X such that x E .A and 
(.A,....,_ [x]) u [y] is closed or (and) there exists a closed set B, withy E B 
such that (B ,....,_ [y]) u [x] is closed. 

University of Colorado 
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