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Abstract

For two given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer n such that for any graph G of order n,
either G contains G1 or the complement of G contains G2. Let Cm denote a cycle of length m and Kn a complete graph of order
n. It was conjectured that R(Cm, Kn) = (m − 1)(n − 1) + 1 for m�n�3 and (m, n) �= (3, 3). We show that R(C6, K7) = 31 and
R(C7, K7) = 37, and the latter result confirms the conjecture in the case when m = n = 7.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two given graphs G1 and G2, the
Ramsey numberR(G1, G2) is the smallest integer n such that for any graph G of order n, either G contains G1 or G

contains G2, where G is the complement of G. The neighborhood N(v) of a vertex v is the set of vertices adjacent to
v in G and N [v] = N(v) ∪ {v}. The minimum degree of G is denoted by �(G). Let V1, V2 ⊆ V (G). We use E(V1, V2)

to denote the set of the edges between V1 and V2. The independence number of a graph G is denoted by �(G). For
U ⊆ V (G), we write �(U) for �(G[U ]), where G[U ] is the subgraph induced by U in G. A cycle and a path of order n

are denoted by Cn and Pn, respectively. A clique or complete graph of order n is denoted by Kn. We use mKn to denote
the union of m vertex disjoint Kn’s. For two vertex disjoint graphs G and H, G+H denote the graph with its vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}. A wheel of order n + 1 isWn = K1 + Cn

and W−
n is a graph obtained from Wn by deleting a spoke from Wn. A fan Fn = K1 + nK2 is a graph of order 2n + 1

and a book Bn = K2 + Kn is a graph of order n + 2. For notations not defined here, we follow [2].
For the Ramsey number R(Cm, Kn), it has been determined for the cases n�6; m = 3 and 7�n�9; m = 4 and

n = 7, 8; m = 5 and n = 7; and some other cases such as n�4m + 2, and so on. For details, see the dynamic survey
[8]. In 1978, Erdös et al. [4] posed the following.

Conjecture 1 (Erdös et al. [4]). R(Cm, Kn) = (m − 1)(n − 1) + 1 for m�n�3 and (m, n) �= (3, 3).
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The conjecture was confirmed for n=3 in early works on Ramsey theory [5,9].Yang et al. [11] proved the conjecture
for n = 4.

Theorem 1 (Yang et al. [11]). R(Cm, K4) = 3m − 2 for m�4.

Bollobás et al. [1] showed that the conjecture is true for n = 5.

Theorem 2 (Bollobás et al. [1]). R(Cm, K5) = 4m − 3 for m�5.

Recently, Schiermeyer [10] confirmed the conjecture for n = 6.

Theorem 3 (Schiermeyer [10]). R(Cm, K6) = 5m − 4 for m�6.

Until now, the conjecture is still open. Researchers are interested in determining all the values of the Ramsey number
R(Cm, K7). In this paper our main purpose is to determine the values of R(Cm, K7) when m = 6, 7, which is our first
step towards calculating the values of R(Cm, K7) for all m. The main results of this paper are as follows.

Theorem 4. R(C6, K7) = 31.

Theorem 5. R(C7, K7) = 37.

Obviously, Theorem 5 confirms Conjecture 1 for the case when m = n = 7.

2. Some lemmas

In order to prove Theorems 4 and 5, we need the following lemmas.

Lemma 1 (Graver and Yackel [6] and Kalbfleisch [7]). R(K3, K7) = 23.

Lemma 2 (Dirac [3]). Let G be a graph of order n. If �(G)�n/2, then G is hamiltonian.

The following lemma can be deduced from the known Ramsey numbers, see [8].

Lemma 3. R(B2, K7)�34.

Lemma 4. Let G be a graph of order 6n − 5 (n�6) with �(G)�6. If G contains no Cn, then �(G)�n − 1.

Proof. If there is some vertex v such that d(v)�n − 2, then G′ = G − N [v] is a graph of order at least 5n − 4. By
Theorem 2, �(G′)�6. Thus, an independent set of order at least 6 in G′ together with v form an independent set of
order at least 7 in G, which contradicts �(G)�6. �

Lemma 5. Let G be a graph of order 6n − 5 (n�6) with �(G)�6. If G contains no Cn, then G contains no Wn−2.

Proof. Suppose to the contrary that G contains a Wn−2 ={w0}+C, where C =w1 · · · wn−2 is a cycle of length n− 2.
Set U =V (G)−V (Wn−2). By Lemma 4, �(G)�n−1. Thus, we have NU(wi) �= ∅ for 0� i�n−2. Let vi ∈ NU(wi)

and Vi = NU [vi], where 0� i�n − 2. Since G contains no Cn, we have

N(Vi) ∩ V (Wn−2) = {wi} for 0� i�n − 2, (1)

Vi ∩ Vj = ∅ for 0� i < j �n − 2, (2)

and

E(V0, Vi) = ∅ for 1� i�n − 2. (3)



T.C.E. Cheng et al. / Discrete Mathematics 307 (2007) 1047–1053 1049

By (1), we have dWn−2(vi) = 1, which implies |Vi |�n − 1 for 0� i�n − 2 since �(G)�n − 1. By (2), we have

n(n − 1)� |V (Wn−2) ∪
(⋃n−2

i=0

)
|�6n − 5, which implies n�6, and hence n = 6. In this case, |G| = 31. Thus, by (2),

we have 5� |Vi |�6 for 0� i�4. If there is some Vi such that |Vi |=6, then V (G)=V (W4)∪
(⋃4

i=0Vi

)
. By (1) and (3),

we have N(V0) ⊆ V0 ∪{w0}. If |V0|=6, then since �(G)�5, we have �(G[V0])�4. By Lemma 2, G[V0] contains a C6,
a contradiction. If |V0|= 5, then G[V0 ∪{w0}]=K6 since �(G)�5, a contradiction again. If |Vi |= 5 for 0� i�4, then

V (G)−(V (W4)∪
(⋃4

i=0Vi

)
) contains exactly one vertex, say y. By (1) and (3), we have N(V0) ⊆ V0 ∪{w0, y}. Noting

that �(G)�5, we have dV0(w0)�3 or dV0(y)�3, which implies that either G′ = G[V0 ∪ {w0}] or G′′ = G[V0 ∪ {y}]
is a graph of order 6 with a minimum degree of at least 3. By Lemma 2, either G′ or G′′ contains a C6, again a
contradiction. �

3. Proof of theorems

Proof of Theorem 4. Let G be a graph of order 31. Suppose to the contrary that neither G contains a C6 nor G contains
a K7. By Lemma 4, we have �(G)�5.

Before starting to prove Theorem 4, we first show the following claims.

Claim 1.1. G contains no K4.

Proof. Suppose to the contrary that G contains a K4 with vertex set {v1, v2, v3, v4} and U = V (G) − {v1, v2, v3, v4}.
Set NU(vi)=Ui for 1� i�4. Since �(G)�5, we have |Ui |�2 for 1� i�4. Let ui ∈ Ui and Vi =NU(ui) for 1� i�4.

If Ui ∩ Uj = ∅ for 1� i < j �4, then since �(G)�5, we have |Vi |�4 for 1� i�4. By Lemma 5, G[Vi] contains no
C4, which implies �(Vi)�2. On the other hand, since G contains no C6, we have Vi ∩ Vj = ∅ and E(Vi, Vj ) = ∅ for

1� i < j �4. Thus, we have �
(⋃4

i=1Vi

)
�8, a contradiction.

If there are some Ui and Uj with i �= j such that Ui ∩ Uj �= ∅, we assume without of loss of generality that
U3 ∩ U4 �= ∅. Let U0 = U3 ∩ U4 and U ′

i = Ui − U0 for i = 3, 4. By Lemma 5, U0 ∩ (U1 ∪ U2) = ∅. Thus, noting that
G contains no C6, we have Ui ∩ Uj = ∅ for i = 1, 2 and all j �= i. This implies that |Vi |�4 for i = 1, 2. By Lemma
5, we have �(Vi)�2 for i = 1, 2. If |U0|�2, we assume without loss of generality that u3, u4 ∈ U0. In this case, we

have E
(
{v3}, ⋃4

i=1Vi

)
= ∅, Vi ∩ Vj = ∅ and E(Vi, Vj ) = ∅ for 1� i < j �4 for otherwise G contains a C6. Thus,

we have �({v3} ∪
(⋃4

i=1Vi)
)

�7, a contradiction. If |U0| = 1, we assume U0 = {u0}. Since |Ui |�2 for 1� i�4, we

may assume ui ∈ U ′
i for i = 3, 4. Let V0 = {u0, u3, u4}. Since G contains no C6, we see that V0 is an independent set,

Vi ∩ Vj = ∅ and E(Vi, Vj ) = ∅ for 0� i < j �2, which implies that �
(⋃2

i=0Vi

)
�7, again a contradiction. �

Claim 1.2. G contains no K1 + P4.

Proof. Suppose G contains K1 + P4,say,P = v1v2v3v4 is a path and V (P ) ⊆ N(v0). Set U = V (G) − {vi |0� i�4}
and Ui = NU(vi) for 1� i�4. By Lemma 5,v1v4 �= E(G). By Claim 1.1,v1v3, v2v4 �= E(G). Thus,noting that
�(G)�5,we have |Ui |�3 for i = 1, 4 and |Ui |�2 for i = 2, 3. Since G contains no C6,we have Ui ∩ Uj = ∅
and E(Ui, Uj ) = ∅ for 1� i < j �4. By Claim 1.1,�(Ui)�2 for i = 1, 4. If �(U2)�2 or �(U3)�2,then we have

�
(⋃4

i=1Ui

)
�7,a contradiction. If�(U2) = �(U3) = 1, then by Claim 1.1, we have G[U2] = G[U3] = K2. In this case,

we have E
(
{v0}, ⋃4

i=1Ui

)
= ∅ for otherwise G contains a C6. This implies that �({v0} ∪

(⋃4
i=1Ui)

)
�7, again a

contradiction. �

Claim 1.3. G contains no B3.

Proof. Assume that G contains a B3, say, v1v2 ∈ E(G) and v3, v4, v5 ∈ N(v1)∩N(v2). Set U =V (G)−{vi |1� i�5}
and Ui =NU(vi) for 3� i�5. By Claim 1.1, vivj �= E(G) for 3� i < j �5. Thus, noting that �(G)�5, we have |Ui |�3
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for 3� i�5. Since G contains no C6, we have Ui ∩Uj =∅ and E(Ui, Uj )=∅ for 3� i < j �5. By Claim 1.1, we have

�(Ui)�2 for 3� i�5. By Claim 1.2, we have E
(
{v1}, ⋃5

i=3Ui

)
= ∅. Thus we obtain that �({v1} ∪

(⋃5
i=3Ui)

)
�7,

a contradiction.

Claim 1.4. G contains no W−
4 .

Proof. Suppose that G contains a W−
4 , say, W−

4 ={v5}+C −{v1v5}, where C = v1v2v3v4 is a cycle. Set U =V (G)−
{vi |1� i�5} and Ui=NU(vi) for 1� i�5. Since G contains no C6, we have U1∩

(⋃5
i=2Ui

)
=∅. By Claims 1.2 and 1.3,

we see that U3, U4, U5 are pairwise disjoint and U2, U3, U5 are pairwise disjoint. Thus, we have U4 ∩(U1∪U3∪U5)=∅
and Ui ∩

(⋃
1� j �5 and j �=iUj

)
= ∅ for i = 3, 5. Let ui ∈ Ui for i = 3, 4, 5. Set V3 = NU(u3) − {u5}, V4 = NU(u4)

and V5 = NU(u5) − {u3}. Since �(G)�5, by the arguments above, we have |Vi |�3 for i = 3, 4, 5. By Claim 1.1,

�(Vi)�2 for 3� i�5. Note that G contains no C6, we see that E
(
{v1}, ⋃5

i=3Vi

)
= ∅, Vi ∩ Vj = ∅ and E(Vi, Vj ) = ∅

for 3� i < j �5. This implies that �({v1} ∪
(⋃5

i=3Vi

)
)�7, a contradiction. �

Claim 1.5. G contains no B2.

Proof. Suppose G contains a B2, say v1v2v3v4 is a cycle with diagonal v2v4. Set U = V (G) − {v1, v2, v3, v4} and
NU(vi) = Ui for 1� i�4. By Claim 1.2, U1 ∩ U2 = U2 ∩ U3 = U3 ∩ U4 = U4 ∩ U1 = ∅. By Claim 1.3, U2 ∩ U4 = ∅.
By Claim 1.4, U1 ∩U3 =∅. Thus, we have Ui ∩Uj =∅ for 1� i < j �4. Let ui ∈ Ui for i = 2, 4, V2 =NU(u2)−{u4}
and V4 = NU(u4) − {u2}. Noting that �(G)�5, we have |Ui |�3 for i = 1, 3 and |Vi |�3 for i = 2, 4. Since G contains
no C6, it is easy to check that U1, V2, U3, V4 are pairwise disjoint and there is no edge between any two of them. By
Claim 1.1, we have �(Ui)�2 for i = 1, 3 and �(Vi)�2 for i = 2, 4. Thus, we obtain that �(U1 ∪ V2 ∪ U3 ∪ V4)�8, a
contradiction. �

Claim 1.6. G contains no F2.

Proof. Suppose that G contains an F2, say, v0v1v2 and v0v3v4 are two triangles with v0 in common. Let U = V (G) −
{vi |0� i�4} and Ui =NU(vi) for 0� i�4. By Claim 1.2, we have E({v1, v2}, {v3, v4})=∅, which implies that |Ui |�3
for 1� i�4 since �(G)�5. By Claim 1.1, �(Ui)�2 for 1� i�4. By Claim 1.5, U1 ∩U2 =U3 ∩U4 =∅ and U0 ∩Ui =∅
for 1� i�4. Since G contains no C6, we see that (U1 ∪U2)∩ (U3 ∪U4)=∅ and E(U1 ∪U2, U3 ∪U4)=∅. IfE(U1, U2)

or E(U3, U4) contains a 2K2, then G contains a C6, a contradiction. Thus, noting that �(Ui)�2 for 1� i�4, we have

�(U1 ∪ U2)�3 and �(U3 ∪ U4)�3, and hence �
(⋃4

i=1Ui

)
�6. By Claim 1.5, we get that �({v0} ∪

(⋃4
i=1Ui

)
)�7,

again a contradiction. �

We now begin to prove Theorem 4.
By Lemma 1, G contains a triangle v1v2v3. Let U=V (G)−{v1, v2, v3} and Ui=NU(vi) for 1� i�3. Since �(G)�5,

we have |Ui |�3 for 1� i�3. By Claim 1.5, Ui ∩ Uj = ∅ for 1� i < j �3. By Claim 1.6, Ui is an independent set for
1� i�3. If E(Ui, Uj ) = ∅ for 1� i < j �3, then �(

⋃3
i=1Ui)�9, a contradiction. Hence, we may assume without loss

of generality that v4 ∈ U2, v5 ∈ U3 and v4v5 ∈ E(G). Let X = {vi |1� i�5}, Y = V (G) − X and Yi = NY (vi) for
1� i�5. By Claim 1.5, we have v1v4, v1v5, v2v5, v3v4 �= E(G), which implies that|Yi |�3 for i = 1, 4, 5. By Claim
1.1, �(Yi)�2 for i = 4, 5. By Claim 1.6, �(Y1)�3. Since G contains no C6, it is easy to obtain that Yi ∩ Yj = ∅ and
E(Yi, Yj ) = ∅ for i, j ∈ {1, 4, 5} and i �= j . Thus, we have �(Y1 ∪ Y4 ∪ Y5)�7, again a contradiction.

Up to now, we have shown that R(C6, K7)�31. On the other hand, since 6K5 contains no C6 and its complement
contains no K7, we have R(C6, K7)�31, and hence R(C6, K7) = 31. �

Proof of Theorem 5. Let G be a graph of order 37. Suppose to the contrary that neither G contains a C7 nor G contains
a K7. By Lemma 4, we have �(G)�6.

In order to prove Theorem 5, we need the following claims.
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Claim 2.1. G contains no K1 + P5.

Proof. Suppose that G contains K1 + P5, say, P = v1 · · · v5 and V (P ) ⊆ N(v0). Let U = V (G) − {vi |0� i�5} and
NU(vi) = Ui for 0� i�5. Because of �(G)�6, we have Ui �= ∅ for 0� i�5.

If U2 ∩ U4 �= ∅, then we let v6 ∈ U2 ∩ U4, X = {vi |0� i�6} and Y = V (G) − X. Set Yi = NY (vi), zi ∈ Yi and
Zi = NY (zi) for 0� i�6. Since G contains no C7, it is easy to check that Yi ∩ Yj = ∅ for i = 1, 5, 6 and j �= i, and
E(Yi, Yj ) = ∅ for i, j ∈ {1, 5, 6} and i �= j , which implies that |Zi |�5 for i = 1, 5, 6. For the same reason, we have
E({v0}, Z1 ∪ Z5 ∪ Z6) = ∅, Zi ∩ Zj = ∅ and E(Zi, Zj ) = ∅ for i, j ∈ {1, 5, 6} and i �= j . By Lemma 5, �(Zi)�2 for
i = 1, 5, 6. Thus, we have �({v0} ∪ Z1 ∪ Z5 ∪ Z6)�7, a contradiction. Hence, we have U2 ∩ U4 = ∅.

Noting that U2 ∩U4 =∅ and G contains no C7, it is easy to check that Ui ∩Uj =∅ and E(Ui, Uj )=∅ for 1� i < j �5.
Let ui ∈ Ui and Vi = NU(ui) for i = 1, 5, then we have |Vi |�5. By Lemma 5, �(Vi)�2 for i = 1, 5. Since G contains

no C7, we have V1 ∩ V5 = ∅, E(V1, V5) = ∅, Vi ∩
(⋃4

i=2Ui

)
= ∅ and E

(
Vi,

⋃4
i=2Ui

)
= ∅ for i = 1, 5. This implies

that �(V1 ∪ V5 ∪
(⋃4

i=2Ui

)
)�7, a contradiction. �

Claim 2.2. G contains no W−
5 .

Proof. Suppose that G contains a W−
5 , say, C = v1 · · · v5 and W−

5 ={v0}+C −{v0v1}. Let U =V (G)−{vi |0� i�5}
and Ui = NU(vi) for 0� i�5. Since �(G)�6, we have Ui �= ∅. Noting that G contains no C7, we have Ui ∩ Uj = ∅
and E(Ui, Uj ) = ∅ for 2� i < j �4, and Ui ∩ Uj = ∅ and E(Ui, Uj ) = ∅ for i = 0, 1 and all j �= i. Take ui ∈ Ui

and set Vi = NU(ui) for i = 0, 1, then since �(G)�6, we have |Vi |�5 for i = 0, 1. By Lemma 5, �(Vi)�2. Since G

contains no C7, we have V0 ∩V1 =∅ and E(V0, V1)=∅. For the same reason, we have Vi ∩Uj =∅ and E(Vi, Uj )=∅
for i = 0, 1 and j = 2, 3, 4. Thus, by the arguments above, we have �(V0 ∪ V1 ∪

(⋃4
i=2Ui

)
)�7, a contradiction. �

Claim 2.3. G contains no W4.

Proof. Suppose that G contains a W4, say C = v1 · · · v4 is a cycle and V (C) ⊆ N(v0). Let U = V (G) − {vi |0� i�4}
and set Ui = NU(vi) for 0� i�4. Obviously, Ui �= ∅. By Claim 2.1, U0 ∩ Ui = ∅ for 1� i�4. By Claim 2.2,
U1 ∩ U2 = U2 ∩ U3 = U3 ∩ U4 = U4 ∩ U1 = ∅. Since G contains no C7, we have E(Ui, Uj ) = ∅ for 0� i < j �4. If
U1 ∩ U3 �= ∅, then U2 ∩ U4 = ∅ for otherwise there is a C7 in G. By symmetry, we may assume U1 ∩ U3 = ∅. Let
ui ∈ Ui and Vi = NU(ui) for i = 0, 1, 3. By the arguments above, we have |Vi |�5 for i = 0, 1, 3. Since G contains
no C7, we see that E({v2}, V0 ∪ V1 ∪ V3) = ∅, V0, V1 and V3 are pairwise disjoint and there is no edge between
any two of them. By Lemma 5, we have �(Vi)�2 for i = 0, 1, 3, which implies that �({v2} ∪ V0 ∪ V1 ∪ V3)�7, a
contradiction. �

Claim 2.4. G contains no K4.

Proof. Suppose that G contains a K4, say S = {v1, v2, v3, v4} is a clique. Set U = V (G) − S and Ui = NU(vi) for
1� i�4. Since �(G)�6, we have |Ui |�3.

If there are Ui and Uj with i �= j such that Ui ∩ Uj �= ∅, we assume without loss of generality that v5 ∈ U3 ∩ U4.
Let X = S ∪ {v5}, Y =V (G)−X and Yi =NY (vi) for 1� i�5. By Claim 2.1, we have (Y3 ∪Y4)∩ (Y1 ∪Y2 ∪Y5)=∅.
By Claim 2.2, Y5 ∩ (Y1 ∪ Y2) = ∅. Since G contains no C7, we have E(Yi, Yj ) = ∅ for i, j ∈ {2, 3, 5} and i �= j . Let
zi ∈ Yi and Zi = NY (zi) for i = 2, 3, 5, then by the arguments above, we have |Zi |�4 for i = 2, 3, 5. By Claim 2.3,
�(Zi)�2. Noting that G contains no C7, we see that E({v1}, Z2 ∪ Z3 ∪ Z5) = ∅, Zi ∩ Zj = ∅ and E(Zi, Zj ) = ∅ for
i, j ∈ {2, 3, 5} and i �= j , which implies that �({v1} ∪Z2 ∪Z3 ∪Z5)�7, a contradiction. Hence, we have Ui ∩Uj =∅
for 1� i < j �4.

Take ui ∈ Ui for 1� i�4. Set T = {u1, u2, u3, u4}, U ′ = U − T and NU ′(ui) = Vi for 1� i�4. If �(G[T ])�2,
then G contains a C7, and hence we may assume �(G[T ])�1. Thus, noting that Ui ∩ Uj = ∅ for 1� i < j �4, we
have |Vi |�4 for 1� i�4. By Claim 2.3, �(Vi)�2. Since G contains no C7, it is easy to see that Vi ∩ Vj = ∅ and

E(Vi, Vj ) = ∅ for 1� i < j �4, which implies that �
(⋃4

i=1Vi

)
�8, a contradiction. �

Claim 2.5. G contains no K1 + P4.
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Proof. Suppose that G contains K1 + P4, say P = v1v2v3v4 is a path and V (P ) ⊆ N(v0). Set S = {vi |0� i�4},
U = V (G) − S and Ui = NU(vi) for 0� i�4.

We first show that U1 ∩ U2 = U3 ∩ U4 = ∅. By symmetry, we need only to show U3 ∩ U4 = ∅. If not, we let
v5 ∈ U3 ∩ U4. Set X = S ∪ {v5}, Y = V (G) − X and Yi = NY (vi) for 0� i�5. Since G contains no C7, we have
Y1 ∩Yi =∅ for i �= 1, Y2 ∩Yi =∅ for i �= 0, 2 and Y4 ∩Yi =∅ for i �= 3, 4. For the same reason, we have E(Yi, Yj )=∅
for i, j ∈ {1, 2, 4} and i �= j . Let zi ∈ Yi and Zi = NY (zi) for i = 1, 2, 4. By the arguments above, we have |Z1|�5
and |Zi |�4 for i = 2, 4. Noting that G contains no C7, we see that Z1, Z2 and Z4 are pairwise disjoint and there is no
edge between any of them. By Claims 2.1, 2.3 and 2.4, we have �(Z1)�3 and �(Zi)�2 for i = 2, 4, which implies
that �(Z1 ∪ Z2 ∪ Z4)�7, a contradiction. Hence, we have U1 ∩ U2 = U3 ∩ U4 = ∅.

Next, we show that U1 ∩ U3 = U2 ∩ U4 = ∅. By symmetry, we need only to show U2 ∩ U4 = ∅. If not, we let
v5 ∈ U2 ∩ U4. Set X = S ∪ {v5}, Y = V (G) − X and Yi = NY (vi) for 0� i�5. Since G contains no C7, we have
Yi ∩ Yj = ∅ for i = 1, 5 and all j �= i. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 5, then by the arguments above, we have
|Zi |�5 for i = 1, 5. By Claims 2.1, 2.3 and 2.4, we have �(Zi)�3 for i = 1, 5. If Z1 ∩ Z5 �= ∅ or E(Z1, Z5) �= ∅ or
E({v0}, Z1 ∪ Z5) �= ∅, then G contains a C7, a contradiction. Thus, we have �({v0} ∪ Z1 ∪ Z5)�7, a contradiction.
Hence, we haveU1 ∩ U3 = U2 ∩ U4 = ∅.

By the arguments above, we have (U1 ∪ U4) ∩ (U2 ∪ U3) = ∅. By Claim 2.1, U0 ∩ (U1 ∪ U4) = ∅. By Claim 2.2,
U1 ∩ U4 = ∅. Thus, we have Ui ∩ Uj = ∅ for i = 1, 4 and all j �= i. Let ui ∈ Ui and Vi = NU(ui) for i = 1, 4, then
we have |Vi |�5 for i = 1, 4. By Claims 2.1, 2.3 and 2.4, we have �(Vi)�3 for i = 1, 4. Since G contains no C7, it is
easy to see that E({v0}, V1 ∪ V4) = ∅, V1 ∩ V4 = ∅ and E(V1, V4) = ∅. Thus, we have �({v0} ∪ V1 ∪ V4)�7, again a
contradiction. �

Claim 2.6. G contains no B3.

Proof. Assume that G contains a B3, say, v1v2 ∈ E(G) and v3, v4, v5 ∈ N(v1)∩N(v2). Set U =V (G)−{vi |1� i�5}
and Ui = NU(vi) for i = 3, 4, 5.

We first show that Ui ∩Uj =∅ for 3� i < j �5. If not, we assume v6 ∈ U3 ∩U4. Set X={vi |1� i�6}, Y =V (G)−X

and Yi =NY (vi) for 1� i�6. Since G contains no C7, we see that Y5 ∩Yi =∅ for i �= 5 and Yi ∩Yj =∅ for i=3, 4 and all
j �= 3, 4. By Claim 2.4, vivj /∈ E(G) for 3� i < j �5, which implies |Yi |�3 since �(G)�6. Thus, we can take zi ∈ Yi

for 3� i�5 such that z3 �= z4. Note that G contains no C7, zizj /∈ E(G) for 3� i < j �5. Set Zi =NY (zi) for 3� i�5.
By the arguments above, we have |Z5|�5 and |Zi |�4 for i = 3, 4. By Claims 2.1, 2.3 and 2.4, we have �(Z5)�3 and
�(Zi)�2 for i = 3, 4. Because G contains no C7, we have Zi ∩ Zj = ∅ and E(Zi, Zj ) = ∅ for 3� i < j �5. Thus we
get �(

⋃5
i=3Zi)�7, a contradiction. Hence, we have Ui ∩ Uj = ∅ for 3� i < j �5.

By Claim 2.4, vivj /∈ E(G) for 3� i < j �5. Since G contains no C7, we have E(Ui, Uj ) = ∅ for 3� i < j �5.
Thus, noting that �(G)�6, we have |Ui |�4 for 3� i�5. By Claim 2.3, �(Ui)�2 for 3� i�5. By Claim 2.5,
E({v1}, ⋃5

i=3Ui) = ∅. Thus, noting that Ui ∩ Uj = ∅ for 3� i < j �5, we have �({v1} ∪ (
⋃5

i=3Ui))�7, again a
contradiction. �

Claim 2.7. G contains no W−
4 .

Proof. Suppose G contains a W−
4 , say, W−

4 ={v5}+C −{v1v5}, where C =v1v2v3v4 is a cycle. Set S ={vi |1� i�5},
U = V (G) − S and Ui = NU(vi) for 1� i�5.

We first show that U1 ∩ (U3 ∪ U5) = ∅. By symmetry, we need only to show that U1 ∩ U5 = ∅. If not, we let
v6 ∈ U1 ∩ U5. Set X = S ∪ {v6}, Y = V (G) − X and Yi = NY (vi) for 1� i�6. Since G contains no C7, we have
E(Y4, Y6) = ∅ and Yi ∩ Yj = ∅ for i = 4, 6 and all j �= i. Let zi ∈ Yi and Zi = NY (zi) for i = 4, 6. By the arguments
above, we have |Zi |�5. By Claims 2.1, 2.3 and 2.4, we have �(Zi)�3 for i = 4, 6. Because G contains no C7, we
have Z4 ∩Z6 =∅, E(Z4, Z6)=∅ and E({v1}, Z4 ∪Z6)=∅, which implies that �({v1}∪Z4 ∪Z6)�7, a contradiction.
Hence, we haveU1 ∩ (U3 ∪ U5) = ∅.

Next, we show that U1 ∩ (U2 ∪ U4) = ∅. By symmetry, we need only to show that U1 ∩ U4 = ∅. If not, we let
v6 ∈ U1 ∩ U4. Set X = S ∪ {v6}, Y = V (G) − X and Yi = NY (vi) for 1� i�6. Since G contains no C7, we have
E(Y3, Y6)=∅ and Y6 ∩Yi =∅ for i �= 6. By Claim 2.5, Y3 ∩ (Y2 ∪Y4)=∅. By Claim 2.6, Y3 ∩Y5 =∅. If Y3 ∩Y1 �= ∅,
then G contains a C7, a contradiction. Thus, we have Y3 ∩ Yi = ∅ for i �= 3. Let zi ∈ Yi and Zi = NY (zi) for i = 3, 6,
then |Zi |�5. By Claims 2.1, 2.3 and 2.4, we have �(Zi)�3 for i = 3, 6. Note that since G contains no C7, we have
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Z3 ∩ Z6 = ∅, E(Z3, Z6) = ∅ and E({v4}, Z3 ∪ Z6) = ∅. Thus, we have �({v4} ∪ Z3 ∪ Z6)�7, a contradiction. Hence,
we have U1 ∩ (U2 ∪ U4) = ∅.

By the arguments above, we have U1 ∩ Ui = ∅ for i �= 1. By Claim 2.5, U3 ∩ (U2 ∪ U4) = ∅. By Claim 2.6,
U3 ∩U5 =∅. Thus we have U3 ∩Ui =∅ for i �= 3. Let ui ∈ Ui and Vi =NU(ui) for i = 1, 3. Then |Vi |�5. By Claims
2.1, 2.3 and 2.4, we have �(Vi)�3 for i = 1, 3. Note that G contains no C7, we have V1 ∩ V3 = ∅, E(V1, V3) = ∅ and
E({v4}, V1 ∪ V3) = ∅. This implies that �({v4} ∪ V1 ∪ V3)�7, a contradiction. �

We now begin to prove Theorem 5.
By Lemma 3, G contains a B2. Let v1v2v3v4 be a cycle with diagonal v2v4. Set U = V (G) − {v1, v2, v3, v4} and

Ui = NU(vi) for 1� i�4.
We first show that E(U1, U3) = ∅. Otherwise, we let v5 ∈ U1, v6 ∈ U3 and v5v6 ∈ E(G). Let X = {vi |1� i�6},

Y = V (G) − X and Yi = NY (vi) for 1� i�6. Since G contains no C7, it is easy to see that Yi ∩ Yj = ∅ for i = 2, 4 and
j �= i, and Y5 ∩ (Y1 ∪Y6)=∅. Thus, let zi ∈ Yi and Zi =NY (zi) for i = 2, 5, we have |Z2|�5 and |Z5|�4. By Claims
2.1, 2.3 and 2.4, we have �(Z2)�3 and �(Z5)�2. Noting that G contains no C7, we see that E({v1, v3}, Z2 ∪Z5)=∅,
Z2 ∩Z5 =∅ and E(Z2, Z5)=∅. By Claim 2.4, v1v3 /∈ E(G). Thus, we have �({v1, v3}∪Z2 ∪Z5)�7, a contradiction.
Hence, we have E(U1, U3) = ∅.

Next, we show that E(U1 ∪ U3, U2 ∪ U4) = ∅. By symmetry, we need only to show that E(U3, U4) = ∅. If not, we
let v5 ∈ U3, v6 ∈ U4 and v5v6 ∈ E(G). Let X = {vi |1� i�6}, Y = V (G) − X and Yi = NY (vi) for 1� i�6. Since
G contains no C7, we have Y1 ∩ Yi = ∅ for i �= 1, Y3 ∩ (Y2 ∪ Y5) = ∅ and Y6 ∩ (Y2 ∪ Y4 ∪ Y5) = ∅. By Claim 2.5,
Y3 ∩ Y4 = ∅. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 3, 6. Since v3v6 /∈ E(G) by Claim 2.5 and �(G)�6, we have
|Yi |�2 for i = 3, 6. Thus, we may assume z3 �= z6. By the arguments above, we have |Z1|�5 and |Zi |�4 for i = 3, 6.
By Claims 2.1, 2.3 and 2.4, we have �(Z1)�3 and �(Zi)�2 for i = 3, 6. Noting that G contains no C7, we see that
Z1, Z3, Z6 are pairwise disjoint and there is no edge between any two of them. This implies that �(Z1 ∪ Z3 ∪ Z6)�7,
and hence we have E(U1 ∪ U3, U2 ∪ U4) = ∅.

By Claims 2.5–2.7, we have Ui ∩ Uj = ∅ for 1� i < j �4. Since �(G)�6, we have |Ui |�3 for 1� i�3. By Claim

2.4, we have �(Ui)�2 for 1� i�3. By Claims 2.5 and 2.6, E
(
{v4}, ⋃3

i=1Ui

)
= ∅. Thus, noting that E(U1, U3) = ∅

and E(U2, U1 ∪ U3) = ∅, we have �
(
{v4} ∪ ⋃3

i=1Ui

)
�7, a contradiction.

By the arguments above, we have R(C7, K7)�37. On the other hand, since 6K6 contains no C7 and its complement
contains no K7, we have R(C7, K7)�37, and hence R(C7, K7) = 37. �
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