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Let p(z) = a0 + · · · + an zn and q(z) = b0 + · · · be polynomials of degree respectively n and
less than n such that∣∣p(z)

∣∣ <
∣∣q(z)

∣∣, |z| < 1.

A result due to Q.I. Rahman states that

|a0| + |an| � |b0|.
In this paper, we slightly improve the above inequality and discuss several sharpness
aspects, including all cases of equality.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and statement of the results

Let Pn be the linear space of polynomials p(z) = ∑n
k=0 ak(p)zk with complex coefficients of degree at most n endowed

with the norm

|p|D = max
|z|�1

∣∣p(z)
∣∣, D = {

z
∣∣ |z| < 1

}
.

The inequality∣∣a0(p)
∣∣ + ∣∣an(p)

∣∣ � |p|D, p ∈ Pn, (1)

was obtained by Visser [7] in 1945 and it is well known that equality holds in (1) only for binomials of the type
p(z) = A + Bzn . It was later proved by Van der Corput and Visser [6] that∣∣a0(p)

∣∣ + ∣∣ak(p)
∣∣ � |p|D, p ∈ Pn,

n

2
< k � n. (2)

We refer the reader to the book of Rahman and Schmeisser [4] for a survey of extensions of (1) and (2). We mention
however that (here [n

k ] means the integer part of n
k )

∣∣a0(p)
∣∣ + 1

2
sec

(
π

[n
k ] + 2

)∣∣ak(p)
∣∣ � |p|D, p ∈ Pn, 1 � k � n, (3)

has been obtained in [2] where it is also shown that equality holds in (3) only when the polynomial p is constant when
1 � k � n

2 . More recently [1] all cases of equality in (3) with n
2 < k < n or equivalently all cases of equality in (2) with

n
2 < k < n were also obtained (and they are surprisingly numerous!).
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Let P e
n be the subset of Pn consisting of the polynomials of exact degree n. Let also p ∈ P e

n and q ∈ Pd with d < n.
Rahman [5] proved that under the assumption∣∣p(z)

∣∣ <
∣∣q(z)

∣∣, |z| < 1,

there holds∣∣a0(p)
∣∣ + ∣∣an(p)

∣∣ �
∣∣a0(q)

∣∣. (4)

This clearly is a striking extension of (1). We remark that (4) can be further extended in the following way: let 0 � k � n − 1
and ∣∣p(z)

∣∣ <
∣∣q(z)

∣∣, |z| < 1, where p ∈ P e
n and q ∈ Pn−k−1. (5)

Then for any real θ , the polynomial f (z) := p(z) − eiθq(z) does not vanish in D. An application of Grace’s theorem
[4, pp. 107–116] to f and g(z) := 1 + 1/

(n
k

)
zn−k yields

n−k−1∑
j=0

(
a j(p) − eiθa j(q)

)
z j + an−k(p)

/(
n

k

)
zn−k �= 0, |z| < 1,

and therefore∣∣a0(p) − eiθa0(q)
∣∣ �

∣∣an−k(p)
∣∣/(

n

k

)
, θ real,

i.e.,

∣∣a0(p)
∣∣ + ∣∣an−k(p)

∣∣/(
n

k

)
�

∣∣a0(q)
∣∣, 0 � k � n − 1. (6)

Before stating our main results, we introduce the following definition: a pair of polynomials (P , Q ) will be called an
extremal pair if and only if, given a set of nodes {z j}n

j=1 ⊂ ∂D and W (z) = ∏n
j=1(1 − z j z) we have

Q (z) = a0(Q )W (z)
n∑

j=1

� j

1 − z j z
and P (z) = ξ

(
Q (z) − ta0(Q )W (z)

)

where 0 < t � 1, ξ ∈ ∂D, a0(Q ) is a non-zero complex number and each � j is non-negative with
∑n

j=1 � j = 1. We clearly
have P ∈ P e

n , Q ∈ Pn−1 and simple computations show that∣∣P (z)
∣∣ <

∣∣Q (z)
∣∣, |z| < 1 and

∣∣a0(P )
∣∣ + ∣∣an(P )

∣∣ = ∣∣a0(Q )
∣∣.

We shall prove

Theorem 1.1. Let k = 0 and p, q be polynomials as in (5). Then∣∣a0(p)
∣∣ + ∣∣an(p)

∣∣ = ∣∣a0(q)
∣∣

if and only if the pair (p,q) is an extremal pair.

Theorem 1.2. Let 0 < k � n − 1 and p, q be polynomials as in (5). Then the inequality (6) is always strict.

2. Proof of Theorem 1.1

Let p ∈ P e
n and q ∈ Pn−1 such that |p(z)| < |q(z)| in D and |a0(p)| + |an(p)| = |a0(q)|. Our proof of (6) shows there exists

a real number θ such that p − eiθq has all of its zeros on the unit circle, i.e.,

p(z) − eiθq(z) = (
a0(p) − eiθa0(q)

)
W (z)

with W (z) := ∏n
j=1(1 − z j z) and {z j}n

j=1 ⊂ ∂D. It then follows that |a0(p) − eiθa0(q)| = |a0(p)| + |a0(q)| and by the triangle
inequality

0 � a0(p)

eiθa0(q)
:= t � 1.

We therefore have

p(z) − eiθq(z) = eiθa0(q)(t − 1)W (z)
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and we may in the sequel assume without of any loss of generality that eiθ = a0(q) = 1. It also follows that 0 � t < 1 and∣∣q(z) − (1 − t)W (z)
∣∣ <

∣∣q(z)
∣∣, z ∈ D,

or equivalently

inf|z|<1
Re

(
q(z)

W (z)

)
� 1 − t

2
> 0. (7)

Let us now assume that the zeros of W
q are {z̄ jν }N

ν=1 with 1 � N � n. We claim that any such zero is simple; for if for
example z̄ j1 is not simple we have

q(z)

W (z)
=

M∑
k=1

Lk

(1 − z j1 z)k
+ G(z)

with M > 1, |LM | > 0 and G a function holomorphic in a neighbourhood of z̄ j1 . This however, together with the fact that no
polynomial of degree M > 1 can have a bounded below real part in the half-plane Re(z) > 1

2 , contradicts (7). We therefore
have

q(z)

W (z)
=

N∑
ν=1

�ν

1 − z jν z
, |�ν | > 0,

and indeed each �ν is strictly positive; by letting z in D tend radially to z̄ jν in the identity

Re

(
�ν

1 − z jν z

)
= Re(�ν)Re

(
1

1 − z jν z

)
− Im(�ν) Im

(
1

1 − z jν z

)
we obtain that Re(�ν) � 0. Further, by letting z in D tend to z̄ jν on a horocycle in D tangent to z̄ jν , we find out that
Im(�ν) = 0 and the pair (p,q) is extremal.

3. Proof of Theorem 1.2

We first shall give another short proof of (6) in the case where 1 � k � n −1. Let p, q be polynomials for which (5) holds.
The polynomial

r(z) := zn p(1/z) − eiθ znq(1/z)

=
n∑

j=0

an− j(p)z j − eiθ
n∑

j=n−d

an− j(q)z j

(here d equals the degree � n − k − 1 of the polynomial q) has all of its zeros in the closed unit disc and according to the
theorem of Gauss–Lucas [4, p. 71] the derivative

r(k)(z) = an−k(p)k!zk + · · · + (
a0(p) − eiθa0(q)

)
k!

(
n

k

)
zn−k

also has this property. It follows readily that (6) is valid. Moreover if the equality∣∣a0(p)
∣∣ + ∣∣an−k(p)

∣∣/(
n

k

)
= ∣∣a0(q)

∣∣ (8)

holds, the polynomial r(k) must have all of its zeros on ∂D and a0(p) = teiθa0(q) where θ is real and 0 � t < 1. Because the
polynomial r is also known to have its zeros on ∂D, it follows again from the theorem of Gauss–Lucas that

r(z) = p(z) − eiθq(z) = eiθa0(q)(t − 1)
(
1 − eiϕ z

)n

with ϕ real and we may now assume that eiθ = eiϕ = a0(q) = 1, i.e.,

p(z) = q(z) − (1 − t)(1 − z)n

and as before we obtain

inf|z|<1
Re

(
q(z)

(1 − z)n

)
� 1 − t

2
> 0. (9)

On the other hand the rational function q(z)
(1−z)n has a pole of order at least 2 at z = 1 and admits an expansion as a finite

sum
q(z)

(1 − z)n
=

∑
j�1

� j

(1 − z) j
with

∑
j�2

|� j| > 0.

As in the proof of Theorem 1.1 we obtain that inf|z|<1 Re( q(z)
n ) = −∞, thus contradicting (9). The conclusion follows.
(1−z)
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4. On the sharpness of Theorem 1.2

Let 1 < k � n − 1. We recall that the inequality (6) under the assumption (5) is always strict. Given the fact that the
proof of (6) was rather short and simple, this raises questions concerning the sharpness of (6).

We first remark that the hypothesis q ∈ Pn−k−1 in (5) is necessary; let us choose a positive but small enough number c
such that Re( 1

(1−cz)k ) > 1
2 if z ∈ D. Let also

q(z) := (1 − cz)n−k and p(z) := (1 − cz)n−k − t(1 − cz)n

where 0 < t < 1. It is readily checked that p ∈ P e
n , q ∈ P e

n−k and |p(z)| < |q(z)| if |z| < 1. However

∣∣a0(p)
∣∣ + ∣∣an−k(p)

∣∣/(
n

k

)
= 1 − t + cn−k

∣∣∣∣1 − t

(
n

k

)∣∣∣∣
and

lim
t→0+

∣∣a0(p)
∣∣ + ∣∣an−k(p)

∣∣/(
n

k

)
= 1 + cn−k >

∣∣a0(q)
∣∣ = 1,

i.e., the inequality (6) may not be valid when the degree of q is greater than n − k − 1.
Next we claim that under the assumption (5) there cannot exist an absolute constant c = c(k) > 1, dependent on k but

independent of n such that

∣∣a0(p)
∣∣ + c|an−k|

/(
n

k

)
�

∣∣a0(q)
∣∣. (10)

We only discuss the case k = 2 and consider an extremal pair (p,q) with p ∈ P e
n , q ∈ Pn−3 and

q(z) =
(

n∑
j=1

� j

1 − ξ j z

)
W (z), p(z) = q(z) − tW (z) with W (z) =

n∏
j=1

(1 − ξ j z).

Computations show that for 0 � ν < n

an−ν(W ) = (−1)n−ν

(
n∏

j=1

ξ j

) ∑
1� j1< j2<···< jν�n

ξ̄ j1 ξ̄ j2 · · · ξ̄ jν ,

an−ν(q) = (−1)n−�

(
n∏

j=1

ξ j

) ∑
1� j1< j2<···< jν�n

(� j1 + � j2 + · · · + � jν )ξ̄ j1 ξ̄ j2 · · · ξ̄ jν

while a0(q) = a0(W ) = 1. The constraint q ∈ Pn−3 means that∑
1� j1�n

� j1ξ j1 =
∑

1� j1< j2�n

(� j1 + � j2 )ξ j1ξ j2 = 0

and this amounts to
n∑

j=1

� jξ j =
n∑

j=1

� jξ
2
j = 0. (11)

We choose a set of distinct points {eiθ j }n
j=4 ⊂ ∂D closed under conjugation and such that

0 � |θ j | < ε and cos(2θ j) > 0, j = 4, . . . ,n − 3,

where ε > 0 is given in advance. Clearly the origin of the complex plane belongs to the convex hull of {−1} ∪ {eiθ j }n
j=4 and

there exists a convex combination

L1(−1) +
n∑

j=4

L je
iθ j = 0

where we may assume that all coefficients L j are positive, their sum equals unity and L j1 = L j2 if eiθ j1 = e−iθ j2 . Clearly for
any a � 0 we have

L1

1 + 2a
(−1) + a

1 + 2a
(i) + a

1 + 2a
(−i) +

n∑ L j

1 + 2a
eiθ j = 0.
j=4
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We set

G(a) := L1

1 + 2a
(−1)2 + a

1 + 2a
(i)2 + a

1 + 2a
(−i)2 +

n∑
j=4

L j

1 + 2a

(
eiθ j

)2

= 2a

1 + 2a
(−1) + L1

1 + 2a
(1) +

n∑
j=4

L j

1 + 2a

(
eiθ j

)2
.

Then G(0) = L1 + ∑n
j=4 L j cos(2θ j) > 0 and G(∞) = −1 < 0; we may therefore choose a > 0 such that G(a) = 0. We set

�1 = L1

1 + 2a
, �2 = �3 = a

1 + 2a
, � j = L j

1 + 2a
, 4 � j � n,

ξ1 = −1, ξ2 = i, ξ3 = −i, ξ j = eiθ j , 4 � j � n.

Clearly the parameters {� j}n
j=1 and {ξ j}n

j=1 satisfy (11) and the extremal pair defined above satisfies p ∈ P e
n , q ∈ Pn−3 and

if (10) is valid

∣∣a0(p)
∣∣ + c

∣∣an−2(p)
∣∣/(

n

2

)
= (1 − t) + tc

∣∣∣∣ ∑
1� j1< j2�n

ξ j1ξ j2

∣∣∣∣
where

∑
1� j1< j2�n

ξ j1ξ j2 = −
n∑

j=4

eiθ j + 1 +
∑

4� j1< j2�n

eiθ j1 eiθ j2 .

By choosing ε = 1
n , we see that this last expression equals(

n

2

)
− n + O (1), n → ∞,

and therefore our claim follows since

lim
n→∞

∣∣a0(p)
∣∣ + c

∣∣an−2(p)
∣∣/(

n

2

)
= lim

n→∞(1 − t) + tc

(n
2

) − n + O (1)(n
2

)
= 1 − t + tc

> 1.

Let us finally remark that in the construction above

lim
n→∞

∣∣a0(p)
∣∣ + ∣∣an−2(p)

∣∣/(
n

2

)
= 1.

This shows that in general no inequality of the type

∣∣a0(p)
∣∣ + ∣∣an−k(p)

∣∣/(
n

k

)
� dk

∣∣a0(q)
∣∣

shall hold under the hypothesis (5) for a constant dk < 1 independent of n.

5. An application of Laguerre’s theorem

We shall obtain a Bernstein type inequality for pairs of polynomial (p,q) which satisfy∣∣p(z)
∣∣ <

∣∣q(z)
∣∣, |z| < 1 and p,q ∈ Pn. (12)

For such polynomials

p(z) − eiθq(z) �= 0, z ∈ D, θ real,

and the classical Laguerre’s theorem [4, p. 98] yields at once∣∣np(z) + (ξ − z)p′(z)
∣∣ �

∣∣nq(z) + (ξ − z)p′(z)
∣∣, |ξ |, |z| � 1. (13)

It is also a consequence of Laguerre’s theorem (see [3] for a recent proof and discussion of all cases of equality) that for
any P ∈ Pn∣∣P ′(z)

∣∣ + ∣∣zP ′(z) − nP (z)
∣∣ � n|P |D, |z| � 1. (14)
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Let then p, q satisfy (12). It follows from (13) and (14) that |ξ |, |z| � 1,∣∣p′(z)
∣∣ − ∣∣np(z) − zp′(z)

∣∣ �
∣∣np(z) + (ξ − z)p′(z)

∣∣
�

∣∣nq(z) + (ξ − z)q′(z)
∣∣

and ∣∣p′(z)
∣∣ �

∣∣np(z) − zp′(z)
∣∣ + ∣∣nq(z) + (ξ − z)q′(z)

∣∣
� n|p|D − ∣∣p′(z)

∣∣ + ∣∣nq(z) + (ξ − z)q′(z)
∣∣. (15)

Because ξ in (15) is arbitrary, we obtain∣∣p′(z)
∣∣ � n

2
|p|D + ||nq(z) − zq′(z)| − |q′(z)||

2
, |z| = 1. (16)

By the hypothesis (12) the polynomial q does not vanish in D and

q(z) = a0(q)

n∏
j=1

(1 − z j z) with |z j | � 1, j = 1, . . . ,n.

Then

Re

(
zq′(z)

q(z)

)
=

n∑
j=1

Re

( −z j z

1 − z j z

)
� n

2
, |z| � 1,

and

|q′(z)|
|q(z)| =

∣∣∣∣ zq′(z)

q(z)

∣∣∣∣ �
∣∣∣∣ zq′(z)

q(z)
− n

∣∣∣∣, |z| = 1.

It now follows from (14) and (16) that

∣∣p′(z)
∣∣ � n

2
|p|D + |nq(z) − zq′(z)| − |q′(z)|

2

� n

2
|p|D + n

2
|q|D − ∣∣q′(z)

∣∣
i.e., ∣∣p′(z)

∣∣ + ∣∣q′(z)
∣∣ � n

2

(|p|D + |q|D
)
, |z| � 1. (17)

The cases of equality in (17) are most likely numerous and we only mention

• p(z) ≡ ξ zn and q(z) ≡ 1 with |ξ | = 1: this is the standard Bernstein inequality!
• p(z) ≡ 0 and q ∈ P e

n has all of its zeros on ∂D: it is well known that in that case |q′|D = n
2 |q|D .

• The extremal pairs (p,q) where p(z) = zk + zn , q(z) = 1 + zn−k , 1 � k � n − 1 also transform (17) into an inequality.

We shall end this paper by a further application of Laguerre’s theorem to our ideas. Let 1 � k � n − 1 and p, q polynomials
which satisfy (5). Then∣∣∣∣p(z) + (ξ − z)

n
p′(z)

∣∣∣∣ <

∣∣∣∣q(z) + (ξ − z)

n
q′(z)

∣∣∣∣, ξ, z ∈ D,

and we may now apply (6) to

P (z) := p(z) + ξ − z

n
p′(z) =

n−1∑
j=0

((
1 − j

n

)
a j(p) + ξ

n
( j + 1)a j+1(p)

)
z j

and

Q (z) := q(z) + ξ − z

n
q′(z).

Note that the hypotheses (5) imply that P ∈ P e
n−1 for all ξ ∈ D (except for a finite numbers of those!) and Q ∈ Pn−k−1 =

P(n−1)−(k−1)−1. We obtain∣∣∣∣a0(p) + ξ

n
a1(p)

∣∣∣∣ +
∣∣∣∣an−k(p)

/(
n

k

)
+ ξ

n
an−k+1

/(
n

k − 1

)∣∣∣∣ �
∣∣∣∣a0(q) + ξ

n
a1(q)

∣∣∣∣
for all ξ , z with |ξ |, |z| � 1. This may be the best explanation concerning the fact that the inequality (6) is always strict
when 1 � k � n − 1.
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