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a b s t r a c t

Ceylon gooseberry is a deep-purple exotic berry that is being produced in Brazil with great market poten-
tial. This work aimed to determine major phenolic compounds in this specie by HPLC–PDA–ESI/MS.
Samples were collected in two different seasons. Pulp and skin were analyzed separately. Non-acylated
rutinoside derivatives of delphinidin (�60–63%) and cyanidin (�17–21%) were major anthocyanins
tentatively identified. All anthocyanins had higher concentration in skin than in pulp (64–82 and 646–
534 mg of cyaniding-3-glucoside equivalents/100 g skin and pulp, respectively). Moreover, anthocyanin
profile changed between sampling dates (p < 0.05). Mainly for delphinidin-3-rutinoside which could be a
result of season variation. In this specie, non-anthocyanin polyphenols represent less than 35% of total
extracted polyphenols. The tentative identification proposed a flavonol and three ellagitannins as major
compounds of the non-anthocyanin phenolics fraction. Finally, anthocyanin is the major phenolic class in
this fruit and its composition and content are significantly affected by season.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Phenolic compounds are non-essential secondary metabolites
formed in normal metabolism of plant tissues playing an important
role in fruit development and survival. Most of them can act as
strong antioxidants (Dai & Mumper, 2010) and, as recently dis-
cussed, it is capable to interact with enzymes and cell mediators
in the prevention of chronic diseases development and in the
maintenance of a healthy status (Del Rio et al., 2013; He &
Giusti, 2010). Accordingly, there is an increased interest in
chemical elucidation and quantification of these compounds in
commonly consumed fruits and vegetables (Aaby, Mazur, Nes, &
Skrede, 2012) or in exotic plant materials with an unknown poly-
phenolic profile (Agawa et al., 2011; Longo & Giuseppe, 2005;
Mertz et al., 2009).

Berry fruits are recognized as rich sources of these beneficial
compounds. Among them, anthocyanins are the major phenolic
class being responsible for the red-to-purple color and high
acceptance of these fruits. Moreover, significant amounts of tan-
nins and phenolic acids are also reported as frequent phenolic
compounds in berries (Seeram, 2008).

The knowledge of fruit phenolic composition, concentration,
and its content oscillation due to environmental condition is cru-
cial to determine good phytochemical sources, for quality cropping
purposes, for supporting future studies on biological properties,
and in the development of industrial applications.

Ceylon gooseberry is a deep red-to-purple berry originally
from Sri Lanka (Asia) (Morton, 1987) that is being produced
with satisfactory yields in the southwest regions of Brazil. Flesh
and Skin are rich sources of phenolic compounds and anthocy-
anin with high antioxidant activity (Bochi, 2013). However, up
to date there are no reports about phenolic profile composition
of these compounds. Moreover, these compounds are enrolled
in plant resistance to environmental conditions (Harborne,
2000) and it was hypothesized that fruit could have different
composition among tissues and between two harvesting
periods.

Thus, the purpose of this study was to characterize anthocyanin
and other major phenolic compounds in Ceylon gooseberry flesh
and skin. Furthermore, samples were monitored over two years
in fruits that were harvested in autumn and in winter aiming to
evaluate possible oscillations due to climate changes on anthocya-
nin content.
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2. Materials and methods

2.1. Reagents and materials

Optima LCMS grade acetonitrile, methanol, water, formic acid
(88%), ACS grade acetone, sodium hydroxide, hydrochloric acid, as
well as 0.22 lm GE Magna nylon membrane filter were obtained
from Fisher Scientific (Fairlawn, NJ, U.S.A.). Catechin (98%) was pur-
chased from Sigma Aldrich. Sep-Pak� C-18 cartridges (6 cc, 500 mg)
were obtained from Waters corporation (Milford, MA, U.S.A.). Stan-
dards of caffeic acid (99.7%), chlorogenic acid (99.25%), ellagic acid
(99.9%), gallic acid (98%), p-coumaric acid (98%), protocatechuic acid
(99.9%), rutin (95%), syringic acid (99.5%), and vanillic acid (97.9%)
were obtained from MP Biochemicals (Santa Ana, CA, U.S.A.), (+)-
catechin hydrate (98%), epigallocatechin gallate (97%), quercetin
dihydrated (98%), and cyaniding-3-glucoside (Kuromanin, 97%)
from Sigma–Aldrich (St. Louis, MO, U.S.A.), and 4-hydroxybenzoic
(99%) from Acros Organics (Geel, Belgium).

2.2. Equipment

Samples were analyzed using an HPLC (high-performance liquid
chromatography, Shimadzu; Columbia, MD, U.S.A.) equipped with
LC-20AD pumps, SIL-20AC auto sampler, and a CTA-20A Column
Oven coupled to a LCMS-2010, SPD-M20A Photodiode Array (Shi-
madzu), and Mass Spectrometer (Shimadzu) detectors. LCMS Solu-
tion Software (Version 3, Shimadzu) were used for data analyses.
Mass spectrometry was conducted on a quadrupole ion-tunnel
mass analyzer (QoQ system, Q-array – Octapole – Quadrupole mass
analyser, Shimadzu) equipped with electrospray ionization (ESI)
interface (Shimadzu). A Terroni Freeze-dryer, model LS-3000E
(São Paulo, Brazil) and analytical grinder with refrigeration system
(model Q298A, Qhimis, São Paulo, Brazil) were used for sample
preparation.

2.3. Sample preparation

Ripened (12.6 ± 1.8 �Brix, 3.5 ± 0.8 g of citric acid/100 g sample,
transversal and longitudinal diameters of 20.81 � 22.07 mm) ber-
ries were obtained from a producer region located between Pin-
halzinho and Bragança Paulista cities (at 22�48006.800S
46�33028.100W, São Paulo, Brazil) in 2009 and 2010. Fruits were
washed with water and allowed to dry before frozen at �20 �C.
Manual skin removal by hand was made in frozen fruits to mini-
mize enzymatic degradation and juice loss. Frozen flesh fruit parts
were crushed using a food processor (Philips’ Walita Master food
processor, model RI3142) and placed into trays to return to freez-
ing conditions. Frozen skins and flesh were immersed in nitrogen
and immediately freeze-dried until the pressure was reduced to
stable values lower than 22 lHg. Freeze-dried samples were
ground to obtain a visually homogenous fine powder.

2.4. Extraction

It was performed using a previously optimized method devel-
oped for Ceylon gooseberry samples (Bochi et al., 2014). Flesh
and skin freeze-dried powdered samples were added to the extrac-
tion solvent media in a proportion of 1:120 (w/v). The extraction
solvent was composed of 0.35% v/v of formic acid solution in 20%
v/v of acetone in distillated water. After 20 min under mixing using
a magnetic stirrer at 1500 rpm, the homogenate was filtered, the
residue discarded, and the slurry was concentrated in a rotary
evaporator (35 �C ± 2 �C) for acetone removal. The final extract
was made up to a known volume with 0.35% (v/v) formic acid solu-
tion in distillated water.
2.5. SPE-C18 purification procedure

Previous to identification analysis, crude extracts were semi-
purified to obtain one fraction mainly with anthocyanins and
another with other phenolic compounds. Purification was per-
formed as previously described (Rodriguez-saona & Wrolstad,
2001) with some modifications. Water-based crude extracts with
0.35% (v/v) of formic acid (4 ml) were loaded into solid phase
extraction (SPE) C-18 cartridges (Waters Corporation, Milford,
MA, USA), previously activated with methanol and conditioned
with acidified water (0.35% v/v formic acid). Polar compounds
were washed out with two volumes of formic acid aqueous solu-
tion (0.35% v/v). Less polar phenolic compounds were eluted using
two volumes of ethyl acetate and lastly anthocyanins were recov-
ered with acidified methanol (0.35% formic acid). The ethyl acetate
fraction was dried under nitrogen and made up to a known volume
(2 ml) with 20% methanol in water. After methanol removal in
rotary evaporator (38 ± 2 �C), the anthocyanin fraction was made
up to a known volume (2 ml) with acidic water (0.35% formic acid
v/v). All fractions were directly analyzed as purified fractions with-
out hydrolysis. Additionally, as described in items 2.6 and 2.9, a
portion of each fraction was used for acid and alkaline hydrolysis
for additional structural information.

2.6. Acid hydrolysis of anthocyanins

Purified anthocyanin fractions obtained in 2.5 were hydrolyzed
with HCl 3 N (1:5 v/v) for 45 min at 100 �C in a screw-cap test tube,
and then cooled in an ice bath (Rodriguez-saona, Giusti, &
Wrolstad, 1998). The hydrolysate was loaded into a C-18 SPE car-
tridge previously conditioned with water. Polar compounds were
washed with 4 volumes of HPLC–MS water and anthocyanins were
then eluted with pure acidified methanol (0.35% formic acid). The
methanol was removed in a rotary evaporator (38 ± 2 �C) and the
remaining fraction made up to a known volume with acidic water
(0.35% formic acid v/v).

2.7. Anthocyanin identification by HPLC–PDA–ESI/MS analysis

Whole extract, purified fractions, and acid hydrolysates were
analyzed using the HPLC equipment previously described in Sec-
tion 2.2. A reverse phase Symmetry C-18 column (4.6 � 150 mm;
3.5-lm particle size; Waters Corp. Mass. U.S.A.) was connected
to a guard column (4.6 � 22 mm. Symmetry 2 micro; Waters Corp.
Mass. U.S.A.) for the analysis. Solvents and samples were filtered
through a 0.22 lm GE Magna nylon membrane filter (Fisher
Scientific).

Mobile phases consisting of 3% (v/v) formic acid in water
(solvent A) and 100% acetonitrile (solvent B) were used for antho-
cyanin analysis. Separation was achieved using a linear gradient
from 5% to 20% B, in 30 min, 20% of B was kept until 32 min. At
the end of the gradient, the column was washed increasing B to
100%, keeping it for 5 min, and equilibrated to initial conditions
for 5 min.

The flow rate was 0.8 mL/min and the injection volume was
50 lL. Spectral data were collected from 250 to 700 nm. Flow rate
of 0.2 mL/min was diverted to the mass spectrometer.

Mass spectrometric analysis was performed under positive ion
mode. It was used the following settings: nebulizing gas flow,
1.5 L/min; interface bias, ±4.50 kV; block temperature, 200 �C;
focus lens, �2.5 V; entrance lens, �50 V; pre-rod bias, �3.6 V;
main-rod bias, �3.5 V; detector voltage, 1.5 kV; scan speed,
2000 amu/s. Full scan for total ion chromatography (TIC) was per-
formed with a mass range from 100 to 1000 m/z and selective ion
monitoring (SIM) was used to search for the molecular ions of the
common anthocyanidins throughout the analysis.
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All compounds were identified based on PDA spectra character-
istics, elution order, hydrolysis behavior, and mass spectra data.

2.8. Anthocyanin quantification by HPLC–PDA analysis

Quantification of anthocyanins was performed by HPLC–PDA in
the whole extract without SPE purification. Solvents, gradients,
injection volume, and flown rate were the same as described in
Section 2.7. Chromatograms were obtained at 520 nm for quantifi-
cation purposes. Calibration curves in three concentration ranges
(from 0.5 to 4.5 ppm; from 10 to 90 ppm; and from 100 to
250 ppm) were performed in different days (n = 3) to quantify each
anthocyanin as mg of cyanidin 3-O-rutinoside equivalents per
100 g of fresh sample weight. Linearity, detection, and quantifica-
tion limits were evaluated as described by ICH (2005).

2.9. Acid and alkaline hydrolysis of non-anthocyanin phenolic
compounds

Acid hydrolysis of purified fraction of phenolic compounds
(Section 2.2) was performed as reported by Ayaz, Hayirlioglu-
Ayaz, Gruz, Novak, and Strnad (2005). After sonication for
10 min, 1 mL of sample was mixed with 5 mL of 6 M HCl and sealed
under a N2 atmosphere. After 1 h in boiling water bath, the reaction
mixture was immediately cooled (ice bath/15 min).

For alkaline hydrolysis, 1 mL of 4 M NaOH was mixed with 1 mL
of phenolic compounds purified fraction (Section 2.2). The mixture
was sealed under a N2 atmosphere and saponified for 4 h in the
darkness. The reaction was stopped with 6 M HCl.

Fractions after acid and alkaline hydrolyses were load in C-18
SPE cartridge previously conditioned with water. Retained com-
pounds were washed with 4 volumes of HPLC–MS water and
eluted with pure methanol. Fractions in methanol were concen-
trated under nitrogen, recovered with water until remained 20%
of methanol in the final solution, and filtered through a 0.22 lm
GE Magna nylon membrane filter prior to injection.

2.10. Preparation of phenolic standards

Standard solution, containing 12 target compounds (gallic acid;
protocatechuic acid; 4-hydroxybenzoic acid; catechin; chlorogenic
acid; vanillic acid; caffeic acid; syringic acid; epigallocatechin gal-
late; p-coumaric acid; quercetin-3-O-rutinoside; quercetin), was
prepared mixing 100 lL of each stock solution at 1000 ppm in
methanol. The resulting pool of standards (1300 lL) was mixed
with water (5200 lL) to reach in a concentration of 20% of metha-
nol in water in the final solution.

2.11. Non-anthocyanin phenolics tentative identification by HPLC–
PDA–ESI/MS analysis

Purified fractions, alkaline, and acid hydrolysates were analyzed
using the HPLC equipment previously described in Section 2.2. The
same column, guard column, and filters as described in Section 2.7
were used for this analysis.

A solution of 10% of methanol in acidified water (0.1% of formic
acid) was used as mobile phase A and pure acetonitrile as mobile
phase B. Separation was obtained using a isocratic condition (2%
mobile phase B) during the initial 15 min, from 15 to 65 min, an
linear gradient from 2% to 40% of mobile phase B, 40% was kept
for more 3 min. At the end of the gradient, the column was washed
increasing to 100% B, keeping it for 5 min, and equilibrated to ini-
tial conditions for 5 min. The flow rate was 0.8 mL/min and the
injection volume was 100 lL. Spectral data were collected from
250 to 700 nm and chromatograms obtained in 280 nm for
hydroxybenzoates and flava-3-ols (proanthocyanidins), 320 nm
for hydroxycinnamates, and 360 nm for flavonol derivatives.

A 0.2 mL flow rate was diverted to the mass spectrometer. Mass
spectrometric analysis was performed under negative ion mode,
and other settings were the same reported in Section 2.7. Total
ion chromatography (TIC) was performed with a mass range from
100 to 2000 m/z.

A tentative identification and/or classification were proposed
using information from UV–visible spectra, comparison with stan-
dards, elution order, acid/alkaline hydrolysis behavior, and mass
spectra data.
2.12. Statistical analysis

Statistica software (Statsoft� version 7.0) was used to perform
statistical analysis. Analysis of variance (ANOVA) was used to eval-
uate the main effects of a three factor experimental design (year,
sampling date, and ripening stage) for each anthocyanin com-
pound. Tukey test with 95% of confidence interval was used for
mean comparisons of three replications (n = 3). Linear regression
was performed on calibration curves of cyaniding-3-glucoside to
evaluate linearity.
3. Results and discussion

3.1. Tentative identification of major anthocyanin compounds

Chromatography and spectral characteristics (Table 1) were
used for anthocyanin identification. Additionally, acid hydrolysis
products from Ceylon gooseberry extracts, spectral characteristics
and retention time comparisons with in-house berry extracts
anthocyanins were used as reference materials.

Fig. 1 shows the chromatogram obtained for Dovyalis hebecarpa
extracts in which there are 7 tentatively identified anthocyanins
from 10 detected peaks. The two major anthocyanins represented
more than 80% of the total area (Table 1) and were tentatively
identified as delphinidin-3-rutinoside (peak 2) and cyanidin-3-
rutinoside (peak 4). Identification of major peaks was based on
their molecular mass, the molecular mass of the daughter ions, elu-
tion order, and by comparison with anthocyanin chromatographic
and spectral behavior obtained from in-house prepared berry
extracts as detailed described below.

The MS fragmentation data analysis clearly showed that the
two early peaks in PDA chromatogram (peaks 1 and 2) produced
fragments that could correspond to the aglycon structure of del-
phinidin. Similarly, fragments that could correspond to cyaniding
aglycon structure were detected for peaks 3 and 4, and petunidin,
peonidin, and malvidin aglycones (peaks 5, 6, 8) for the three last
peaks in the chromatogram a 520 nm. Moreover, the elution order
in C-18 column is in agreement with the structural and chemical
characteristics of these compounds. Thus, as expected, hydroxyl-
ation at B-ring structure of anthocyanins should decrease retention
time in reverse phase chromatography as metoxylation should
increase. It is in agreement with acid hydrolysis results obtained
for Ceylon gooseberry extracts in which it was possible to perceive
longer retention as metoxylation of B-ring structure part appears
(petunidin) and shorter retention time for hydroxylated structures
(delphinidin and cyanindin). Thus, acid-hydrolyzed extracts
showed clear peaks in the chromatogram at 520 nm for delphini-
din (16.4 min, m/z 303), cyanidin (20.97 min, m/z 287), and petu-
nidin (22.6 min, m/z 317) confirming the presence of these aglycon
structures in non-hydrolyzed extracts. Other two minor peaks
were detected (25.02 and 26.95 min), however due to the low
concentration no clear PDA and MS spectra was obtained (See
Supporting material for anthocyanidin chromatographic profile).



Table 1
Chromatographic and spectral data from HPLC–PDA–MS analysis of anthocyanins in Ceylon gooseberry samples.

Peak number HPLC–PDA MS Tentative identification Relative percentage

Rt (min)* kmax (nm) MS+ MS2 Aglycone Anthocyanidin Pulp* Skin*

1 11.71 ± 0.05 275, 523 465 303 Delphinidin Delphinidin-3-glucoside 9.77 ± 0.73 12.15 ± 0.37
2 12.71 ± 0.06 275, 524 611 303 Delphinidin Delphinidin-3-rutinoside 60.44 ± 2.86 63.14 ± 2.75
3 14.01 ± 0.05 279, 516 449 287 Cyanidin Cyanidin-3-glucoside 4.51 ± 1.02 4.46 ± 0.55
4 15.30 ± 0.05 279, 516 595 287 Cyanidin Cyanidin-3-rutinoside 20.91 ± 1.94 17.04 ± 2.31
5 16.85 ± 0.04 275, 525 625 317 Petunidin Petunidin-3-rutinoside 3.19 ± 0.56 1.94 ± 0.54
6 19.33 ± 0.04 279, 522 609 301 Peonidin Peonidin-3-rutinoside 0.28 ± 0.05 0.21 ± 0.09
7 19.82 ± 0.03 274, 521 633, 493 303 Delphinidin Non identified 0.15 ± 0.07 0.28 ± 0.01
8 20.41 ± 0.06 272, 527 639 331 Malvidin Malvidin-3-rutinoside 0.48 ± 0.20 0.14 ± 0.06
9 22.49 ± 0.03 277, 517 477 287 Cyanidin Non identified 0.15 ± 0.05 0.14 ± 0.04
10 26.66 ± 0.03 270, 512 475 303 Dephinidin Non identified ND 0.27 ± 0.05

* Results are mean ± standard deviation (n = 4). ND: non detected.
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Peak 1, identified as delphinidin-3-hexoside (Fig. 1) had a
molecular ion at m/z 465 and a detected fragment at m/z 303
which could correspond to a loss of a glucoside moiety (162u)
due to the abundance of this hexose linked to anthocyanins in nat-
ure. Same fragmentation behavior was found for peak 3, however
with a detected fragment at m/z 287 that probably correspond to
cyaniding aglycone. The mass spectra of delphinidin-3-rutinoside,
cyanidin-3-rutinoside, petunidin-3-rutinoside, peonidin-3-rutino-
side, and malvidin-3-rutinoside showed peaks at the molecular
weight of each compound (Table 1), and a loss of m/z 308 frag-
ment. UV–visible spectra data of these peaks showed no absorp-
tion band at 310–320 nm range for peaks 1–7 and, which could
indicate the absence of acylations with aromatic organic acids in
the molecular structure of these anthocyanins. Moreover, even
with different proportion between peaks after alkaline hydrolysis
all rutinoside derivatives were detected, a strong evidence of the
absence of acylation at these peaks. Additionally, 3-rutinoside
derivatives are expected at longer retention times than 3-hexo-
sides due to a specific structural characteristic of rhamanose that
increases non-polarity of the molecule (Giusti & Jing, 2008).

Aiming to confirm the identification, all observed retention
times obtained for anthocyanins extracted from Ceylon gooseberry
Fig. 1. Chromatographic profile of anthocyanin fraction from Ceylon gooseberry
(Dovyalis hebecarpa) skin and flesh fruit part at 520 nm. Number in peaks are (1)
delphinidin-3-O-hexoside; (2) delphinidin-3-O-rutinoside; (3) cyanidin-3-O-hexo-
side; (4) cyanidin-3-O-rutinoside; (5) petunidin-3-O-rutinoside; (6) peonidin-3-O-
rutinoside; (7) non-identified; (8) malvidin-3-O-rutinoside; (9 and 10) non-
identified compounds. See Supporting material for MS and PDA spectra of each
peak.
were compared to the chromatographic profile of anthocyanins
from cherry, Concord grape juice, and strawberry anthocyanins that
were considered as reference materials. Berry anthocyanins
from these in-house extracts were identified based on elution
order, UV–visible spectra, fragmentation pattern on mass spectros-
copy, comparison with previous reports from literature, and the
extensive familiarity of our laboratory with these samples
(Fig. 2). Anthocyanin profiles from all of them were in agreement
with previous reports (Wang, Race, & Shrikhande, 2003; Wu &
Prior, 2005). Thus, cherry extract presented three major anthocya-
nins from 5 tentatively identified compounds, named as cyanidin-
3-rutinoside, cyanidin-3-hexoside, and peonidin-3-rutinoside with
retention times that match with anthocyanins in D. hebecarpa
chromatograms.

Anthocyanin composition of Concord grape juice showed their
typical anthocyanin profiles, as reported in previously published
data (Wang et al., 2003) with two glycosided anthocyanins as
major compounds (delphinidin-3-O-hexoside and cyaniding-3-O-
hexoside, peaks 3 and 5, Fig. 2). Acylated compounds were
detected after 20 min being delphinidin-3-coumaroylhexoside
the major one. Comparing the elution order of anthocyanins in
Ceylon gooseberry samples and in Concord grape juice it was pos-
sible to perceive that delphinidin-3-O-hexosides (peak 1) and cya-
niding-3-O-hexosides (peak 3) in both samples had similar
retention times. Moreover, malvidin-3-O-hexoside and petunidin-
3-O-hexoside were detected in Concord grape juice in shorter
retention times than that observed for rutinoside derivatives of
these anthocyanidins in D. hebecarpa samples (peaks 5 and 8).
These evidences were used as additional information to indicate
a tentatively identification for peaks 1, 3, 5 and 8 in Ceylon goose-
berry samples (Table 1 and Fig. 1).

Ten different anthocyanins were detected in strawberry
freeze-dried fruits, but only cyanidin-3-hexoside, pelargonidin-3-
O-hexoside, and pelargonidin-3-O-rutinoside were major peaks
representing 1.79%, 91.55%, and 4.61% of total area. Chromato-
graphic profile and identification of major anthocyanin in straw-
berry matched with previous data (Cerezo, Cuevas, Winterhalter,
Garcia-Parrilla, & Troncoso, 2010; Fredericks et al., 2013). The
retention time for cyanidin-3-O-hexoside in chromatograms of
strawberry samples matched with peak 3 in Ceylon gooseberry
chromatogram (Fig. 2). There were no detected peaks in D. hebecarpa
with the same retention times as pelargonidin-3-hexoside and
pelargonidin-3-rutinoside detected in strawberry extract. It could
indicate the absence of these compounds or the presence in
concentrations that were not able to be detected by the method.

Previously, it was reported a similar chromatographic profile for
a hybrid of D. hebecarpa with D. abssinica. This hybrid of species has
a yellow pulp and a red skin, in which anthocyanins showed the
same elution order and major compounds as observed for the D.
hebecarpa specie (de Rosso & Mercadante, 2007). In this work,



Fig. 2. Chromatographic profile comparison of anthocyanins from Ceylon gooseberry with in-house berry extracts. (1) Delphinidin-3-pentoside; (2) cyanidin-3,5-dihexoside;
(3) delphinidin-3-hexoside; (4) delphinidin-3-rutinoside; (5) cyanidin-3-hexoside; (6) cyanidin-3-rutinoside; (7) petunidin-3-hexoside; (8) pelargonidin-3-hexoside; (9)
petunidin-3-rutinoside; (10) pelargonidin-3-rutinoside; (11) peonidin-3-hexoside; (12) peonidin-3-rutinoside; (13) malvidin-3-hexoside; (14) malvidin-3-rutinoside; (15)
delphinidin-3-(600-acetoyl)hexoside; (16) delphinidin-3-(600coumaroyl)-5-dihexoside.
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the MSn fragmentation reactions allowed the detection of frag-
ments from disaccharide linkage between the sugar moieties, glu-
cose and rhamanose. It has happen due to the free molecule
rotation, increasing gas accessibility which resulted in this
fragmentation pattern. In our work, fragmentation was obtained
during ionization process (in source fragmentation) which does
not have enough energy to linkage the molecule at this site.
Nevertheless, in the delphinidin-3-rutinoside mass spectra, it was
possible to perceive a small peak in m/z 463 that could correspond
to 1,6-glucosyl linkage and loss of deoxyhexose moiety (146u).

Peaks 7, 9, and 10 (representing less than 0.28% of the total peak
area in skin and pulp samples, Table 1) were not identified since
MS spectra did not show a logical fragmentation pattern or PDA
spectra did not match with aglycon identification. However, MS
fragments and PDA information obtained for peak 7 strongly indi-
cate a presence of a delphinidin derivative since the k maximum
value was similar to values obtained for delphinidin-3-hexoside
and delphinidin-3-rutinoside. Moreover, one possible structure to
this compound could be delphinidin-3-(600-coumaroyl)hexoside,
in which ion fragment 633 m/z is a sodium adduct of this com-
pound. Nevertheless, the characteristic absorbance peak in the
310–340 nm range (Rodriguez-saona et al., 1998) was not detected
in PDA spectra characteristic from acylation.

Ceylon gooseberry anthocyanin profile was very similar to black
currant pigments (Frøytlog, Slimestad, & Andersen, 1998) with 3-
rutinoside derivatives of delphinidin (30.6%) and cyanidin (43.6%)
as the major pigments followed by delphinidin-3-glucoside
(12.9%) and cyanidin-3-glucoside (9.3%). Peonidin-3-rutinoside
(1.5%) and malvidin-3-rutinoside (2.1%) were detected as minor
pigments, similarly to D. hebecarpa with malvidin-3-rutinoside as
one of minor compounds detected. Another publication for black
currants confirmed previous data and identified more 5 minor
anthocyanins that correspond to less than 2% of total area
(Borges, Degeneve, Mullen, & Crozier, 2010).

3.2. Qualitative and quantitative comparison of anthocyanins in
Ceylon gooseberry flesh and skin fruit parts over two seasons

Anthocyanins in flesh versus skin fruit parts of D. hebecarpa
were evaluated for qualitative and quantitative differences over
two yearly harvests (in autumn and winter) (Table 1).

For quantification purposes using PDA detector, anthocyanins
were quantified as cyanidin-3-glucoside equivalent using three
different concentrations ranges in calibration curves. The highest
range (from 100 to 250 ppm of cyanidin-3-glucoside) was used
to quantify delphinidin-3-rutinoside in skin samples. An interme-
diate range (from 10 to 80 ppm of cyaniding-3-glucoside) was used
for peaks 1, 3, 4, and 5 in skin and 1, 2, and 4 in pulp samples.
Finally, the lowest range (from 0.5 to 4 ppm of cyaniding-3-gluco-
side) was used to quantify compounds in lower concentrations
(peaks 6 and 8 in skin samples and peaks 3 and 5 in pulp samples).
As recommended (ICH, 2005), statistical treatment of data from
calibration curves was performed to evaluate the linearity.
Regression results showed that model is linear without lack of



Table 2
Content of anthocyanins from flesh and skin of Ceylon gooseberry samples.

Peak # Tentatively identification
anthocyanins

Rt (min) Concentration (mg/100 g FW) ACY/total concentration proportion

Flesh Skin Flesh Skin

April July April July April July April July

1 Delphinidin-3-O-glucoside 11.71 ± 0.05 7.26 ± 0.41 8.46 ± 0.65 82.45 ± 4.23 68.96 ± 5.95 0.12 0.11 0.13 0.13
2 Delphinidin-3-O-rutinoside 12.71 ± 0.06 35.39 ± 1.31 48.17 ± 4.11⁄ 403.00 ± 22.24 324.08 ± 27.65⁄ 0.58 0.62 0.62 0.61
3 Cyanidin-3-O-glucoside 14.01 ± 0.05 4.35 ± 0.33 4.57 ± 0.23 31.66 ± 1.47 24.14 ± 9.34 0.07 0.06 0.05 0.05
4 Cyanidin-3-O-rutinoside 15.30 ± 0.05 14.19 ± 0.07 16.82 ± 1.01⁄ 102.63 ± 6.53 93.76 ± 7.61 0.23 0.22 0.16 0.18
5 Petunidin-3-O-rutinoside 16.85 ± 0.04 n.q. n.q. 16.27 ± 1.00 14.97 ± 0.68 n.q. n.q. 0.03 0.03
6 Peonidin-3-O-rutinoside 19.33 ± 0.04 n.q. n.q. 4.82 ± 0.29 4.66 ± 0.16 n.q. n.q. 0.01 0.01
8 Malvidin-3-O-rutinoside 20.41 ± 0.06 n.q. n.q. 4.72 ± 0.48 4.40 ± 0.37 n.q. n.q. 0.01 0.01

Sum of total concentration
FW 61.19 78.02 645.55 534.97

Results are mean ± SEM (n = 6) expressed as cyanidin-3-rutinoside equivalent. The signal ⁄means that values are different from values of April samples (Tukey test, p 6 0.05).
ACY: anthocyanin, FW: fresh weight. DM: dry matter by freeze-drying. n.q.: not quantified. See Supporting material for PDA and MS spectra of each peak, and calibration
curve for cyanidin-3-rutinoside.
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fitness in all evaluated ranges (see Supplementary material for cal-
ibration curve data). Moreover, using the calibration curve data
(ICH, 2005) values of 1.4 and 4.3 mg/100 g of sample were the
detection and quantification limits adopted in this work,
respectively.

A similar chromatographic profile for anthocyanins extracted
from skin and pulp samples were obtained. Only minor peaks
(peak 10) was not detected in extracts from pulp samples which
could be present in concentration under the method detection
limit (Table 1).

Quantification results showed that all anthocyanin were pres-
ent in higher concentrations in skin than in pulp (Table 2). Conse-
quently, the concentration sum of all compounds resulted in a total
that was higher in skins (534.97 and 645.55 mg as cyanidin-3-ruti-
noside equivalent/100 g of FW) than in pulp samples (61.19 and
78.02 mg as cyanidin-3-O-rutinoside equivalent/100 g of FW).

Comparison of anthocyanin content determined in Ceylon
gooseberry fruits with levels of other sources from literature
should consider sample treatment. The mainly reason is because
these phytochemicals are frequently analyzed in entire fruits in lit-
erature. In the present work, skins were analyzed separated
because this fruit is commonly consumed after peel removal. Thus,
pulp fruit part showed higher concentration of anthocyanin than
entire raspberries (39.7 mg/100 g of FW), red currant (14.7 mg/
100 g of FW), and cranberries (32.5 mg/100 g of FW) and lower
than entire blackcurrants (247.9 mg/100 g of FW) and blueberries
(215.9 mg/100 g of FW) all of them determined by HPLC–PDA in
equivalents of cyaniding-3-glucoside and detected at 520 nm
(Borges et al., 2010). However, entire fruit could present similar
values to reported anthocyanin content in entire blueberries and
blackcurrants because skin fruit part showed 6–10 times higher
anthocyanin levels than pulp of Ceylon gooseberry.

Anthocyanin levels determined for skin samples of D. hebecarpa
were higher than values reported for Gamay grape skins (64.3–
84.4 mg of cyaniding-3-glucoside equivalent/100 g FW) (Pace
et al., 2014), similar to Legacy highbush blueberry skin (580 mg
of cyaniding-3-glucoside equivalent/100 g FW), and lower than
skins from Bluegold and Brigitta highbush blueberry varieties
(715 and 733.5 of mg cyaniding-3-glucoside equivalent/100 g FW).

Anthocyanin concentration reported for different cultivars of
cherries in equivalents of cyandin-3-rutinoside were similar to
Ceylon gooseberry pulp content specially for the darkest variety
of the species Prunus avium (65.08–73.73 mg/100 g FM) and Prunus
cerasus (59.75–68.71 mg/100 g FW) (Cao et al., 2015).

Samples analyzed over 2 years did not show significant differ-
ences in the anthocyanin profile and the total content of anthocy-
anin. Notwithstanding, ANOVA results revealed a significant
season effect (for results of autumn versus winter samples) on
cyanidin-3-O-rutinoside and delphinidin-3-O-rutinoside for pulp
samples, and only in delphinidin-3-O-rutinoside for skin samples.
In skin samples the highest values were obtained in April (autumn)
and for flesh fruit part in July (winter) which could be a result of
plant defense mechanism to different non-ideal climate conditions.

As reported before, D. hebecarpa requires moisture and temper-
atures higher than 20 �C for perfect fruit development (Morton,
1987). The climate information available for this region reports
that June and July are months of a dry weather and lower average
temperatures recognized as a dry winter season. It could submit
plant to a situation of water stress and chilling accumulation
increasing levels of anthocyanin in pulp fruit part. Moreover, in
skins anthocyanins can act as a barrier against UV radiation (Dieter
Treutter, 2006) and it could explain the higher concentration of
these compounds after earlier autumn (March and April). Since this
season is recognized by higher averages of day and night temper-
atures than in winter. In agreement with this hypothesis, a previ-
ous study with different black currants cultivars cultivated under
different latitudes and weather conditions clearly showed a posi-
tive correlation of delphinidin-3-glucoside and delphinidin-3-ruti-
noside levels with temperature and radiation (Zheng et al., 2012).

Profile composition previously reported for hybrid of D. hebe-
carpa � D. abssinica had 9 identified compounds, in which 7 of
them were the same identified in this work. Delphinidin-3-(600-
acetyl)-glucoside and pelargonidin-3-rutinoside were identified
in this hybrid after malvidin-3-rutinoside. These anthocyanins
had the same elution order than two non-identified compounds
in D. hebecarpa samples, but with different PDA and MS spectral
information. Individual compound concentrations for each antho-
cyanin were from 5 to 20 times greater in D. hebecarpa than in
the previously reported hybrid fruit (De Rosso & Mercadante,
2007).

3.3. Other phenolics in Ceylon gooseberry flesh and skin

Previously to purification using solid-phase extraction, analyses
of skin and flesh crude extracts showed that anthocyanins were the
major phenolic class in this specie corresponding alone to over
68.5% and 85.93% of total peak area in flesh and skin samples,
respectively. Thus, Fig. 3A and B showed the chromatographic pro-
file of polyphenols obtained after purification and concentration of
extracts from pulp and skin samples of D. hebecarpa, respectively.

Both fruit parts showed a complex composition of phenolic
compounds with 30 compounds in flesh and 29 in skin samples
(Table 3 and Fig. 3). The UV–visible maximum absorption bands
of each compound was compared with authentic standards and



Fig. 3. Chromatographic profile of phenolic compounds from Ceylon gooseberry pulp (A) and skin (B) fruit part. Figures correspond to the purified fraction phenolic
compounds (without anthocyanins) previously to hydrolysis (whole extract). Peak numbers were assigned as in Table 3.
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used to classify phenolics into classes (Table 3) as previously pro-
posed (Määttä, Kamal-Eldin, & Törrönen, 2003; Määttä-Riihinen,
Kamal-Eldin, & Törrönen, 2004). The MS spectral information and
the mild in-source fragmentation obtained for negative ions were
used to obtain more information about the molecular masses of
conjugates and the structural complexity of each compound. Since
phenolics from Ceylon gooseberry have not been previously
reported, comparison with previous literature was not possible.
However, whenever possible, previous reports on characterization
of other berries were used for comparison with Ceylon gooseberry
profile aiming to support the tentative identification of each peak.
Finally, acid or alkaline hydrolysis was performed attempting to
obtain aglycons and non-acylated compounds from structure link-
age of native forms (Xu & Howard, 2012).

Thirty different hydroxybenzoic acid derivatives were detected
in skin and pulp samples of Ceylon gooseberry in which most of
them were tentatively identified as galloyl esters (peaks 1–3, 5,
6, 8–11, 13, 15–18, 20, 27, and 29). The spectral features used
to classify these compounds were previously described by
Määttä-Riihinen and coworkers in their research with Ribes species
(Määttä et al., 2003) and with Rubus species (Määttä-Riihinen et al.,
2004). Thus, soluble galloyl esters will show no changes in the
spectrum shape but due to the esterification to a polyol core these
compounds will show a significant bathochromic shift (10–15 nm)
in the maximum absorption band (280–285 nm) when compared
to of its aglycon structure, the gallic acid (270 nm). These features
are show in Table 3.

Peaks 12, 22, 23, and 28 were assigned as flavan-3-ols deriva-
tives or proanthocyanidins due to spectral similarity with epigallo-
catechin-gallate (Table 3), the available standard for this phenolic
class. Moreover, 271 nm was previously reported as the major
absorbance band for flavan-3-ols (Treutter, 1998). A recent work
with four Brazilian berries reported proanthocyanidins as minor
compounds being present as epicatechin-epicatechin in only one
of these fruits (Da Silva, Rodrigues, Mercadante, & de Rosso, 2014).

The mild fragmentation and negative ions obtained in this study
did not allow an unequivocal identification of each compounds
detected in D. hebecarpa extracts. However, for some peaks it



Table 3
Chromatographic and spectral data from HPLC–PDA–MS analysis of phenolic compounds in Ceylon gooseberry pulp and skin samples.

Peak* Rt (min) kmax Base peak MS (m/z) Other fragments MS (m/z) Tentative identification Pulp Skin

280 nm – Flavan-3-ols and hydroxybenzoic acid derivatives compounds
1 3.23 225, 284 347 337, 399 Galloyl ester X

4.48 214, 270 169 Gallic acid (Std)
2 5.09 283 375 Galloyl ester X
3 5.47 284 481 331 (monogalloyl hexoside), 579, 517,

319 (M-162)
Di-galloyl hexoside X X

4 6.35 252, 290 329 400, 375 Vanillic acid hexoside X
5 7.27 278 375 Galloyl ester X
6 7.45 216, 285 381 153 Galloyl ester X

8.47 215, 259, 293 153 Protocatechuic acid (Std)
7 11.03 212, 268 485 439.05, 465.05, 232.95, 375.05,

331(monogalloyl hexoside), 233
Unidentified X

8 11.45 215, 275 ND Galloyl ester X
9 12.65 289 485.2 475.05, 337 Galloyl ester X

15.08 254 137 4-Hydroxybenzoic acid (Std)
10 15.17 226, 284 659 Galloyl ester X

16.38 278 289 Catechin (Std)
11 21.11 286 ND Galloyl ester X

21.24 217, 260, 292 353 Vanillic acid (Std)
12 21.35 217, 272 477 Flavan-3-ol X
13 23.32 289 319 Galloyl ester X X

24.31 213, 273 197 Syringic acid (Std)
14 24.94 218, 266 431 421 4-Hydroxybenzoic acid derivative X

25.12 211, 273 457 EGCG (Std)
15 26.36 278 431.15 329, 421 Galloyl ester X
16 26.47 211, 279 329 659 Galloyl ester X
17 27.22 280 437 Galloyl ester X
18 28.03 214, 285 ND Galloyl ester X
19 28.68 289 481.05 579, 963 HHDP hexoside X X
20 30.95 215, 280 ND Galloyl ester X
21 32.23 215, 286 577, 613 Dimer B2 (Flavanol) X
22 32.82 224, 273 359.05 421 Flavan-3-ol X X
23 33.28 215, 271 ND Flavan-3-ol X
24 33.66 228, 274 451.05 461, 471, 441 HHDP-trigalloyl lactonized X X
25 34.53 214, 281 ND Galloyl ester X X
26 36.43 219, 281, 325sh 479.05 Unindentified X X
27 38.63 226, 286 421.1 479 Galloyl ester X X
28 38.99 220, 276 421 Flavan-3-ol X X
29 39.66 225, 281 591.2 489.10, 387.15 Galloyl ester X X
30 41.34 222, 283 543.15 589.15, 579.25, 1087.55 HHDP-monolactonized tergalloyl group X X

320 nm – Hydroxycinnamic acid derivative compounds
1a 8.46 231, 313 315 231, 413, 631 p-Coumaric derivative X
2a 9.77 287sh, 319 323 233, 353, 519 Ferulic and/or cafeic acid derivative X
3a 10.10 220, 299sh, 326, 323,315 Ferulic and/or cafeic acid derivative X
4a 14.45 311 ND p-Coumaric derivative X
5a 18.03 225, 309 337 p-Coumaric derivative X
6a 20.12 212, 313 325 (164 + 162 + 45) p-Coumaric sugar ester X X

20.80 218, 324 353 707 Chlorogenic acid (Std)
22.34 217, 233sh, 322 179 Caffeic acid (Std)

7a 22.74 215, 292sh, 322, 485 475, 367 Ferulic or cafeic acid derivative X
28.84 225, 308 163 p-Coumaric acid (Std)

8a 31.58 216, 291 ND Unidentified X
9a 32.98 214, 270, 331 ND Unidentified X
10a 35.82 267, 333 577 Unidentified X X
11a 36.82 267, 331 431 Unidentified X X
12a 38.25 217.2, 310.7 713 p-Coumaric derivative X X
13a 46.08 220.6, 314.8 577 p-Coumaric derivative X

360 nm – Flavonols
1b 30.67 264, 292, 353, 479 Myricetin hexoside X X

33.14 254, 354 609 Quercetin-3-O-rutinose (Std)
43.26 254, 364 301 Quercetin (Std)

* Numbers were assigned in accordance with Fig. 3. Std: standard. ND: not detected.
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was possible to identify the molecular weight and some fragments
that in agreement with UV–visible spectrum data and literature
information were used to suggest a possible identification. Thus,
peak 3 showed the negative ion at m/z 481 which could corre-
spond to a sum of two de-protonated gallic acid molecules
(169 amu) with a hexose moiety (162 amu) less one water mole-
cule (18). Furthermore, at the same retention time another frag-
ment at m/z 319 could correspond to the loss of one hexose
moiety (M-162 = 319). Additionally, the UV–visible spectra
showed maximum bands similar to gallotannins at 275–285 nm
(Määttä-Riihinen et al., 2004) helping to assume that peak 3 could
be a molecule of di-galloyl hexoside.

Peak 4 was assigned as vanillic acid hexoside with a molecular
weight of 329 which correspond to a negative charged vanillic acid
(167) plus a hexose moiety (162). Besides, a previously published
data showed UV–visible spectral maxima values at 260–264 nm
and 290–296 nm and a molecular weight of 330 for vaniloylhexose
and for vanillic acid hexoside in Ribes species (Määttä et al., 2003)
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and in the Brazilian berry Araça (Da Silva et al., 2014), respectively.
These data are in agreement with spectral characteristics observed
for peak 4 (Table 3). Moreover, peak 3 and 4 showed the same elu-
tion order than reported elution for di-galloyl hexoside and vanillic
acid hexoside in Araça samples (Da Silva et al., 2014).

Gallotannins are precursors of ellagitannins which are formed
by C–C oxidative coupling of two adjacents galloyl groups forming
HHDP which will be linked to a polyol core (Talcott & Krenek,
2012). Due to this reaction a hypochromic effect will be observed
maximum absorption at 275–285 nm of galloyl esters and gallo-
tannins as well (Määttä-Riihinen et al., 2004). As PDA spectra
reported by Määttä-Riihinen et al. (2004), ellagitannins will pres-
ent a great absorption at 220–230 nm, a less intense absorption
at 275–285 nm that depend of the number of HHDP and galloyl
molecules esterified in the structure, and a the absence of the char-
acteristic band at 360 nm of ellagic acid. Based on this evidences,
peaks 24 and 30 were assigned as ellagitannins and the MS nega-
tive ions are matching with reported fragments for HHDP-trigalloyl
lactonized and HHDP-monolactonized tergalloyl group found in
Uvaia (Da Silva et al., 2014), another Brazilian berry from south-
west region, and in flower buds of Syzygium aromaticum Merr. &
Perry (Bao et al., 2012), respectively. The two fruit sources (Araça
e Uvaia) and the flower bud of Syzygium aromaticum Merr. & Perry
belongs to Myrtaceae family from Magnoliopsida class as well as
D. hebecarpa. This evidence could support some similar phenolic
compounds between these plant materials.

Peaks with greater absorbance at 320 nm than at 280 or 360 nm
were tentatively classified as hydroxycinnamic acid derivatives
and UV–visible spectral characteristics used to classify as p-cou-
maric acid derivatives and caffeic and/or ferulic acid derivatives
as proposed by Määttä-Riihinen et al. (2004). This classification is
supported by the presence of peaks with the same retention time
than cafeic and p-coumaric acid standards in samples of Ceylon
gooseberry that were treated by alkaline hydrolysis, in some cases
with the same MS and UV–visible spectra than this standards (see
Supporting material for chromatograms of hydrolyzed samples).
MS spectral information did not additional provide structural elu-
cidation with identification of possible linkage with sugar or
between phenolic acids.

Only one peak (peak 8) showed greater absorbance at 360 nm
than at 280 or 320 nm and it was assigned Myricetin-hexoside.
These compound showed two major absorption bands at 264 and
353 nm in UV spectra which are typical to UV absorption bands
for flavonols (Tomás-Barberán & Ferreres, 2012). This maximum
absorption bands are reported as corresponding to the B-ring or
cinnamoyl-nucleus (Band I from 325 to 400 nm) and A-ring or ben-
zoyl-nucleus (Band II from 240 to 295 nm). Moreover, peak 8
showed a fragment at m/z 479 that correspond to the molecular
weight of Myricetin linked to a hexose moiety. Finally, this flavonol
was detected and identified as Myricetin hexoside in other berries
(Lago-Vanzela, Da-Silva, Gomes, García-Romero, & Hermosín-
Gutiérrez, 2011; Määttä et al., 2003) with similar spectral charac-
teristics than peak 1b (Fig. 3) from Ceylon gooseberry polyphenol
chromatographic profile.

Peak 7 is the major phenolic compound in chromatogram of
pulp samples with UV spectra maximum band that could suggest
a 4-hydroxycinnamic acid derivate with major absorption near to
262 nm (Määttä et al., 2003). However, MS spectra showed many
fragments with similar intensity to the major negative ion (base
peak, 485, Table 3) which could indicate co-elution. Furthermore,
there is a ion at m/z 331 that could correspond to galloyl hexoside
molecule present as a result of in-source fragmentation or as co-
elution.

In summary, even no clear structure elucidation was obtained
for minor phenolic compounds in Ceylon gooseberry pulp and skin,
it was possible to classify major phenolic compounds into classes
as flavonol, hydroxycinnamic acid, hydroxybenzoic acid, and flava-
nols derivatives (Table 2). Except for peak 7 in pulp samples chro-
matogram which is the major compound only in this fruit part,
peaks numbered as 19, 22, 24, and 30 were the major phenolic
compounds found in both fruit parts, in pulp and in skin samples
of Ceylon gooseberry (Fig. 3). The tentative identification proposed
in this work has assigned these peaks as HDDP-hexoside, a flavonol
derivative, and two ellagitannins (HHDP-trigalloyl lactonized and
HHDP-monolactonized tergalloyl group) corresponding to 47.9%
and 45.4% of total phenolic compounds than not anthocyanins in
pulp and skin samples, respectively.

Anthocyanins were the major polyphenols in this specie corre-
spond alone to more than 50% and 60% of phenolic compounds in
Ceylon gooseberry pulp and skin, respectively. A total of 10 differ-
ent anthocyanins were detected and 7 of them were tentatively
identified, corresponding to 99.6% of the total content.

D. hebecarpa was a rich source of glycosylated anthocyanins
with delphinidin-3-rutinoside and cyanidin-3-rutinoside as major
compounds. Moreover, higher concentration of anthocyanins was
detected in skin (2054.91 and 1616.96 mg cy-3-glu eq/100 g of
freeze-dried samples in autumn and winter, respectively) with
higher proportions of glycosylated delphinidin compounds than
in flesh samples.

Anthocyanins quantification showed a possible effect of season
variation in a different manner for flesh and skin samples, mainly
in delphinidin-3-rutinoside level. Thus, after autumn season, an
increased level of this compound was found in skin samples, and
after months of dry and lower weather temperatures, in flesh.
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