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This report derives explicit solutions to problems involving Tchebycheffian 
spline functions. We use a reproducing kernel Hilbert space which depends on 
the smoothness criterion, but not on the form of the data, to solve explicitly 
Hermite-Birkhoff interpolation and smoothing problems. Sard’s best approxi- 
mation to linear functionals and smoothing with respect to linear inequality 
constraints are also discussed. Some of the results are used to show that spline 
interpolation and smoothing is equivalent to prediction and filtering on realiza- 
tions of certain stochastic processes. 

1. INTRODUCTION 

Suppose we are given a closed interval I = [a, ZJ], a set {yJ of n constants, 
and a set {ti} of n distinct constants in (a, b). Consider the class of functions 

Z? = {u : Dmmlu is absolutely continuous and Lu E gs(I)) (1.1) 

where L is an m-th order linear differential operator. Of all functions u E &’ 
satisfying 

@i) = Yi i = 1, 2,..., n, (l-2) 

we seek one, say 4, which minimizes l: (Lu)~. It is now a classical result that 
when L = Dm and n > m, then a solution ri exists and is unique. The function 
ti is called the (2m - 1)-th degree natural polynomial spline of interpolation 
to the data {(ti , yJ>. 
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Recently (see, for example [3, 71) spline problems have been placed in the 
context of an abstract Hilbert space. In this paper, the class &? is made into a 
Hilbert space in which the linear functionals Fi defined by 

Fiu = u(tJ (l-3) 

are continuous, and hence have representers Z& so that (1.2) can be written 

<#i a u> = Yi i = I, 2 )...) n. (1.4) 

Moreover, there exists a subspace s1 of &’ such that am = // P~u II2 for 
all u E .%’ where PI is the projection of &’ on s1 . 

There are several important advantages of placing spline problems in an 
abstract context. One is that existence and uniqueness proofs become con- 
sequences of straightforward results in the geometry of Hilbert space. A 
second advantage is the facility with which the results can be extended to 
more general operators than Dn and to more general linear functionals. An 
important disadvantage of an abstract approach is the nonconstructive nature 
of the proofs, for in general there is no way to construct the representer of a 
given linear functional. 

De Boor and Lynch [4] suggested the use of reproducing kernel Hilbert 
spaces in problems involving splines. If the linear functional N :f+f(t) is 
continuous for each t E 1, then it is well known that there exists a reproducing 
kernel which, if known, allows one to construct the representer of any 
bounded linear functional. In this paper the reproducing kernel structure 
is combined with known results on total positivity to provide a unified 
approach to a variety of problems involving Tchebycheffian spline functions. 

In Section 2, we exhibit the explicit reproducing kernel structure for Z. 
Section 3 uses the results of Section 2 to provide an explicit solution to the 
following generalized Hermite-Birkhoff problem: Given a set (Nt} of con- 
tinuous linear functionals on 2 and a set { yi} of scalars, find a function z2 E Y? 
which minimizes Ji (Lu)~ subject to the constraints Niu = yi . Section 4 
discusses approximations to linear functionals. 

Sections 5 and 6 consider variations of the interpolation problem. In 
Section 5 we treat the following smoothing problem: Rather than constrain 
the function according to Niu = yi we insist only that Niu be “near” yi . 
More precisely, we seek a function 22 E ti which minimizes 

s 1 C-W2 + 1 PP - ri) si,(N,u - yr) 

where S = [Q] is a positive definite matrix. 
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Section 6 extends a problem recently solved by Ritter [1 l] of replacing the 
equations Niu =yi by inequalities of the form 

yp. < Iv@ < zi (14 

where they, and a, are prescribed. We seek a function a E Z which minimizes 
c (Lz~)~ subject to (1.5). The reproducing kernel structure is used to show 
that this problem is reducible to a standard quadratic programming problem. 

In Section 7 we describe a stochastic process for which spline interpolation 
and smoothing are equivalent to minimum variance unbiased linear prediction 
and smoothing. 

2. THE REPRODUCING KERNEL STRUCTURE 

Without loss of generality we restrict our attention to the interval [0, 11. 
Let (ai} be a set of m strictly positive functions such that ai E 0 and without 
loss of generality we take a,(O) = 1. Define the m-th order differential opera- 
tor L by 

L=D$D-$.D-$ (2.1) 

where D is the differentiation operator. Define operators h& by 

M,=I, Mi=D’Md,, 
%+5-i 

i = 1, 2,..., m - 1 (2.2) 

where I is the identity operator. For i = 1,2,..., m, let the function wi be 
defined by 

a1 = a, 

f+(t) = a,(t) 1: a,, L-J k~-i 

(2.3) 

(Wu,,) (0) = 8i.3 9 i,j = 0, l,..., m - 1 (2.4) 

where 6 is the Kronecker delta. It is well known ([9] p. 379) that the set {We} 
is an extended Tchebycheff system. 
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Let 

3$ = {U : Dnz% is absolutely continuous and Lu = O}. 

Hence So is an m-dimensional vector space spanned by the wi . From (2.2) 
and (2.4) we have that J’& is a Hilbert space with inner product 

and orthonormal basis {q}. Let 

Zr = {u : D-h is absolutely continuous, Lu E 64, and 

(Mp) (0) = 0, i = 0, l,..., m - 1). 

Clearly SI is a Hilbert space with inner product 

<UP V>l = @4 w. 

Let 

Z? = {u : D-k is absolutely continuous and Lu E Z2} 

so that .X = Ho @ Zr is a Hilbert space with inner product 

(2.5) 

(2.6) 

<UP v> = (u, v>o + <UP V>l * (2.7) 

We now proceed to construct a reproducing kernel for ST; that is, we 
construct a function K defined on [0, l] @ [0, l] such that for every fixed 
so E [0, l] we have: (1) K(s, , *) E .%‘, and (2) u E 3’ if, and only if, 

%I) = <ml 3 *I, u>. 

For an account of reproducing kernel Hilbert spaces, the reader is referred 
to Aronszajn [2]. 

Let Kl be the symmetric positive definite function defined by 

and C(sO, *) = LK,(s, , .). Clearly, for fixed S, , Kl(s,, , *) E ZI , Moreover, 
it is known ([g] chap. 10) that G is the Green’s function for the differential 
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equation Lu = b E Za with boundary conditions (II+) (0) = 0, 
i=O,l ,..., m - 1. Hence u E XI if, and only if, for any fixed S, E [0, 1] 

Therefore, KI is the reproducing kernel for XI and 

K,(s, t) = s’ G(s, Y) G(t, I) dr. 

Letting 

we verify readily that K, is the reproducing kernel for X0 , and hence the 
function 

K = K. + Kl (2.10) 

is the reproducing kernel for s?. 
The proof of the following lemma is an elementary consequence of the 

reproducing kernel structure. 

LEMMA 2.1. Let X be a Hilbert space with reproducing kernel Q. If N is a 
linear functional on Z and $ the function deJned by #(so) = NQ(s, , *), then N 
is continuous if, and only if, 4 E X, in which case Nu = (I/, u) for all u E X 
(i.e. # is the representer of N). 

The following lemma follows from the preceding. 

LEMMA 2.2. Let PO and PI be the projection operators in X onto So and 
Xl respectively. Then if N is a continuous linear functional with representer #, 
we have 

and 

(PO+) (so) = 5 4so) We), 
i=l 



TCHEBYCHEFFIAI’? SPLINE FUNCTIONS 87 

We remark that the linear functional N defined by NU = u(j)(ta) for 
0 < t, < 1 and j = 0, l,..., m - 1 is continuous on 2. This fact, whose 
proof follows from Lemma 2.1, will be used in the examples in the sequel. 

3. THE GENERALIZED HERMITE-BIRKHOFF PROBLEM 

We are now in a position to solve a generalized Hermite-Birkhoff problem. 
In order to apply the results of Section 2 we need the following lemma. 

LEMMA 3.1. Let .X = X0 @ SI be the direct sum of an m-dimensional 
Hilbert space X- with basis {wl , wa ,..., We} and any Hilbert space XI . Let 
PO and PI be the projections onto X0 and &I respectiveb and let & , & ,..., & 
be n 3 m elements of 8 such that 

(i) The set {P,,& : i = 1, 2,..., n> spans so, and 
(ii) The set (PI+3 : i = 1, 2,..., n} is linearly independent. 

If Y’ = (Yl 9 Y2 ,..a, Yn) is any n-tuple of scalars, then the unique element zi E .% 
which minimizes (PIu, PIu> subject to the constraints 

(*i,“)=Yi, i = 1, 2,..., n (3.1) 
is 

d = w’( T,FT’)-l TWy + EJ’,F[Z - T’( Tt=-‘T’-1 TF] y (3.2) 

where T is the m x n matrix [(wi , &)I, JY is the n x n matrix [(PI& , PI&)], 
w = (q , w2 )..., ~4, and 5 = (Plh , Pl~2 ,..., PlhJ’. 

Proof. By assumption, T and II: are of full rank. We can write 
zi = w’u + S’P + x where a’ and l3’ are some (as yet undetermined) m-tuple 
and n-tuple respectively of scalars, x E Xi , and (x, fl) = 0. Clearly we 
must take x = 0. The set of constraints (& , zi) = yi is equivalent to 
T’a + Ep = y or 

f3 = El(y - T’a). (3.3) 
We have 

(PIG, P& = p’zp. (3.4) 

If (3.3) is substituted into (3.4), it is trivial to verify that (3.4) is minimized 
if and only if 

a = (TJF T’)-l TE1y 
whence 

f3 = Z-‘[Z - T’( TE-l T’)-l TF] y. 

The explicit solution to the generalized Hermite-Birkhoff problem is 
stated in the following theorem. 
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THEOREM 3.1. Let L be an m-th order differential operator of the form (2. I), 
let A? be the Hilbert space deJined in Section 2, let {wi : i = 1,2,..., m) be as 
defmed by (2.3), and let KI be defined by (2.8). Suppose {Ni : i = 1, 2,..., n} 
is a set of n 3 m continuous linear functionals on Z? such that 

(i) The rank of the m x n matrix T = [NpJ is m, and 

(ii) The n functions fi dejned for jixed s, by &(s,,) = NJQs,, , .) 
are linearly independent. 

vu = (Yl ,Y2 ,-VYJ * 2s any vector of scalars, then the unique function 12 E 3’ 
which minimizes $i(Lu)” subject to the constraints 

NiU = yi p i = 1, 2,..., 71 (3.5) 

is given by (3.2) where w = (wl , w2 ,..., CO,)‘, e = (tI , f2 ,..., 5,)’ and L’ is the 
n x n matrix [N&l = [(li, S,)]. 

The proof of Theorem 3.1 follows directly from Lemma 3.1 by letting & 
be the representer of Ni and using the results of Section 2. 

EXAMPLE 3.1. Let Ni be Ni : f -+ f (ti) where the ti E (0, 1) are distinct. 
Condition (i) of the theorem is satisfied because the set {wj} forms a Tcheby- 
cheff system and condition (ii) is satisfied because Kl is positive definite on 
(0, 1) @ (0, 1). The unique function zi E 2 which minimizes si (Lu)~ subject 
to the constraints u(ti) = yr is called the natural L-spline of interpolation to 
the points {(ti , yJ>. 

EXAMPLE 3.2. Let Ni be defined by Niu = u(“i)(ti) where m, < m and 
0 < ti < 1. It can be shown that Kl is a Green’s function of the type con- 
sidered by Karlin ([8] chap. 10, Sets. 7, S), and hence that condition (ii) of 
the theorem is satisfied. In general, however, condition (i) will fail. In the 
case L = Dm, condition (i) is equivalent to the condition of Schoenberg [15] 
that the problem be m-poised. The concept of m-poisedness is also studied 
by Ferguson [5]. 

4. BEST APPROXIMATION OF CONTINUOUS LINEAR FUNCTIONALS 

Let us adopt the notation of Theorem 3.1 and suppose (Ni : i = 1,2,..., n} 
satisfies the hypotheses of the theorem. If N is a given continuous linear 
functional on 2 we desire an approximation fi to N of the form 

fi = i ciNi (4.1) 
i=l 
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where the ci are constants such that 

flu = Nu if UE&. (4.2) 

Equation (4.2) implies that the representer, say w, of a - N belongs to %r , 
and hence 

(iif - N) u = (a, u} = j (Lw) (Lu). (4.3) 

Among all approximations R of the form (4.1) subject to the constraint (4.2), 
we seek one for which am is minimized. This functional fi is called the 
best approximation to N in the sense of Sard [12]. We shall prove that fi 
exists, is unique, and satisfies 

&=Nii (4.4) 

for all u E A? satisfying (3.5) where ZZ is as in Theorem 3.1. We first need the 
following lemma. 

LEMMA 4.1. Adopting the notation and hypotheses of Lemma 3.1, we let # 
be any fixed element of s?. Then there exists a unique element $ E X of the 
,form $ = C c& which minimizes /) PI@ - #)\/” subject to the constraint 
II P,,($ - $)112 = 0. Furthermore, ;f u E Z? satisfies (3.1), then 

(% 4) = <4 #>* (4.5) 

Proof. Writing 4 = 2 c& , we seek a vector c = (cr ,..., c,J’ of scalars 
which minimizes c’.Zc - 2w’c subject to the constraint v = Tc where v 
is the vector [(wj , #)] and w is the vector [(PI& , $)I. To verify the unique 
solution 

c’ = v’(TZ-IT’)-1 TZ-l + wZ-l[I - T’(TWT’)-1 TW], (4.6) 

we let e be any vector such that v = T(c + e). Hence we have Te = 0 so that 

(c’ + e’) Z(c + e) - 2w’(c + e) - c’2k + 2w’c = e’Ze, 

which is non-negative, and which is zero if, and only if, e = 0. Equation 
(4.5) can be verified directly using (3.2) and (4.6). 

To prove (4.4) and the existence and uniqueness of fi, we use Lemma 4.1 
and let N have representer #, Ni have representer I/Q, and 1ci have repre- 
senter 4. 

Equation (4.4) states that the “best” approximation to a functional N 
operating on a function u is the functional N operating on the spline which 
“interpolates” U. Schoenberg [14] proved (4.4) in the case when L = Dm 
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and Nju = u(Q. Karlin and Ziegler [lo] demonstrated (4.4) for L of the 
form (2.1) with Niu = @i)(ti) for 0 < m, < m - 1, while Jerome and 
Schumaker [7] considered general continuous linear functionals with L of the 
form L = ZbjDj for bj E 0. 

5. THE GENERALIZED SMOOTHING PROBLEM 

LEMMA 5.1. Let .z? = so @ #I be the direct sum of an m-dimensional 
Hilbert space SO with basis {wl , w2 ,. .., We} and any Hilbert space X1 . Let 
Po and P1 be the projections onto X0 and s1 respectively. Suppose S = [sij] 
is a p X p positive definite matrix and & , & ,..., 4, are p > m elements of A? 
such that 

(i) The set {PO& : i = 1, 2 ,..., p} spans %. , and 

(ii) The set {P& : i = 1, 2,...,p} is linearly independent. 

If 2’ = (z1 , z2 ,..., z,) is any p-tuple of scalars, then the unique element zi E .%’ 
which minimizes 

is 
(5.1) 

d = w’( UM-1 U’)-1 UM-lz + q’M-l[I - U’( UM-1 U’)-l UM-I] z (5.2) 

where U is the m x p matrix [{w, , di)], M is the p x p matrix 

[(P,& , f’l+j)J + S-l, q = (P,$, ,... , PAJ’ and w = (wl , w2 ,..., GJ'. 

Proof. We can write zi = da + Y# + x where a’ and @’ are some (as yet 
undetermined) m-tuple and p-tuple respectively of scalars, x E HI , and 
(x, Q) = 0. Clearly we must take x = 0. The quantity (5.1) to be minimized 
is 

(U’a + Zf3 - 2)’ S( U’a + Zf3 - 2) + P’Z’p, 

which is minimized if, and only if, 

a = (UM-I U’)-l UM-lz and g = - M-l(U’a - z). 

The explicit solution to the generalized smoothing problem provided by 
Section 2 and Lemma 5.1 is stated in the following theorem: 

THEOREM 5.1. Let L be an m-th order ds@-rential operator of the form (2. I), 
@ be the Hilbert space of Section 2, {ui : i = 1,2,..., m} be as defined by 
(2.3), and let K1 be defined by (2.8). Suppose (Ri : i = 1,2 ,..., p} is a set of 
p > m continuous linear functionals on .z? such that 
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(i) The rank of the m x p matrix U = [Rjwi] is m, and 

(ii) The p functions Q defined by I = R&,(s, , *) are linearly inde- 
pendent. 

If 2 = (zl )...) zP)’ is any vector of scalars and S = [sig] is a p x p positive 
dejine matrix, then the uni+ue element a E 8 which minimizes 

cc (R,u - .q) sij(R,u - z 1-t j 

is given by (5.2) where CO = (ul, wg ,..., w,,J’, q = (Q , Q- ,..., r/*)‘, and 
M = [RiTj] + A’-‘. 

We remark that the function 22 of Theorem 5.1 is a spline function in the 
sense that it solves a generalized Hermite-Birkhoff interpolation problem. In 
fact, if we let zi = A&, then it is clear that u = zi is the unique function in YE’ 
which minimizes j (Lu)s subject to the constraints Riu = zi . 

EXAMPLE 5.1. Let Ri be given by Ri : u --t u(tJ where the t, E (0, 1) 
are distinct, and let L = P. Then zi is a polynomial spline function. This 
result, where S is a diagonal matrix, was announced by Schoenberg [13] 
in 1964. An analogous result with L a general linear differential operator was 
announced by Greville and Schoenberg [6] in 1965. Abstract existence and 
uniqueness theorems for smoothing spline functions were proved by Anselone 
and Laurent [l] in 1967. 

Theorem 3.1 presents a solution to a minimization problem in which the 
values of certain linear functionals are constrained, while in Theorem 5.1, the 
values of the functionals are not constrained, but appear in the term to be 
minimized. We state the following theorem, whose proof is analogous to that 
of the preceding results, of which Theorems 3.1 and 5.1 are special cases. 

THEOREM 5.2. In the notation of Theorems 3.1 and 5.1, suppose 
{IV* : i = 1, 2,..., n} and {Ri : i = 1, 2,...,p} are sets of continuous linear 

functionals on 2 such that 

(i) The rank of the m x (p + n) matrix V = [T, U] is m, and 

(ii) The set {&> v {Q> of n + p functions is linearly independent. 

If w = (Yl ,352 ,.-.t yn; z1 , 25 ,‘*a, zJ’ is any vector of scalars and S = [slj] 
is any positive definite p x p matrix, then the unique function ti E ~9’ which 
minimizes 
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subject to the constraints 

N<u = yi i = 1, 2,..., n 

is 

a = w( VM-lV)-1 VIM-lw + [y M-y1 - V( yAplv’) J7&2-1] w 

where M is the (n + p) x (n + p) partitioned matrix 

in which C = [N&l, A = [NgJ, and P = [I&]. 

6. LINEAR INEQUALITY CONSTRAINTS 

Klaus Ritter [1 I] recently proposed replacing equations (3.5) by inequali- 
ties. He showed the resulting minimization problem to be reducible to a 
standard problem in quadratic programming. In particular, we have the 
following result. 

THEOREM 6.1. Let L, .F, o, K, T, Z, and E, be deJined as in Theorem 3.1. 
Let {Ni} be a set of n continuous linear finctionals on SF, and let yj = 
(Yjl ,*-*s yj,)’ be n-tuples of scalars (j = 1,2). Then the function zi = B’w + fi’s 
minimizes $(Lu)a subject to the constraints 

YU < Niu \< yzi , i = 1, 2,..., n (6.1) 

if and only sf, u = B and p = fi minimizes p’zlf3 subject to the constraints 
y1 < T’a + ZP S y2. 

The proof of Theorem 6.1 follows immediately from the following lemma, 
whose proof is elementary. 

LEMMA 6.1. Let &?, X0 , SI , w, PO, and PI be as in Lemma 3.1. Let {z,b8} 
be n &mm of S, 5 = (PI+4 , P& ,..., Pp+h,)‘, and let yj = (yjl ,yj2 ,..., yjn)’ 
be n-tuples of scalars fw j = 1, 2. Then the element zi = a’w + p’g ES 
minimizes <PIu, P+> subject to the constraints 

Yl6~<9i,U)~YY2i, i = 1, 2,..., n (6.2) 

rf and only if, a = B and P = @ minimizes fY@ subject to the constraints 
yl < T'a + ZP < Y,. 
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7. SPLINE INTERPOLATION AS STATISTICAL PREDICTION AND FILTERING 

Let Y(t), 0 < t < 1, be the stochastic process defined by 

Y(t) = 2 b%(t) + -w>, O<t<l (7.1) 
i=l 

where {e,}Er are random variables independent of X(t), 0 < t < 1, (w,(2)}gr 
are given by (2.3), and X(t), 0 ,( t < 1 is the zero mean Gaussian stochastic 
process with covariance given by 

E&s) X(t) = JG(s, t), 

Kr(s, t) being given by (2.8). X(t) has a representation as 

(7.2) 

X(t) = u,(t) j: am&& dt,-, f- a,-&m-2) &-2 *** f’ &l) dW1) 
0 0 

(7.3) 

where W(u), 0 < u < 1, is the Wiener process. Hence, we may say that Y(t) 
formally satisfies the stochastic differential equation 

LY(t) = dq 

with the (random) boundary conditions M,Y(O) = O,+r , i = 0, 1,2,..., m -. 1. 
dW(t)/dt is commonly referred to as “white noise”. Let now (0& be inde- 
pendent normal random variables with mean zero and variance 1. We may 
define the Hilbert space 9 spanned by the family of random variables 
(y(t), 0 < t < l} as all finite linear combinations of random variables of the 
form 

P = 1 CYWY 

plus the closure of this linear manifold under the norm induced by the inner 
product 

6% >P2> = %P2* (7.4) 

(We have EY(s) Y(t) = K(s, t), where K is given by (2.10).) 
9 is isomorphic to A?’ under the correspondence induced by 

Wo) +-+ mo , .I, so E [O, 11. (7.5) 

Let f. , p1 ,..., pn be z random variables in 9 and let u, I,$ , #2 ,..., #n be the 
n + 1 elements in SF which correspond to p. , pr ,..., P,, under correspond- 
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ence (7.5). We shall call an estimate p,, of p0 unbiased with respect to 
8 = (0,) 0, ,... 19,)’ if 

wo I 6 = E@o I 6). (7.6) 

Let 8” be the minimum variance unbiased estimate of p,, , based on data 
(pi = yi>, i = 1, 2 ,.*., M, that is, p”,, is that linear combination & dipi which 
minimizes 

(7.7) 

subject to 

w. - p. I 4 = 0. 

This last condition can be shown to be equivalent to 

(7.8) 

i d$(RO - NO) Wi(*) ZSi 0 (7.9) 
i=l 

where a0 and No are the continuous linear functionals (i.e. elements in the 
dual of &‘) whose representers ti and u correspond to the random variables 
so and p. under the correspondence (7.5). As a consequence of Lemma 4.1, 
and the isomorphism, we have 

THEOREM 7.1. Let 2, the n x n matrix [E(pipj 1 8)], and T, the m x n 
matrix [EO,p,], be of full rank. Then the minimum variance unbiased estimate 
b,, for p. , based on data {pi = yi}Fzl is given by 

,io = Nail 

where fi is given by (3.2) and No is the continuous linear functional whose repre- 
sentev corresponds to p. . 

EXAMPLE 7.1. Let pi = Y(t,) for t, E (0, 1) distinct. Then the minimum 
variance unbiased estimate p(t) f or Y(t) based on data {Y(tJ = yt>fal is, 
considered as a function of t, the natural L-spline of interpolation to the 
points {(h 9 Yi)). 

The generalized smoothing problem of Section 5 also has a statistical 
interpretation. We cite as a theorem only one form, which displays the 
smoothing problem as equivalent to the extraction of signal from noise. 

THEOREM 7.2. Let 

z(t) = Y(t) + 4) 
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where c(t) is a Gaussian noiseprocess independent of-Z(t) with EC(S) c(t) = A(s, t). 
Let p(t) be the minimum variance unbiased estimate of Y(t) based on data 
Z(ti) = zi , i = 1, 2 ,..., p. Then p(t) is given by 

Y(t) = (K(t, a), a> = u(t) 

where fi is given by (5.2) with (bi(-) = K(ti , *), i = 1,2 ,..., p and S-l is the 
p X p matrix [A(& , tj)]. 
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