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Gauge fixing in the non-perturbative domain of non-Abelian gauge theories is obstructed by the Gribov–
Singer ambiguity. To compare results from different methods it is necessary to resolve this ambiguity
explicitly. Such a resolution is proposed using conditions on correlation functions for a family of non-
perturbative Landau gauges. As a consequence, the various results available for correlation functions could
possibly correspond to different non-perturbative Landau gauges, discriminated by an additional non-
perturbative gauge parameter. The proposal, the necessary assumptions, and evidence from lattice gauge
theory calculations, are presented in detail.

© 2010 Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

To describe gauge-dependent degrees of freedom, like quarks
and gluons, it is necessary to fix a gauge. In the non-perturbative
domain of non-Abelian gauge theories this is complicated. Local
gauge conditions, e.g. for Landau gauge

∂μ Aa
μ = 0, (1)

are satisfied by more than one field configuration Aa
μ , being Gri-

bov copies of each other [1]. Conditions, which are not local, are
required to resolve this ambiguity [2].

It is desirable that such supplemental conditions are formu-
lated independent of the particular algorithmic implementation
of a method. Furthermore, in the context of lattice calculations
and functional methods, a formulation using correlation functions
would be desirable. In the perturbative case the latter is possible.
E.g., (1) can be formulated as the vanishing of the longitudinal part
of the gluon propagator Dμν ,

pμpν Dμν = 0. (2)

Also, certain supplemental conditions for the Landau gauge can
be formulated in this form. One example is the absolute Landau
gauge, which requires to absolutely minimize the total trace of the
gluon propagator [3,4]

tr D = c

∫
dd p Dμ

μ(p), (3)
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with c a positive constant. However, (3) requires regularization in
the continuum and it is not clear whether this introduces new am-
biguities. Thus, alternatives are desirable. This should in general
be possible by conditions on correlation functions: Given a set (of
configurations) of sets of distinct events (Gribov copies identified
by the gauge field at every space–time point), it is always possible
to construct probability distributions (gauges selecting a particu-
lar Gribov copy) such that they are distinguished and identified
uniquely by at least some of their — finite or infinite — mo-
ments (correlation functions). The remaining question is whether
this possibility can be cast into a practical method, in particu-
lar whether the distinguishing correlation functions can be deter-
mined.

In continuum studies a one-parameter family of correlation
functions has been obtained [5,6], distinguished by the ghost prop-
agator, an infinite-order moment with respect to the elementary
gluon field. This motivates the present study whether this fam-
ily could indeed arise as the consequence of a gauge choice, as
speculated in [3,6]. Indeed, at least in a finite volume a corre-
sponding family is constructed using gauge conditions resolving, at
least partly, the Gribov–Singe ambiguity. Assuming the (qualitative)
correctness of the results in the continuum this would suggest a
one-to-one correspondence.

2. The structure of the residual gauge orbit

After imposing the Landau gauge condition (1) remains a set,
called the residual gauge orbit [3] here, of Gribov copies separated
by large gauge transformations. These orbits can be divided in Gri-
bov regions [1], with the orbit of each configuration passing at
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Fig. 1. The average number of Gribov copies as a function of lattice extension (left panel) and volume (right panel) in two, three, and four dimensions at a = 0.22 fm,
distinguished by their value of tr D . At finer a at fixed physical volume the number of copies increases further [13]. All lines drawn to guide the eye. Lattice volumes Nd are
for d = 2, 3, and 4 from the sets {10,18,26,34}, {8,14,20,26}, and {6,10,14}, respectively, throughout. A fit of type A exp(V /ed) gives an e of approximately 16, 4.4, and
2.9 fm in 2, 3, and 4 dimensions, respectively.
least once through each region [7]. A possible first step to con-
struct a definite gauge-fixing prescription is to restrict the residual
orbit to one of these regions. Here, the first Gribov region where
the Euclidean Faddeev–Popov operator −∂μDμ , with the covariant
derivative Dμ , is positive semi-definite is chosen.

For this restriction an explicit prescription purely in terms of
Green’s functions is not yet known. However, general considera-
tions for a positive operator and all results so far (for a recent
compilation of references see [3,6]) strongly suggest that it is suffi-
cient that the ghost propagator DG , being the expectation value of
the inverse Faddeev–Popov operator, is required to be of definite
(negative) sign and possibly monotonous. An explicit evaluation
in (1 + 1)-dimensional Coulomb gauge [8] is finding exactly that
the ghost propagator changes sign for some momenta when eval-
uated outside the first Gribov region. However, lattice calculations
by construction [9] and functional methods implicitly [10] ensure
that results are obtained from inside the first region, and this ques-
tion is of minor concern. Hence, it is not necessary to obtain the
spectrum of the Faddeev–Popov operator explicitly.

Still, inside the first Gribov region there are many Gribov copies
[4]. On a finite lattice,1 it appears that Gribov copies can be dis-
tinguished by their difference in the value of the trace of the
gluon propagator (3) [4,11]. This will be assumed henceforth. The
number of Gribov copies rises quickly, see Fig. 1, and thus there
is a dense, though not necessarily connected, set of them in the
infinite-volume limit.2 Here, it is investigated whether other dis-
tinctions between Gribov copies exist. Motivated by the contin-
uum studies [5,6] the ghost propagator was evaluated. It has been
checked whether the Gribov copies can be characterized by the
renormalization-group invariant quantity3

1 For details of the lattice calculations see [3,9] and for the generation of different
Gribov copies [11].

2 In two dimensions for the volumes investigated in [12] only a negligible amount
of Gribov copies are present [3]. In these volumes a so-called scaling-type behavior
[6] prevails.

3 This definition is prone to violations of rotational symmetry. For simplicity here
all ghost momenta are evaluated along the x-axis, but a more robust method is
required [13].
b(p, P ) = G(p)

G(P )
= p2 DG(p)

P 2 DG(P )
(4)

for fixed p �= P and G(p) = −p2 DG(p) is the ghost dressing func-
tion. If both momenta in the definition (4) are large and compa-
rable, b will be of order one up to sub-leading corrections. From
a practical point of view it is therefore better to use p small and
P large. Here, p will be taken to be the smallest accessible mo-
mentum, zero in the infinite-volume limit, and P the renormaliza-
tion scale μ taken in the perturbative domain, which can be cho-
sen infinite in dimensions smaller than 4. In that case, G(P ) = 1
trivially, and the normalization can be dropped altogether. Note
that the choice directly influences the severity of finite-volume ar-
tifacts, as they are stronger the smaller p is chosen. Other choices
will be studied elsewhere [13].

Indeed, Gribov copies with differing tr D are found to have also
differing values of b, as can be seen for an example configuration
in the left panel of Fig. 2. The quantity b measures in a sense the
proximity to the Gribov horizon to the extent that it is dominated
by the lowest eigenvalue and eigenstate of the Faddeev–Popov op-
erator. It is found that tr D and b turn out to be almost uncorre-
lated, see Fig. 2 right panel. This would imply that there is little
relation between the values of b and the so-called fundamental
modular region of minimal tr D values. However, it cannot be ex-
cluded that this is a lattice (discretization or finite volume) artifact.

2.1. Constructing a gauge

Since b appears to be different for each Gribov copy, at least
on the volumes investigated here, this would be sufficient to con-
struct a non-perturbative extension of the Landau gauge, called
Landau-B gauges hereafter. It is defined by requiring that the func-
tion b(0,μ) (b(min p,μ) on the lattice) should have a prescribed
value of B on the average. This is implemented by the following
prescription: Take from each residual gauge orbit the copy with b
closest to B , and average over these copies to obtain the gauge-
fixed quantities. In case of exactly the same difference for two
copies, select one randomly to ensure the correct value of B on
the average. By construction, the ghost propagator will then sat-
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Fig. 2. The distribution of tr D compared to b(280 MeV,∞) on a 203 lattice at a = 0.22 fm. The left panel shows for an example configuration that for each distinct Gribov
copy, identified by differing tr D values, also the b values differ. 22 copies have been generated for this configuration, with 10 distinct Gribov copies found, one peak being
hidden by foreground peaks. The right panel shows the distribution for 1450 configurations.
isfy b = B on the average, if the value of B lies within the range of
possible values for b. Otherwise a value as close as possible to B
will be obtained.

This prescription is valid for any volume, and specializes the
perturbative Landau gauge (1) if more than one possible value of b
exists. If each Gribov copy of a given orbit has a unique value of b,
this actually resolves the Gribov ambiguity completely. If not, this
implies that further additional conditions can be imposed to lift
the remaining degeneracies, specializing the Landau-B gauges de-
fined here further. If, like here, this is not done and there are
degeneracies, just a random representative among the remaining
degenerate Gribov copies is chosen. This is the same as done in
minimal Landau gauge [9], where not even different values of b
are distinguished.

Note that both, Landau-B gauges and minimal Landau gauge,
are not affected by any Gribov ambiguity anymore: Without spec-
ifying how to resolve potential further degeneracies they yield a
result which gives an expectation value over degenerate Gribov
copies. In a thermodynamic setting this would be the equilibrium
result, i.e. the most likely one, for correlation functions, provided
the implemented algorithm faithfully represents the distribution of
Gribov copies. In particular, no Gribov problem, i.e. the necessity to
know all Gribov copies, arises in general. This problem is present,
e.g., in the absolute Landau gauge or if the most extreme values
of B are desired.

Here ‘equilibrium’ is not indicating the existence of a preferred
value: In the sense of stochastic quantization [10], no preferred
Gribov copy on the orbit exists, any choice is equally admissible.
Specifying a unique copy would therefore imply a maximum non-
equilibrium situation, which is nonetheless as valid a choice as the
equilibrium value of the minimal Landau gauge.

2.2. Connecting to functional equations

If this indeed identifies a gauge also in the infinite-volume and
continuum limit this implies that the value of the ghost propaga-
tor distinguishes different treatments of Gribov copies. By analogy
imposing conditions on the ghost propagator as boundary condi-
tions on the functional equations, as detailed in [6], would then be
equivalent to treat Gribov copies in such calculations. This would
give an interpretation for the fact that the value of B cannot be
determined self-consistently inside functional equations [6]: B has
the meaning of a second non-perturbative gauge parameter, be-
sides the conventional gauge parameter ξ to distinguish covariant
gauges. This prescription is not unique, for alternatives see [3,6].
Note that choosing B to be the average value among Gribov copies
then provides a prescription how to implement the minimal Lan-
dau gauge in functional methods. If further degeneracies would
exist, this interpretation would imply that with improved trunca-
tions compared to [6] further undetermined boundary conditions
must appear in the functional equations to permit resolving these
degeneracies.

3. Results for the correlation functions

The value of B can only be chosen in a gauge corridor of values
which are assumed on the residual gauge orbit. This corridor4 is
shown in Fig. 3. Of course, if the corridor should decay into several
bands with forbidden ranges in between, which is not observed
here, choosing B in between bands yields possibly ambiguities. In
three and four dimensions the lower bound of the corridor is al-
most independent of volume, and by construction bounded from
below. The upper bound is strongly increasing with volume for
those investigated here. In two dimensions, due to the near-lack of
Gribov copies at these volumes, the effect is rather small. Whether
the upper boundary diverges in the infinite-volume limit remains
to be investigated [13]. Without explicit exploration it cannot be
excluded that the corridor closes again at much larger volumes,
corresponding to total degeneracies of Gribov copies with respect
to b.

To compare extreme cases, the correlation functions for the
cases with average, and minimum and maximum attainable value
of B , corresponding to setting B to zero and infinity, respectively,

4 Inherently, this method to identify Gribov copies [11] cannot guarantee to find
all copies. Hence, the boundaries of the corridor represent upper bounds for the
lower boundary and lower bounds for the upper boundary. Finding the exact ones
is a Gribov problem.
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Fig. 3. The gauge corridor for different lattice extensions (left panel) and volumes (right panel). For each volume 〈min b(min p,μ)〉 and 〈max b(min p,μ)〉 are shown, where
min p is the smallest non-zero momentum on each lattice, and μ is set to ∞ for two and three dimensions, yielding G(μ) = 1, and to μ = 2 GeV in four dimensions.

Fig. 4. The gluon propagator (left panel) and the ghost dressing function (right panel) for various gauges from a 203 lattice at a = 0.22 fm. The minimal Landau gauge is
described in [9], and the absolute Landau gauge in [3]. The min B and max B gauges select the minimum and maximum possible value of B , respectively, and are described
in the text. The inverse Landau gauge maximizes (3) over the set of all local minima on the residual gauge orbit [15].
are determined. The results for the gluon propagator and the ghost
dressing function in these three types of Landau-B gauges, com-
pared also to gauges based on (3), are shown in Fig. 4. The ghost
propagator differs very strongly at momenta below 1 GeV for the
three Landau-B gauges. In fact, the max B-case is enormously en-
hanced compared to the result in minimal Landau gauge.5 The
gluon propagator is, at least for this lattice size, almost indistin-
guishable for all gauges. This could have been anticipated due to
the lack of correlation of the ghost and gluon propagator gauge
parameters, shown in Fig. 2. Arguments exist [10] that it, and any

5 Note that the bounds of [14] are trivially fulfilled for any B-gauge, as they de-
pend on the chosen B-gauge.
finite moments, may coincide for any fixing of the residual gauge
degree of freedom in the infinite volume limit.

As the experience shows (see e.g. [14]), rather large volumes
will be necessary to be able to extrapolate to infinite volume.
This will be addressed in the future [13]. However, there are in
principle three qualitatively different outcomes, if no further de-
generacies exist. First, the corridor is of finite width with finite
boundaries. Then a family of decoupling-type correlation functions
is obtained. Second, the upper boundary is infinite, and the ghost
propagator corresponding to 1/B = 0 behaves as in the scaling
case. The behavior of the gluon propagator is then not yet fixed,
see the next subsection. Finally, the possibility exists that the up-
per bound is infinite, but the ghost propagator is not that of the
scaling solution. If additional degeneracies exist, other possibilities
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are possible. E.g., the b-corridor can close to a single value, finite
or infinite. In this case, only one B-gauge survives, with a unique
ghost and gluon propagator.

3.1. Relation to functional results

Assume for the moment the correctness of the functional re-
sults yielding a one-parameter family of solutions with the scaling
solution as an endpoint [6]. Also an infrared finite gluon propaga-
tor is not at odds with this, as functional studies imply such a be-
havior at small volumes [16]. Even if the gluon propagator would
remain infrared finite in the infinite-volume limit (and possibly
B-independent), this would not be at odds with this, since this
(corresponding to a critical exponent [17] of 1/2) is still compati-
ble with a scaling-type behavior in case of mild angular variations
of the ghost–gluon vertex [17]. This is compatible with existing re-
sults [9,12,18], and is expected from functional studies [19]. The
role of the absolute Landau gauge is then not clear, as it so far ap-
pears unrelated to the B-gauges. In particular, it could well be that
the interpretation given in [3] is wrong, and the absolute Landau
gauge is not connected to a scaling behavior. This requires more
investigations [13].

4. Summary

Thus, using lattice gauge theory an one-parameter family of
correlation functions at finite volume is found. These are distin-
guished by a second gauge parameter B imposed on the ghost
propagator. If there is no further freedom in choosing a Gribov
copy,6 this would resolve the Gribov–Singer ambiguity completely.
In addition, this would be achieved by conditions on the correla-
tion functions only.

As a consequence, even the qualitative infrared behavior of cor-
relation functions could be determined by a gauge choice, and any
physics contained in there would be mixed with gauge contri-
butions. A fuller analysis of this question will require more de-
tailed studies [13], and in particular much larger volumes. This
applies also to the connection to a corresponding family of correla-
tion functions obtained in functional studies [6], which could here
only be established at the investigated volumes. If this could also
be established for larger volumes and eventually in the infinite-
volume limit, this would be extremely attractive. In particular,
an infrared diverging ghost dressing function is a necessary con-
dition for the Kugo–Ojima construction [20]. Another is a non-
perturbatively well-defined BRST symmetry [6]. Such a symmetry
has been obtained [21], but is based on an average over Gribov
copies. Thus subtle cancellation between Gribov copies is required
to bring this construction into contact with the one presented
here.

6 In the case that further degeneracies exist, there would be even more freedom
to vary correlation functions by choice of Gribov copies.
If all of this would be correct in the end, this would be almost
too good to be true: This would permit to use the gauge freedom
to choose a gauge with useful properties. E.g., the explicit construc-
tion of the Hilbert space of QCD could be addressed by the use
of the scaling (infinite B) Landau-B gauge [6] and the Kugo–Ojima
construction [20], which could provide one explanation of the con-
finement mechanism. Of course, also in the other Landau-B gauges
gluon [6,22] and quark [23] confinement is obtained, though the
explanation will necessarily be different.
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