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We describe a complete set of algorithms for ab initio molecular simulations based on numerically
tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties
from quantum-mechanical first principles. The full algorithmic framework described here is embodied
in the Fritz Haber Institute “ab initio molecular simulations” (FHI-aims) computer program package.
Its comprehensive description should be relevant to any other first-principles implementation based
on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized
gradient) approximations, but an extension to hybrid functionals, Hartree–Fock theory, and MP2/GW
electron self-energies for total energies and excited states is possible within the same underlying
algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate
is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio
molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the
calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence
with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant
grid-based operations scale as O(N) with system size N . Together with a scalar-relativistic treatment, the
basis sets provide access to all elements from light to heavy. Both low-communication parallelization of
all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for
all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively
parallel computer systems with thousands of CPUs.

© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

The rapid increase of computer power in the past decades,
along with a furious development and refinement of new physi-
cal methods and computational algorithms now makes it possible
to study systems of thousands of atoms based on their quantum-
mechanical electronic structure with parameter-free, essentially
“converged” numerical accuracy. Landmark methods in widespread
use today include, for example, density-functional theory (DFT)
[1,2], quantum-chemical approaches (Hartree–Fock and correlation
approaches based on it), or self-energy methods such as GW many-
body perturbation theory [3–6].

The key to numerical efficiency and accuracy in electronic
structure theory is the form of the basis set that defines the Hilbert
space of the electrons, {|ϕi〉, i = 1, . . . , Nb}. In many respects, the
“best” choice of a basis set is a tradeoff between the available
numerical algorithms to deal with individual basis functions, and
the required basis set size to guarantee accurate convergence of
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the overall calculation. One particularly advantageous choice is nu-
meric atom-centered orbital (NAO) basis functions of the form:

ϕi(r) = ui(r)

r
Ylm(Ω). (1)

As the name implies, the radial shape ui(r) is numerically tabu-
lated and therefore fully flexible. This allows the creation of opti-
mized element-dependent basis sets that are as compact as possi-
ble while retaining a high and transferable accuracy in production
calculations up to meV-level total energy convergence. To obtain
real-valued ϕi(r), Ylm(Ω) here denotes the real parts (m = 0, . . . , l)
and imaginary parts (m = −l, . . . ,−1) of complex spherical har-
monics, and l, m are implicit functions of the basis function index i.
The utility of NAOs has already been demonstrated in a number of
earlier implementations [7–17] of DFT in the local-density approx-
imation (LDA) [2] or generalized gradient approximation (GGA),
as well as in a NAO-based Hartree–Fock implementation [18–23].
Specifically, two features set NAOs apart for all-electron DFT: (i) by
including the radial functions of occupied free-atom orbitals in the
basis, the all-electron orbital shape and nodes near the deep nu-
clear Z/r potential are close to exact in bonded structures as well;
(ii) each radial function ui(r) can be strictly localized inside a given
radius [ui(r) = 0 outside]. Different spatial regions of large systems
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are thus strictly separated from one another, enabling near-O(N)
scaling with system size N of the otherwise most expensive grid-
based computational steps [15,16,24–26].

In the present paper, we describe a consistent set of numerical
algorithms to implement computational quantum mechanics (elec-
tronic structure, total energy, energy derivatives with respect to
nuclear positions, etc.) for molecules, clusters, and periodic sys-
tems based on NAOs. We have implemented all algorithms de-
scribed here in our own code, the “Fritz Haber Institute ab initio
molecular simulations” (FHI-aims) package [17], but the obser-
vations made should be relevant for any NAO-based first-principles
development. We use our implementation to demonstrate how the
algorithms below fulfill our general goal of an accurate all-electron,
full-potential framework for computational quantum mechanics,
with (i) efficiency similar to the fastest existing plane-wave pseu-
dopotential schemes; (ii) good scaling with system size N , up to
thousands of atoms; (iii) good scaling on modern hardware from
individual PCs up to massively parallel computers with thousands
of CPUs. The focus here is on the steps required for DFT-LDA
and GGA, including energy gradients and some brief comments
on structure relaxation and ab initio molecular dynamics on the
Born–Oppenheimer surface. A scalar relativistic treatment enables
calculations for light and heavy elements with high accuracy and
efficiency.

From a physical point of view, there remain today some well-
known limitations of standard DFT-LDA or GGA exchange-correla-
tion (XC) functionals for specific applications. These include, e.g.:
(i) the incorrect cancellation of the Hartree-term self-interaction
of individual electrons in explicit functionals of the electron den-
sity; (ii) the treatment of dispersion interactions (van der Waals);
(iii) the description of electronic excitations, even of simple single
quasiparticle energies. For these cases, an explicit wave-function
based treatment of exchange and/or the correlated two-electron
motion is necessary to verify the accuracy of simplified ap-
proaches. Although not the focus of the present paper, we note
that the algorithms presented here can be used directly as a base
to implement correlated methods beyond DFT-LDA or GGA through
the full two-electron Coulomb interaction using NAO basis func-
tions. Thus, it is possible to access directly methods such as: bare
or screened single-determinant exchange; hybrid XC functionals
[27–33]; quantum-chemical perturbation theory for the Coulomb
interaction, e.g., second-order Møller–Plesset (MP2) perturbation
theory [34]; bare (MP2) or screened (GW) self-energies for single-
electron excitation energies; or the random-phase approximation
(RPA) in the adiabatic connection fluctuation dissipation theorem
[35–37]. The essential step to make the calculation of the two-
electron Coulomb operator feasible is to expand all products of
basis functions into a single auxiliary basis set [38]. A signifi-
cant step in this regard is variational Coulomb fitting, which has a
long history in quantum chemistry [39] and solid state physics
[40], and as “resolution of the identity” in later developments
[41–43]. A detailed account of our implementation will be pre-
sented elsewhere [6]; in particular, we note that larger NAO basis
sets than for ground-state DFT may be required for MP2, RPA
or GW .

Accurate, numerically tabulated radial functions from, e.g., self-
consistent free-atom calculations have long been available at var-
ious levels of theory [44–47]. Since their first sustained applica-
tions as multicenter basis functions [7–9], many important practi-
cal steps have been contributed by a community of theoreticians.
Since we aim here for a coherent and (mostly) self-contained de-
scription, some of these earlier results – otherwise scattered over
many different sources – are restated in one consistent framework
with proper references. In the next section (Section 2), we repeat
briefly the basic physical equations and scope, allowing to place all
the subsequent material in this context. In Section 3, we address
the question of how to choose reliable basis functions, outlining a
procedure that can be used to generate appropriate preconstructed
hierarchical basis sets for all elements, ranging from fast qualitative
up to the highest accuracy. The detailed numerical algorithms used
to implement computational quantum-mechanics with these basis
functions are addressed in Section 4. In Section 5, we demonstrate
the practical performance and scaling of these algorithms for char-
acteristic cluster-type and periodic systems, as given by our own
implementation, FHI-aims.

2. Physical scope

We aim to compute the total energy and other observables
(forces, stresses, electrostatic moments, polarizabilities, . . . ) for
any given system of atoms in a cluster-type or periodic geome-
try within the Born–Oppenheimer approximation. The electronic
ground state energy for a fixed nuclear configuration is treated
quantum-mechanically, whereas the nuclei themselves are treated
classically. In density-functional theory, this requires solution of
the electronic Kohn–Sham single-particle equations [2]

ĥKS|ψl〉 = εl|ψl〉 (2)

for the effective single-particle orbitals |ψl〉 (called Kohn–Sham or-
bitals below) and eigenvalues εl , leading to the electron density
n(r) = ∑

l fl|ψl(r)|2. fl denote occupation numbers, i.e., fl = 1 or
0 for occupied or empty orbitals, or fractional occupation numbers
in the context of DFT [48]. For clarity, we avoid an explicitly spin-
polarized notation for most of this work, but including spin effects
through collinear (scalar) spin-DFT is of course straightforward if
required. In addition, we plan to extend our own implementation
to noncollinear spin in the near future.

The electronic Hamiltonian ĥKS includes the Kohn–Sham effec-
tive single-particle kinetic energy t̂s (possibly with relativistic cor-
rections), the external potential v̂ext (nuclei and a possible embed-
ding into an external field), the electrostatic potential (Hartree po-
tential) of the electron density, v̂es, and the exchange–correlation
potential v̂xc:

ĥKS = t̂s + v̂ext + v̂es + v̂xc. (3)

As is well known, Eqs. (2) and (3) must be solved self-consistently.
In each iteration towards self-consistency, we use the ba-

sis functions ϕi(r) (i = 1, . . . , Nb) and the expansion ψl(r) =∑Nb
i=1 cilϕi(r) to discretize Eq. (2) into a generalized eigenvalue

problem [49,50]∑
j

hi jc jl = εl

∑
j

si jc jl. (4)

Since ϕi(r) are tabulated numerically, we obtain the Hamilton and
overlap matrix elements hij and si j by numerical integration (Sec-
tion 4.1)

hij =
∫

d3r
[
ϕi(r)ĥKSϕ j(r)

]
,

si j =
∫

d3r
[
ϕi(r)ϕ j(r)

]
. (5)

We omit the complex conjugate notation here and elsewhere in
the paper, since we use the real-valued real and imaginary parts
of complex spherical harmonics in our basis functions ϕi as given
in Eq. (1).

In DFT, the Kohn–Sham functional defines the total energy
(electrons and nuclei) as

Etot = Ts[n] + V ext[n] + Ees[n] + Exc[n] + Enuc-nuc, (6)
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i.e., the Kohn–Sham kinetic energy Ts , the (external) potential en-
ergy V ext, the classical electrostatic energy of the electron density
Ees, the exchange–correlation functional Exc, and the internuclear
repulsion Enuc-nuc. In practice, Eq. (4) gives us direct access to the
single-particle eigenvalues εl , which are the expectation values of
the Hamiltonian given by Eq. (3). It is therefore conventional to
evaluate the total energy as:

Etot =
Nstates∑

l=1

flεl −
∫

d3r
[
n(r)vxc(r)

] + Exc[n]

− 1

2

∫
d3r

[
n(r)ves(r)

] + Enuc-nuc. (7)

Starting from the sum of single-particle eigenvalues (in principle,
up to the computed number of Kohn–Sham states Nstates � Nb),
the exchange–correlation energy functional Exc[n] (correct for the
total energy) replaces the exchange–correlation potential energy
(which is part of the sum of eigenvalues), and the double-counting
of the electrostatic electron–electron interaction is removed.

The same basic expressions Eqs. (6) and (7) can be written
to cover Hartree–Fock theory and hybrid functionals, which for-
mally correspond to DFT as “generalized Kohn–Sham schemes”
[51]. Once solved, the single-particle orbitals |ψl〉 may be used
as a starting point for many-body perturbation theory or MP2,
detailed in Ref. [6]. In total, there exist today a wide range of
approaches to the exchange–correlation energy, Exc, for exam-
ple those supported in our own implementation [17]: the most
widely used local-density [52–55] and generalized gradient ap-
proximations [56–61], as well as hybrid exchange–correlation func-
tionals [27,28,30–33], Hartree–Fock and MP2 perturbation theory.
Long-range van der Waals interactions, missing in DFT-LDA/GGA,
may be incorporated on a total-energy level, based on damped
interatomic C6/R6 contributions parameterized using high-level
quantum-chemical benchmark data (e.g., Ref. [62] and references
therein). Finally, the localized nature of NAOs allows imposition
of explicit constraints on the effective occupation numbers of cer-
tain spatial regions and/or spin channels with electrons [63], e.g.,
allowing approximate enforcement of a certain spin state of a
molecule in a given environment.

In addition to the total energy itself, its derivatives can be an-
alytically calculated from splined expressions for the basis func-
tions (see Section 3 below). Again, their uses are manifold. In our
own work, this includes efficient structure optimizations, nudged-
elastic band transition state searches [64–66], Born–Oppenheimer
molecular dynamics, and vibrational properties, both harmonic (by
finite differences) and anharmonic (using the dipole–dipole corre-
lation function in a sufficiently long molecular dynamics run, see
Ref. [67] for a thorough discussion). In particular, for T = 0 K total
energy stability analyses, the zero-point motion of the nuclei may
constitute an important additional term, which is readily obtained
from a calculation of vibrational frequencies.

3. Numeric atom-centered basis functions

3.1. Numerical definition of NAO basis functions

The general shape of basis functions in Eq. (1) includes both
analytically and numerically defined functions, i.e., also the ana-
lytically defined Gaussian-type or Slater-type orbitals of traditional
quantum chemistry. However, the advantage of the flexibility of
ui(r) is due to the fact that numerical solutions of (possibly scalar-
relativistic) Schrödinger-like radial equations can be chosen:[
−1 d2

2
+ l(l + 1)

2
+ vi(r) + vcut(r)

]
ui(r) = εiui(r). (8)
2 dr r
Each radial function is thus defined by two parts: a potential vi(r)
which defines the main behavior of ui(r), and a steeply increasing
confining potential vcut(r), which ensures a smooth decay of each
radial function to be strictly zero outside a confining radius rcut
(see Section 3.2).

In particular, Eq. (8) allows one to include a minimal basis that
consists of the core and valence functions of spherically symmetric
free atoms, by simply setting vi(r) to the self-consistent free-atom
radial potential v free

at . In practice, we use non-spinpolarized free
atoms for this task. We have found that the resulting basis sets are
transferable also to spin-polarized structures. This minimal basis
greatly facilitates the all-electron treatment, because it naturally
accounts for wave function oscillations near the nucleus (where
the nuclear Z/r potential dominates). Any basis set errors originat-
ing from this region are therefore strongly reduced at the outset.

In practice, we solve the radial equations (8) in one dimen-
sion on a dense logarithmic radial grid r(i) = r0 exp[(i − 1)α]
(i = 1, . . . , Nlog), using the solver described in Ref. [68]. Smooth ra-
dial functions are ensured through cubic spline interpolation [10].
Since radial functions originating from different defining potentials
vi(r) are not necessarily orthonormal to one another even on the
same atomic site, we orthonormalize all on-site radial functions
explicitly on the logarithmic grid, using a simple Gram–Schmidt
process [69]. Note that, time-wise, this step is completely insignifi-
cant compared to a (later) self-consistent calculation: the orthonor-
malization need only be done once for each set of radial functions
within the same angular momentum channel of every chemical
element in the structure. All radial functions within each angu-
lar momentum channel can first be grouped in order of increasing
outermost radius (beyond which their tails can be numerically ne-
glected). The resulting orthonormalized radial functions then each
retain the minimally possible radial extent, rather than admixing
longer-ranged radial functions to (originally) shorter-ranged ones.

3.2. Basis localization: The confining potential

The addition of a confining potential vcut(r) in Eq. (8) to all
our basis functions prevents any extended, slow-decaying analyti-
cal or numerical radial function tails. The resulting strict separation
of basis functions in distant spatial regions is critical to ensure
computational efficiency for large structures, including the O(N)-
like scaling of numerical integrations (Section 4.1) and the electron
density update (Section 4.3). Possible functional forms of vcut(r)
have been discussed by several authors, e.g., Refs. [12–14,70–74].
Most importantly, care must be taken to choose a shape vcut(r)
that ensures a smooth decay of all basis functions and their deriva-
tives to zero. For example, a simple “hard-wall” potential would
produce a discontinuous second derivative, and thus a possible
discontinuity in the total energy landscape. In our own work, we
employ by default the following smooth analytical shape:

vcut(r) =

⎧⎪⎨
⎪⎩

0 r � ronset,

s · exp( w
r−ronset

) · 1
(r−rcut)2 ronset < r < rcut,

∞ r � rcut.

(9)

At ronset, vcut(r) begins with an infinitely smooth onset, and then
increases gradually to infinity at rcut over a width w = (rcut −
ronset). s is a global scaling parameter (s = 200 Ha and w = 2.0 Å
are safe default values). Eq. (9) is a modification of the proposal of
Ref. [73], using 1

(r−rcut)2 instead of 1
(r−rcut)

to spread the damping

of the radial function more evenly across the width of the confin-
ing potential.

The confinement potential vcut and its impact on the tails of an
atomic Au 6s radial function and its second derivative are shown
in Fig. 1 for two different settings. On a logarithmic scale, the nu-
merical importance of cutting off the basis function tails is obvious
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Fig. 1. Upper panel: Basis set confining potentials vcut(r) as defined in Eq. (9), for
two different settings of ronset, w (s = 200 Hartree in both cases). Lower panel:
Influence of vcut(r) on the tails of the Au 6s radial function u(r) (solid lines) and
its second derivative u′′(r) (dashed lines) for both vcut(r) settings, compared to the
unconfined case.

even for a wide confining potential. It is also apparent that the in-
creased curvature in the cutoff region leads to a change in the sec-
ond derivative of ui(r) (affecting the kinetic energy) that becomes
sharper with decreasing cutoff width w . For our standard width
(w = 2.0 Å), this is not problematic, but for significantly smaller
widths, denser integration grids might be required to maintain the
same accuracy.

Some authors [12,14,70,73,74] have advocated the use of vcut(r)
as an explicit basis-shaping parameter, to gain some extra system-
specific basis flexibility at fixed basis size (e.g., when only using
the minimal basis). In contrast, we presently prefer to employ
vcut(r) as a purely technical quantity that should be chosen con-
servatively, so as to not impact any physical results. We stress
that ronset can and should be employed as an explicit convergence
parameter for a given basis set, verifying, e.g., the numerical devel-
opment of a given energy difference with increasing ronset. In our
experience, ronset = 3.5 Å typically yields well-converged energy
differences for light-element structures (for example, meV-level
convergence of the benchmark 203-atom molecular energy differ-
ence discussed in Section 5 below), and only slightly larger values
(ronset = 4.0 Å) suffice for transition metals.

For numerical efficiency, it is additionally important to note
that different radial functions ui(r) will decay towards large r with
different speed. For example, radial functions generated for high
angular momenta ( f , g) may in practice be peaked more sharply
and closer to the nucleus than lower angular momenta (s, p). It is
thus advantageous to introduce a cutoff criterion that accounts for
the actual extent of each individual radial function ui(r). Starting
with a version of ui(r) calculated without a tight confinement, we
define a new onset radius ronset,i for vcut(r) through

∞∫
ronset,i

dr |ui(r)|2 = ηcut. (10)

Here, ηcut is a small threshold, typically ηcut ≈ 10−4. After ronset,i is
thus determined, ui(r) is recalculated with that new confinement
onset, and the tail of that radial function is now pushed to exactly
zero over the width of vcut(r). In addition, a maximum value for
ronset that no radial function may exceed should still be set.
3.3. Iterative construction of accurate, transferable basis sets

In order to enable both fast production calculations and basis
set convergence studies down to meV-level total energy accuracy,
the availability of reliable, preconstructed basis sets is a necessity.
Our strategy to construct basis sets, described below, is guided by
the following goals. The basis sets should be accurate both on a
numerical level and converge systematically towards the converged
basis set limit as the basis size increases. For a given accuracy
level, the basis sets should be as small as possible, while remain-
ing transferable with the same accuracy between different atomic
structures. Any approximation to the converged basis set limit is
thus well documented and controlled. We have used the strategy
defined below to obtain preconstructed basis sets from hydrogen
to nobelium (elements 1–102); further details will be part of a
separate publication [75].

In order to reach the stated goals, we construct basis sets
guided by the following principles:

(1) Basis sets should be available starting from the minimal basis
on up to meV-level total energy convergence.

(2) Successive basis sets for the same element should be hierarchi-
cal, i.e., a larger basis set should contain all smaller ones. This
ensures a strictly variational total energy convergence.

(3) The basis construction procedure should be defined as objec-
tively as possible, i.e., with as little human bias as possible. In
particular, any necessary human intuition should be subject to
the same rigorous verification as any automated parts of the
process.

In practice, we ensure the validity of principles (1)–(3) by assum-
ing the following iterative basis set construction strategy:

• We define a large pool of “candidate” radial function shapes
{ui(r)} (e.g., hydrogen-like, cation-like, or atom-like functions
with a variable confinement potential; for details, see below).
Initially, this pool is kept as open as possible to avoid any a pri-
ori limitations.

• Starting from a given basis set (initially, the minimal free-atom
basis), we run through the entire pool of candidate functions,
adding each function to the given basis set in turn. The radial
function that gives the single largest improvement of a target
total energy is added to the original basis set.

• The procedure is repeated until no further significant total en-
ergy improvements result.

Formally, this construction scheme could be applied to generate
separate basis sets for different XC functionals, and indeed, we vary
the minimal free-atom basis according to the underlying LDA/GGA
functional. In practice, we have found that the additional basis
functions as generated, e.g., in LDA, show interchangeable perfor-
mance in different GGAs (and also hybrid functionals and Hartree–
Fock), and we thus employ the same sets of additional basis func-
tions for different functionals alike. However, we also note that
more or special care to ensure basis set convergence is required for
methods that rely explicitly on unoccupied orbitals, such as MP2,
RPA, or GW (a separate discussion will be given in Ref. [6]).

Two important choices remain to specify our basis set construc-
tion strategy: the pool of candidate radial functions, and a target
for the total energy optimization that is both fast to compute and
generic enough to ensure transferable basis sets.

Many suggestions for additional NAO basis functions beyond
the minimal basis exist in the literature. Historically the first were
simple confined free-atom-like excited state radial functions [7].
Other suggestions include the radial functions of free ions or of
hydrogen-like atoms for a variable nuclear potential z/r [8–10],
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or (for pseudopotentials) simple radial polynomials in a given re-
gion [15,76]. Exact hydrogen-like orbitals are analytically known
and (by linear combination) similar to Slater-type orbitals [77], but
in their numerical form, an explicit localizing confining potential
can be applied. In addition, the numerical form allows us to ex-
plicitly orthonormalize each additional basis function against all
previous ones at the same atom, i.e., in practice, only orthonormal
on-site basis sets arise.

For Gaussian-type orbitals and correlated methods, the path
to the converged basis set (CBS) limit has been systematically
investigated by various groups (e.g., Dunning and coworkers in
Ref. [78] and references therein). In contrast, studies that system-
atically explore the all-electron CBS limit using NAOs are com-
paratively scarce. For two specific systems (H2 and N2), Delley
[10] has demonstrated how the CBS limit can be reached, noting
that ion-like radial functions always serve very well as the first
(“double-numeric”) radial functions to augment the atomic valence
shells beyond the minimal basis. Hydrogen-like functions are used
in addition, especially as polarization functions for angular momenta
beyond those present in the free atom itself.

Regarding the basis function “pool”, we have tested valence and
excited-state radial function shapes of single atoms with differ-
ent confining potentials, (confined) radial functions of cations, and
hydrogen-like radial functions. Contrary to the intuitive expecta-
tion that confined atomic excited states might provide a system-
atic “ladder” of basis functions that is also efficient, we find that
such functions are almost always outperformed by cation-like or
hydrogen-like functions. In agreement with Ref. [10], the valence
functions of cations always perform very well as initial additions
to the minimal basis; however, even then, hydrogen-like functions
that perform almost equally well or slightly better can usually be
found.

Our eventual radial function pool for production basis sets is
thus restricted to (i) the radial functions of doubly positive charged
free ions, and (ii) hydrogen-like radial functions for a potential z/r
with z in the range 0.1 � z � 20 (for the f , g , and h functions of
heavy elements, Z = 40 and beyond, the maximum range of z was
increased up to z = 60). Note that, for the purpose of optimizing
a radial function shape, it is not necessary for z to remain integer
(in fact, integer z would cost us some variational flexibility), and
we treat z as a continuous parameter instead. For light elements
(H–Ar), we consider angular momenta l = 0, . . . ,4; for K (atomic
number Z = 19) and beyond, h functions (l = 5) are also included.

Regarding the optimization target, we select the simplest pos-
sible chemical bonds formed by a given element: We minimize
the total energy error of a set of Nd non-spinpolarized symmetric
dimers at Nd ∼ 4–5 different bond distances di , in DFT-LDA, given
by

�basis = 1

Nd

Nd∑
i=1

[
Ebasis(di) − Ecb(di)

]
. (11)

Here, Ebasis(di) denotes the non-selfconsistent total energy per
atom, for the dimer at bond distance di for a given basis set.
The non-selfconsistent reference energy Ecb(di) for a converged
basis set (cb) is obtained independent of the present procedure,
by converging a very large, formally systematic basis set of con-
fined atomic excited-state functions. We find that non-selfconsistent
total energies are a fully sufficient optimization target, avoid-
ing potential instabilities of the self-consistency cycle for patho-
logical cases. The dimer distances di (i = 1, . . . ,nd) are spread
to sample the (self-consistent) LDA binding curve. We use the
binding curve minimum itself, a shorter distance in the repul-
sive regime at E ≈ Emin + 2 eV, and larger distances characteris-
tic of chemical bonds and the large-distance tail of the binding
curve.
Fig. 2. Iterative construction of NAO basis sets: Development of �basis [see Eq. (11)]
as a function of basis size for H2, C2, O2 and Au2, averaged over several bond dis-
tances in each case (see text for details). Full symbols denote the minimal basis
(occupied atomic core and valence functions only). Open symbols show the conver-
gence of �basis as one radial function after another is selected and added to the
previous basis set.

During the optimization, the onset of the confining potential
was chosen such that the reference total energies for the dimers
from the independent, large systematic basis set above were fully
(over-)converged (in practice, ronset = 5 Å or larger was used dur-
ing the basis optimization). This criterion for the cutoff is both
rigorous and sufficient, since a basis optimized for a too narrow
confining potential would be prevented from reaching the con-
verged basis limit by construction. We note that the radial func-
tion dependent cutoff criterion (10) was not used for the basis set
construction [although technically possible, any performance gains
from Eq. (10) are not critical during the basis construction proce-
dure].

Since the minimal basis functions are set up in DFT, we here
benefit from the fact that total energies of (spherical) free atoms
are already converged for the initial minimal basis. Our basis opti-
mization procedure thus focuses exclusively on the wave function
changes necessary to describe bond formation, rather than slow-
converging single-atom contributions near the nucleus. As pointed
out by others [74], dimers are actually a rather demanding test
case for atom-centered orbitals, since no basis function overlap is
available from other centers to improve the total energy acciden-
tally.

Fig. 2 illustrates the iterative basis construction process from
qualitative tight-binding like accuracy to sub-meV total energy
convergence for four elements: H, C, O, and Au. In each case, we
show the convergence of the average non-selfconsistent total en-
ergy error of the sets of Nd symmetric dimers, �basis [Eq. (11)],
as the basis size increases. The initial full symbol indicates the
minimal basis of occupied atomic radial functions. Each open
symbol corresponds to one more selected radial function [with
(2l + 1) angular momentum functions]. According to the gen-
eral prescription stated above, the LDA binding curves for H2, C2,
N2, and Au2 lead to di/Å = {0.5,0.7,1.0,1.5,2.5} for H, di/Å =
{1.0,1.25,1.5,2.0,3.0} for C, di/Å = {1.0,1.208,1.5,2.0,3.0} for
O, and di/Å = {2.1,2.45,3.0,4.0} for Au.

The radial functions thus selected in Fig. 2 are listed in Table 1.
The lists are organized as different tiers or levels of basis function
groups of different angular momenta: e.g., spd-spdfg-spdf-. . . for O.
While this type of grouping is often assumed intuitively (e.g., in
standard Gaussian basis sets as described in Refs. [78–80] and ref-
erences therein), it here arises naturally as the output sequence of basis
functions from our automated basis construction process, not as in-
put. We find this appearance of naturally ordered tiers across all el-
ements, with only minor occasional exceptions. One such exception
is indicated by a ∗ symbol in the column for Au. This hydrogen-
like 4 f function appears between the p and s functions of the
second tier in the sequence of Fig. 2; in order to achieve a more
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Table 1
Radial functions selected during the basis optimization for H, O, and Au, as illus-
trated in Fig. 2.

H C O Au

minimal 1s [He] + 2s 2p [He] + 2s 2p [Xe] + 6s 5d 4 f

tier 1 H(2s,2.1) H(2p,1.7) H(2p,1.8) Au2+(6p)

H(2p,3.5) H(3d,6.0) H(3d,7.6) H(4 f ,7.4)

H(2s,4.9) H(3s,6.4) Au2+(6s)
H(5g,10)

H(6h,12.8)

H(3d,2.5)

tier 2 H(1s,0.85) H(4 f ,9.8) H(4 f ,11.6) H(5 f ,14.8)

H(2p,3.7) H(3p,5.2) H(3p,6.2) H(4d,3.9)

H(2s,1.2) H(3s,4.3) H(3d,5.6) H(3p,3.3)

H(3d,7.0) H(5g,14.4) H(5g,17.6) H(1s,0.45)

H(3d,6.2) H(1s,0.75) H(5g,16.4)

H(6h,13.6)

tier 3 H(4 f ,11.2) H(2p,5.6) O2+(2p) H(4 f ,5.2)∗
H(3p,4.8) H(2s,1.4) H(4 f ,10.8) H(4d,5.0)

H(4d,9.0) H(3d,4.9) H(4d,4.7) H(5g,8.0)

H(3s,3.2) H(4 f ,11.2) H(2s,6.8) H(5p,8.2)

H(6d,12.4)

H(6s,14.8)

. . . . . . . . .

The first line (“minimal”) summarizes the free-atom radial functions used (noble-
gas configuration of the core and quantum numbers of the additional valence radial
functions). “H(nl, z)” denotes a hydrogen-like basis function for the bare Coulomb
potential z/r, including its radial and angular momentum quantum numbers, n and
l. X2+(nl) denotes a n, l radial function of a doubly positive free ion of species X .
The asterisk denotes one radial function that is listed out of sequence to retain the
otherwise consistent ordering into successive angular momentum shells (tiers; see
text).

efficient second tier that is yet consistent with other elements, it
is here listed as part of the third tier instead. It is important to
note that this is merely a change of sequence, and that the en-
tire list of available basis is of course always available for rigorous
convergence tests.

We note that the precise point where one tier ends and an-
other begins is sometimes not unique. This is the case, e.g., for the
first tier of C and O, which might or might not include the fol-
lowing f function. For second-row elements as well as Na and Mg
(Z = 11,12), the angular momenta of the first three selected basis
functions are always {s, p,d}. We therefore label these basis func-
tions as the first tier for elements 3-12 (Li–Mg) for consistency.
This basis level has sometimes been labeled as “double-numeric
plus polarization” (dnp) [10,81] or “double-zeta plus polarization”
(dzp) [73] by others. Again, we note that, in our case, this sequence
is not a designation based on mere intuition, but rather a result of
our basis optimization strategy. The same logic also indicates that,
for heavier elements, tier 1 should comprise more than just an s,
p, and d function: For Al (Z = 13) and beyond, the first f function
occurs indeed before the {s, p,d} group is complete, and is thus
included in tier 1.

Finally, we note that in Fig. 2, the absolute convergence level
achieved with a given tier is element dependent. For example, the
convergence level of the tier 1 basis sets for C and O is ≈ 0.1 eV for
the non-selfconsistent total energy. Compared to the minimal basis,
the error is thus reduced by more than a factor of ten. For en-
ergy differences between bonded structures, much of the remain-
ing error will also cancel. In practice, tier 1 for light elements thus
guarantees accurate geometry (pre-)relaxations, but tier 2 (with a
convergence accuracy of ≈ 0.01 eV for the non-selfconsistent to-
tal energy in Fig. 2) is required to guarantee meV-converged en-
ergy differences. Comparing this to Au, we see that already tier 1
yields ≈0.01 eV convergence, and is sufficient in practice for well-
converged energy differences. Our findings regarding energy differ-
ences are illustrated quantitatively in Section 3.5 below.
Fig. 3. Selected equilibrium geometry parameters of the H2O dimer in DFT-PBE, as
a function of the basis set. The table on the right lists the optimized values of bond
distances and angles as defined by the figure on the left. One of the tilt angles of
the upper H2O molecule, α2 (the equivalent of α1 for the other H atom in this
molecule), is hidden and therefore not indicated in the figure.

3.4. Transferability of NAO basis sets: Basis set superposition errors

A particular concern for overlapping atom-centered basis sets
is the possibility of basis set superposition errors (BSSE) [82–84].
Consider, for example, the atomization energy of an N-atom com-
pound:

�Eatm = Ecompound
tot −

N∑
i=1

Eatom i
tot . (12)

Most LCAO basis set types (Gaussians, Slater-type orbitals, . . . ) do
not describe the free atom exactly. Hence, basis functions situated
on one atom may variationally improve the total energy contribu-
tions originating from the other atoms in the compound. Since this
improvement is possible only in the compound, not in each atomic
reference calculation (without the additional basis functions from
the other atoms), the result is an artificially lowered atomization
energy �Eatm. The crux is that apart from depending on the ba-
sis set, this BSSE is also structure dependent, i.e., denser structures
will typically suffer a larger BSSE than sparser ones.

By construction, our NAO basis sets do not incur any BSSE at
all in Eq. (12) for non-spinpolarized, spherical reference atoms:
The exact valence wave functions of these atoms are already part
of the basis (the minimal basis), and no variational improvement
is possible by adding further basis functions. On the other hand,
this argument no longer strictly holds for spin-polarized and/or
non-spherical [85] reference atoms, and perhaps even more im-
portantly for intermolecular binding energies. The wave function
for each individual molecular fragment is certainly not exact, and
the question of an intermolecular BSSE must still be addressed.

We exemplify the role of BSSE for NAOs for a prototype in-
termolecular geometry and binding energy, that of the hydrogen-
bonded H2O dimer (for a description and further benchmarks of
this system, see Ref. [86] and references therein). The convergence
of the geometry parameters using the Perdew–Burke–Ernzerhof
(PBE) [58] exchange–correlation functional is summarized first in
Fig. 3. The only significant geometry deviations from the converged
value are found for the minimal basis; already for the small tier 1
basis, even sensitive tilt angles between both molecules are essen-
tially correct.

In Fig. 4, we show the convergence with basis set size of the
(H2O)2 binding energy for the DFT-PBE [58] (subfigure a) and
-PBE0 [30] (subfigure b) exchange–correlation functionals and for
different basis sets. Both graphs employ the same optimized ge-
ometries of Fig. 3.1 For both functionals, the circles show the over-
all convergence of the straight energy difference

1 While the present paper deals mostly with DFT-LDA and -GGA, we here include
results for the PBE0 hybrid functional, to illustrate the point that the performance
of our orbital basis sets for ground-state calculations is qualitatively independent of
whether a normal or generalized Kohn–Sham scheme (for the single-determinant
exchange part of PBE0) is used. Implementation details, specifically regarding the
auxiliary basis set used to expand products of orbital basis functions to compute
the two-electron Coulomb operator, will be given in a forthcoming paper [6].
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Fig. 4. Uncorrected (circles) and counterpoise-corrected (squares) binding energy of the H2O dimer as a function of basis set as defined in Table 1. (a) DFT-PBE. (b) DFT-PBE0.
Eb = Erelaxed
[
(H2O)2

] − 2Erelaxed[H2O] (13)

for the tier basis sets of Table 1, choosing an (over-)converged
confining potential (ronset = 5.0 Å, w = 2.5 Å). Eb is qualitatively
converged (to ≈10 %) for both functionals already at the tier 1
level, and is quantitatively converged for tier 2 (within 5 meV of
the converged values, dotted lines: EPBE,conv = −219.5 meV and
EPBE0,conv = −213.3 meV, verified independently of the tier basis
sets shown here). Together with some residual basis incomplete-
ness error cancellation between Erelaxed[(H2O)2] and Erelaxed[H2O],
the relative magnitudes of the remaining error in Eb with increas-
ing basis set size are directly consistent with the total energy
convergence levels of the H and O basis sets indicated in Fig. 2,
and illustrate the transferability of these basis sets.

The squares in Figs. 4a and 4b address the magnitude of the
residual BSSE in our calculations by way of the counterpoise (CP)
correction [83,84] of quantum chemistry. The CP correction com-
pensates for the BSSE by calculating the total energies of both H2O
fragments in the dimer separately, once by including only the ba-
sis functions of the fragment in question (E fragment[H2O]), and once
for the same fragment geometry, but including as “ghost” basis
functions on empty sites the basis functions of the respective other
fragment (ECP

fragment[H2O]). The resulting correction term is

�CP =
∑

fragments

(
ECP

fragment[H2O] − E fragment[H2O]). (14)

Eb − �CP is given by the red lines in Fig. 4. It is immediately obvi-
ous that �CP is of appreciable magnitude only for the minimal and
tier 1 basis sets, i.e., those where a noticeable binding energy error
exists in the first place. However, the correction is not enough to
fully compensate for the basis set error, indicating that the BSSE is
not the dominant aspect of basis set incompleteness in both cases.
While the correction shows the right trend also for tiers 2 and 3,
it is there almost negligible in magnitude, consistent with the al-
ready good total energy convergence for the larger basis sets.

The above observations for (H2O)2 in DFT match our experience
with many other systems. We conclude that BSSE corrections for
ground-state DFT are not critical for the well converged NAO-based
total energies and energy difference that can be achieved already
at moderate basis size (e.g., tier 2). We note that this holds only
for the local, semilocal and hybrid functionals, and Hartree–Fock.
In contrast, a CP correction may be critical for explicitly correlated
methods (e.g., MP2 or RPA), as will be further discussed in Ref. [6].

3.5. Converging NAO basis sets in practice

With a consistent and general basis set construction strategy,
we still require benchmark examples that demonstrate how basis
set convergence is achieved in practice. The present section illus-
trates the convergence of energy differences and materials proper-
ties with basis size, for two characteristic classes of systems: large
light-element molecule conformers, and a heavy-element periodic
solid (fcc Au). We also address the relevance of high-angular mo-
mentum basis functions in our production basis sets. For example,
the basis sets in Table 1 contain comparatively high angular mo-
menta (d for H, tier 2; g for C and O, tier 2; or, g and h for Au,
tier 1). Since including such basis functions means significant com-
putational effort, it is important to verify their impact for specific
tasks.

Strictly, the conclusions below hold for the specific cases shown
(a larger series of tests is beyond the scope of this paper), but in
our experience they are indicative of general trends. They also in-
dicate how routine convergence tests can be conducted for the key
results of any particular physical study, analogous to, e.g., verifying
the cutoff energy in any application of plane wave basis sets.

We first turn to the convergence of a large-molecule confor-
mational energy difference in Fig. 5. Part (c) shows the difference
between a fully extended [subfigure (a)] and an α-helical [sub-
figure (b)] conformer of a polypeptide Ala20 (203 light-element
atoms H, C, N and O) as a function of basis size. Both structures
are fixed-geometry cutouts from fully relaxed, infinite-chain mod-
els of the same structure elements [87], with relaxed terminating
groups -NH2 and -COOH.

Convergence with basis size. For a small tier 1 basis set, Fig. 5c
shows a remaining error of ≈210 meV in the energy difference. In
fact, this corresponds to “only” ≈1 meV/atom, but is clearly far-
ther away from the converged limit than typical relevant energy
scales kT . Still, this basis level performs very well for geometry
optimizations (consistent with Fig. 3 above). A larger tier 2 basis
set improves the calculated energy difference significantly. For it,
the remaining error is ≈25 meV, i.e., 0.12 meV/atom from the con-
verged limit. As in the case of (H2O)2, the relative magnitudes of
the errors in the energy difference are consistent with the relative
magnitudes of the total energy convergence levels of the respec-
tive tiers achieved during the basis set construction procedure for
dimers, cf. Fig. 2.

Effect of high angular momentum basis functions. The square
data point in Fig. 5c shows the convergence level achieved for this
example when the highest angular momentum functions from the
tier 2 basis sets of each element are omitted (d in the case of H,
g in the case of C, N, and O). Compared to the full tier 2, this mod-
ification incurs an additional error of ≈20 meV, which is rather
moderate in view of the size of the investigated systems, especially
in view of the basis size reduction achieved (≈25% in this exam-
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Fig. 5. (a) Fully extended and (b) α-helical conformer of a 203-atom polyalanine molecule Ala20. (c) Convergence of the conformational difference between both conformers
with NAO basis size, for successive basis tiers (Table 1). The dotted line indicates the result for a very large basis set. Also shown (square symbol) is the result using tier 2,
but omitting high angular momentum functions (d for H, g for C, N, and O).
Fig. 6. Convergence of the lattice parameter afcc, bulk modulus B , and cohesive
energy Ecoh for fcc Au in DFT-PBE as a function of basis size. tier 1- f gh denotes
tier 1 as described in Table 1, but omitting the f , g , and h high-angular momentum
functions; likewise for tier 1-gh but omitting only the g and h functions; finally,
tier 1+spdf adds only the s, p, d, and f function of tier 2 to the complete tier 1.

ple). For many production calculations, this basis set level is thus
sufficient to guarantee high-accuracy conformational energy differ-
ences at a rather competitive computational cost. On the other
hand, the total energy error incurred by omitting these functions
is ≈1.4 eV, compared to a remaining total energy error of ≈0.5 eV
for the full tier 2. The omitted high-l basis functions thus are not
negligible when investigating quantities without error cancellation,
such as atomization energies in the case of our NAOs.

In Fig. 6, we complement our findings for light elements with
the NAO convergence properties for a heavy transition metal, Au
(Z = 79). Specifically, we illustrate the convergence properties of
the lattice parameter afcc, the bulk modulus B , and the cohesive
energy Ecoh (obtained from a fit of the Murnaghan equation of
state E(V ) [88]) with basis size for fcc Au in DFT-PBE.

Convergence with basis size. Fig. 6 shows that afcc, B and Ecoh
converge rapidly with basis size. Consistent with the ≈0.01 eV
convergence level achieved in the basis construction (Fig. 2), the
tier 1 basis set gives essentially converged results. For this basis
set, afcc = 4.159 Å and B = 1.37 MBar agree very well with their
literature counterparts (4.158 Å and 1.42 MBar, respectively [89]).
Regarding the cohesive energy, tier 2 yields only ≈20 meV im-
provement over the tier 1 result. We find that similar convergence
is achieved at the tier 1 level also for other structures including Au.
Again, the different convergence levels achieved in Fig. 2 are rather
consistent with our conclusion that tier 2 is required for light ele-
ments (H, C, N, O), while tier 1 already performs very well for Au.

Effect of high angular momentum basis functions. Fig. 6 also
shows several basis sets that omit high angular momentum func-
tions from the tier basis sets of Au. Omitting the g and h functions
from tier 1 does not significantly affect afcc and B . Especially for
large-scale simulations, this basis set level thus enables rather ac-
curate results at competitive cost (see Section 5 below). In contrast,
visible changes arise when also the f function is left away. Similar
conclusions hold also for energy differences other than a dense fcc
bulk, e.g. for large-scale reconstructed Au surfaces [90].

In total, both test cases demonstrate how systematic conver-
gence is achieved by using the successive tiers of Table 1 as
basis sets. They also substantiate our observations regarding the
element-specific accuracy of tiers near the end of Section 3.3. For
example, tier 1 is recommended to achieve a fast prerelaxation for
light elements, but tier 2 is needed for meV-level converged energy
differences. In contrast, the (larger) tier 1 for Au yields quite well
converged energies, and its spdf section even suffices for faster
“quick and dirty” calculations. In our own implementation [17],
we therefore provide a hierarchy of predefined settings “light”,
“tight”, and “really-tight” for all elements. These choices provide
easy access to basis set levels and other settings at which fast
(pre-)relaxations can safely be performed, up to the “really-tight”
level where calculated energy differences can be expected to be
converged at a level of few meV even for large systems. Beyond
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these predefined levels, the further tiers of our tabulated basis sets
always provide a systematic path to verify the convergence of any
calculated quantities explicitly.

4. Kohn–Sham equations, total energies and energy derivatives
from NAOs: Numerical implementation

4.1. Numerical integration

Using NAO’s, Eqs. (2)–(7) require the performance of numerical
integrations in three dimensions for a variety of tasks, most promi-
nently in the setup of the Hamilton and overlap matrices, Eq. (5).
As it stands, this task faces two challenges: First, it formally scales
as O(N3) with system size N , as all pairs of basis functions (∼N2)
must be integrated across the entire system (∼N). Since each ba-
sis function is non-zero only inside a fixed volume controlled by
the confinement potential, this formal scaling is reduced to O(N)
in the limit of large systems, but the associated effort is signifi-
cant and can be dominant for common system sizes (e.g., below
≈100 atoms for molecules). Second, one must integrate both the
fast-varying localized wave function parts near the nuclei and the
extended, smoother parts in interstitial and far-field regions with
the same accuracy.

Several efficient integration schemes suitable for all-electron
NAOs have been proposed in the literature (e.g., Refs. [10,24–26,91,
92]). In practice, we opt to integrate all basis functions in a single
sweep, using the now-standard partitioned integration technique
on overlapping, atom-centered grids described by Becke, Delley,
and others [10,25,91], which allows tightly converged calculations
even for rather small grid sizes (e.g., ≈10,000 grid points per atom
for light elements).

In this scheme, each extended integrand [ϕi(r)ĥKSϕ j(r)] (or any
other integrand) is formally divided into localized atom-centered
pieces by a “partition of unity”:∫

d3r ϕi(r)ĥKSϕ j(r) =
∑

at

∫
d3r pat(r)ϕi(r)ĥKSϕ j(r), (15)

where the sum of all atom-centered partition functions pat(r)

equals one everywhere, by defining [10]

pat(r) = gat(r)∑
at′ gat′(r)

. (16)

The normalizing sum over at′ in the denominator runs over all
atoms in the system, and gat is a strongly peaked function about
its originating atom. For example, Delley [10] suggested a simple
intuitive approach similar to Hirshfeld partitioning [93],

gat(r) = nfree
at (r)

r2
, (17)

where nfree
at (r) is the electron density of non-spinpolarized, spher-

ical free atoms. In contrast, more intricate schemes based on
purely geometric considerations have also been put forward in
the literature, most notably the detailed study by Stratmann and
coworkers [25]. For brevity, we refer to their original work for
implementation details, but note that this latter scheme allows a
system-dependent reduction of ≈10–20% in grid points compared
to Eq. (17). While both prescriptions are of similar accuracy for
many problems, the method of Ref. [25] proved to be strikingly
more accurate than Eq. (17) for corner cases of very open systems
(e.g., the fully extended Polyalanine structure of Fig. 5a), allowing
additional computational savings through reduced overall integra-
tion grids.

Each single-atom integrand is integrated on its own grid of Nr

spherical integration shells r(s) (s = 1, . . . , Nr ), on which angular
integration points Ωt with tabulated integration weights wang(t)
are distributed so as to integrate angular momentum functions up
to a certain order exactly [94,95] (often called Lebedev grids [96–
98]). Specifically, we employ a version provided by Delley with
an accuracy of 17 digits [99]. The most efficient location of radial
grid shells has been discussed by several authors [91,100,101]; our
choice again goes back to Delley [101],

r(s) = router · log{1 − [s/(Nr + 1)]2}
log{1 − [Nr/(Nr + 1)]2} . (18)

The radial integration weights are obtained from

wrad(s)ds = r(s)2 dr(s) = r(s)2 dr

ds
(s)ds. (19)

The radius of the outermost shell, router, and Nr specify the accu-
racy. Since r(0) = 0 and r(Nr + 1) = +∞ by construction, a simple
uniform accuracy increase can be obtained by placing additional
shells at integer fractions of the original grid, e.g., at s = 1

2 , s = 3
2 ,

. . . , s = 2Nr + 1/2.
In production calculations, the number of angular grid points

on a given radial shell rs must still be specified. In principle, it
is possible to determine the required angular grid for any given
structure rigorously and adaptively, by converging the initial (non-
selfconsistent) matrix elements si j and hij to better than a given
threshold on each radial shell. We have implemented this algo-
rithm for cluster-type geometries. In production calculations, it
is, however, advantageous to specify conservative integration grids
that are independent of the particular structure, in order to retain
some error cancellation in energy differences. As in the case of ba-
sis sets, we therefore use symmetric dimers to determine the nec-
essary grid density per radial shell for a given element adaptively,
and then use the results as predefined, fixed grids in production
calculations.

It is important to note that near-nuclear shells require signif-
icantly fewer points than those that touch the interstitial region.
The number of angular grid points per shell thus increases from
some value nmin near the nucleus to a maximum nmax on far-
away shells. We find that a conservative choice nmin = 110 ensures
noise-free forces also for high angular momentum components in
the Hartree potential. For light-element molecules, we find nmax =
302 to be sufficient for accurate geometry relaxations, and nmax =
590 points to give total energies converged to ∼ 10−5 meV/atom
even for very large molecules. The increase between nmin and nmax
is then controlled through the adaptive scheme above.

In total, Eq. (15) is thus shortened to a sum over integration
points∫

d3r ϕi(r)ĥKSϕ j(r) =
∑
at,s,t

w(r)ϕi(r) · [ĥKSϕ j(r)
]
, (20)

where r = r(at, s, t) and w(r) = pat(r) · wrad(s) · wang(t). As we
discuss in detail in Ref. [102], the actual evaluation of Eq. (20) pro-
ceeds then in the following steps:

(1) The full integration grid is subdivided into localized batches of
O(100) grid points each, using a recursive algorithm: We split
the full grid by finding a cut-plane through the center of grav-
ity of all points which maximizes the sum of distance squares
of all grid points to that plane [103]. The same operation is
then applied to the two resulting groups of points, etc., un-
til a predetermined maximum batch size is reached in each
case.

(2) In each batch, the Nnz basis functions are found that exceed
a given threshold ηwave on at least one point in the batch
(called the “non-zero” functions out of the system-wide Nb
basis functions below). If the basis size per atom is fixed, Nnz
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approaches a constant with growing system size N , leading to
O(N)-like scaling for all integrals.

(3) For each batch, the vectors ϕi(r) and ĥKSϕ j(r) are evaluated
point by point, but only if a given basis function is non-zero
at that point.

(4) Within each batch, Eq. (15) is evaluated for all points at once,
using a matrix multiplication over r for the Nnz basis func-
tions:

hbatch
i j =

∑
r in batch

airbr j, (21)

with air = w(r) · ϕi(r) and brj = ĥKSϕ j(r).
(5) The (Nnz × Nnz) matrix elements hbatch

i j are added into the
system-wide (Nb × Nb) Hamilton matrix hij .

Steps (1)–(5) are trivially parallelized by distributing the batches
across all available CPUs so as to ensure an even workload distribu-
tion. The only communication required are global matrix sums at
the end of each integration. In addition, any large array stored on
the grid [e.g., n(r)] is automatically memory-parallel. In massively
parallel environments and/or in the limit of very large systems,
it is important to note that the system-wide Hamilton matrix hij

grows in memory as O(N2). To minimize communication, step (5)
requires that a copy of hij is kept on every single CPU. We alleviate
this memory bottleneck by using compressed row storage for hij ,
and by ensuring that each individual MPI task handles only batches
that are spatially close together. Step (5) can then be performed
using an efficient sorting algorithm and only for the fraction of
matrix elements hij that are touched by the present CPU.

For the case of periodic boundary conditions, the Kohn–Sham
equations, Eq. (4), become k-space dependent, with separate ma-
trices h(k), s(k), and solutions ψl,k(r) for different k-points in the
first Brillouin zone. This situation is handled by formally defining
Bloch-like generalized basis functions χi,k(r) from real-space basis
functions ϕi(r) that are centered in unit cells shifted by translation
vectors T (N) [N = (N1, N2, N3)]:

χi,k(r) =
∑

N

exp
[
ik · T (N)

] · ϕi
[
r − Rat + T (N)

]
. (22)

Formally, this definition leads to k-dependent matrix elements

hij(k) = 〈
χi,k

∣∣ĥKS
∣∣χ j,k

〉
=

∑
M,N

exp
{

ik · [T (N) − T (M)
]}〈

ϕi,M
∣∣ĥKS

∣∣ϕ j,N
〉

(23)

[with the usual real-space basis functions ϕi,M and ϕ j,N centered
in different unit cells M and N , and equivalent for sik(k)]. If the
integrals 〈ϕi,M |ĥKS|ϕ j,N 〉 were evaluated as they stand (with inte-
gration volumes extending over possibly several unit cells), one of
the lattice sums in Eq. (23) would break down immediately due
to periodicity (all terms depend only on N − M). In any case,
only a finite number of inequivalent real-space matrix elements
are non-zero, since all basis functions are bounded by the confine-
ment potential.

However, from a computational point of view it is more conve-
nient to integrate (numerically) the matrix elements 〈ϕi,M |ĥKS|ϕ j,N 〉
not as single integrals extended over their whole respective inte-
gration volume, but rather in separate pieces, as partial integrals
that extend over the volume of just one unit cell:

huc
i j (N, M) =

∫
unit cell

d3r ϕi,M (r)ĥKSϕ j,N (r). (24)

In practice, the appropriate integration grid for one unit cell is ob-
tained by taking the overlapping atom-centered grid points (spread
out over several unit cells), and mapping each grid point back
to the first unit cell. We can then tabulate those basis functions
{ϕi,N (r)} that touch the first unit cell at all, to obtain all non-
zero, inequivalent pieces of the real-space Hamiltonian matrix,
huc

i j (N, M), within the whole structure. The advantage of this pro-
cedure is that we can then use the exact same integration steps
(1)–(5) as in the cluster case. Using huc

i j (N, M), Eq. (23) can be re-
arranged to the formula

hij(k) =
∑
M,N

′ exp
{

ik · [T (N) − T (M)
]} · huc

i j (N, M) (25)

at each k point. In contrast to Eq. (23), it is important to note that
the sums

∑′ over M and N in Eq. (25) are not lattice sums, but
rather run only over those unit cells whose basis functions ϕi,M
and ϕ j,N have a non-zero piece in the first unit cell at all.

4.2. (Parallel) eigenvalue solution

In Kohn–Sham DFT, an accurate solution of the single-particle
eigenvalue problem (4) is required. Traditional linear algebra for
dense systems based on standard libraries (Lapack or ScaLapack
[104,105]) provides a straightforward and robust solution for this
step, but scales as O(N3) with system size in practice. The NAO
basis set is particularly appealing in this respect in that the total
number of basis functions Nb for a given structure is rather small
compared to other types of basis functions even for converged pro-
duction calculations, typically only a single-digit factor larger than
the number of occupied states, Nocc. Thus, the use of standard
eigenvalue solvers is not a problem for most relevant system sizes,
despite the unfavorable scaling. Only for rather large systems (e.g.,
≈ 1000 atoms for light elements as shown in Section 5) does the
solution time for Eq. (4) become dominant compared to all other
computational steps.

In serial computations, we thus presently simply employ stan-
dard Lapack [104] library subroutines: first, a Cholesky decompo-
sition Lik LT

kj of si j to transform the non-orthonormal generalized

eigenvalue problem to a standard one using the matrix L−1
ik hkr L−T

r j .
Then follows a transformation to tridiagonal form before finding
the eigenvalues and eigenvectors.

In (massively) parallel computations, the key challenge is to
preserve the low relative time requirements for Eq. (4) by en-
suring near-ideal scaling to as many CPUs as possible. In our
implementation, the exact eigenvalue solution is still performed
through ScaLapack [105] library routines, albeit with some cus-
tomizations and ongoing work towards scalability improvements
over many thousands of CPUs, as will be described in more de-
tail in Ref. [106]. In brief, we note here that it is advantageous
to employ the divide-and-conquer variant of the actual eigen-
solver (ScaLapack subroutine pdstedc). In addition, using back-
ward/forward substitution to calculate the product of the inverse
Cholesky factors with hij does not scale beyond a few hundred
CPU’s. This limitation follows from the fact that backward/forward
substitution always employs only a few rows/columns of the re-
spective matrices at the very beginning or end of the calcula-
tions. We thus compute the inverse of the Cholesky factor Li j for
this step. Doing so lets us employ standard matrix multiplication
which scales much better. Together with compressed storage of hij
in other phases of the calculation, only its local subsets needed
for integration are kept on each CPU, and the procedure is fully
memory-parallel.

There are two separate limits to our current (Sca)Lapack imple-
mentation: First (and trivially), very large systems (thousands of
atoms and beyond) for which the simple O(N3) scaling becomes
dominant, and second, massively parallel code execution on thou-
sands of CPU’s, which reaches ScaLapack’s scaling limits. Currently,
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the ScaLapack tridiagonalization step in the procedure is the limit-
ing factor in the parallel scaling, as also noted by others [107]. To
overcome the scaling limits of (Sca)Lapack and similar generic so-
lutions, many alternative approaches have successfully been intro-
duced for more specific contexts. Among these, iterative eigenvalue
solver strategies (e.g., Refs. [107–113]) have been particularly suc-
cessful in electronic structure theory, and we are working towards
such an implementation [114].

A basis of NAOs centered at different sites is necessarily non-
orthogonal (i.e., si j 	= δi j ). As the basis set grows, different linear
combinations of basis functions can thus be expressed increas-
ingly well by one another, ultimately threatening an ill-conditioned
eigenvalue problem (4). In general, we do not observe any such
ill-conditioning for clusters or large periodic cells even for very
large production basis sets (tier 3 or larger in our nomenclature of
Table 1), although this might be different for highly compressed
materials that occur at the center of planets and stars. Neverthe-
less, ill-conditioned eigenvalue problems may arise in two distinct
scenarios: (i) very large basis sets which are deliberately increased
towards (over-)completeness, e.g., for stringent convergence tests;
(ii) small unit-cell periodic calculations with very dense k-meshes
and large basis sets. Case (ii) is apparently a consequence of
“pipelining” many different k-points through Eq. (25), in each case
combining only slightly different phase factors with the same real-
space matrix elements huc

i j .
In any case, a standard safeguard against accidental ill-condi-

tioning is simple: First, transform si j to its diagonal form explicitly.
Then, project out any of its eigenvectors with suspiciously small
eigenvalues (e.g., 10−5 or below). In addition, very large basis sets
can also be stabilized by simply increasing other accuracy settings,
e.g., the integration grids. This reduces any minor numerical errors
that could be “collected” into spurious eigenvectors of si j .

4.3. Electron density and local potentials

Based on updated Kohn–Sham wave functions ψl(r), the next
step is to obtain an updated electron density n(r), and, from it,
the local potentials ves(r) and vxc(r).

There are two numerical routes to obtain the electron density
n(r) from a given set of Kohn–Sham eigenvectors cil: either an
eigenstate-based update procedure that scales as O(N2), or a den-
sity matrix based update that scales as O(N) for large systems but
requires more numerical effort for small systems.

Eigenstate-based density update. The straightforward way to the
electron density is to evaluate each occupied Kohn–Sham orbital
ψl(r) (l = 1, . . . , Nocc, where Nocc denotes the highest state with
a non-zero occupation number fl) at each integration point, and
then build the electron density by a sum of squares:

n(r) =
Nocc∑

l

fl
∣∣ψl(r)

∣∣2
. (26)

Derivatives of n(r) can be obtained in the exact same way, except
that derivatives of ψl(r) are now required, with each component
(three for the gradient and six for the Hessian) as expensive as
the density itself. In practice, Eq. (26) requires a matrix product
ψl(r) = ∑

i cilϕi(r) for each batch of grid points r. While the num-
ber of non-zero basis functions per point becomes constant with
system size, the same is not true for the extended Kohn–Sham
eigenstates. The simultaneous growth of the grid and of Nocc with
system size thus render the effort for Eq. (26) as O(N2).

Density matrix based density update. As soon as Nocc becomes
larger than the number of non-zero basis functions per integration
point, it is favorable to switch to an electron density update based
on the density matrix,

nij =
Nocc∑

l

flcilc jl. (27)

The electron density is then obtained by an operation which in-
volves only locally non-zero basis functions:

n(r) =
∑

i j

ϕi(r)nijϕ j(r). (28)

The resulting single matrix product per batch of grid points r and
single dot product per grid point scale as O(N).

In periodic systems, the sum over occupied states in Eq. (27)
implicitly includes k-points and phase factors. Eq. (28) is then eval-
uated entirely on the real-space grid, summing over all real-space
basis functions ϕi that touch the first unit cell.

From n and its gradients, we can compute the local electron–
electron interaction potentials, ves(r) and vxc(r). LDA or GGA
exchange–correlation functionals Exc[n] = ∫

d3r fxc[n(r), |∇n(r)|2]
are straightforward to compute per integration point and not a
time or memory bottleneck. However, the evaluation of |∇n(r)|
makes GGAs overall slightly more expensive than LDA (since the
expensive operations in the electron density update must be repli-
cated for each of the three gradient components as well).

For GGAs, the full XC potential is yet more expensive because
it depends explicitly on the Hessian (with six independent compo-
nents) of n:

vxc = δExc[n]
δn

= ∂ fxc

∂n
− 2∇

[
∂ fxc

∂|∇n|2 · ∇n

]
. (29)

As long as only total energies and eigenvalues are required, the
Hessian can be avoided through an integration by parts for hij and
the XC potential energy [115], i.e.,∫

d3r ϕiϕ j · ∇
{
(∇n) · ∂

∂|∇n|2
[

fxc
(
n, |∇n|)]}

=
∫

d3r ∇[ϕiϕ j] · (∇n) · ∂

∂|∇n|2 fxc
(
n, |∇n|). (30)

The explicit Hessian of n is thus only needed for energy derivatives
(forces).

Since the electron density n(r) is tabulated on the non-uniform,
atom-centered grid, the electrostatic potential ves(r) = ∫

d3r′ n(r′)
|r−r′|

is evaluated directly in an atom-centered form, using partitioned
overlapping electron densities that are localized around each
atom as described by Delley [10,116] for cluster-type and peri-
odic geometries. We begin by subtracting a superposition of non-
spinpolarized spherical free-atom densities from the full electron
density,

δn(r) = n(r) −
∑

at

nfree
at

(|r − Rat|
)
. (31)

The free-atom electron densities nfree
at (|r − Rat|) and their electro-

static potential counterparts ves,free
at (|r − Rat|) are accurately known

as cubic spline functions on dense logarithmic grids. The remaining
difference density δn(r) is decomposed into atom-centered multi-
pole components, using expressions exactly equivalent to the par-
titioned integration formalism Eq. (15),

δñat,lm(r) =
∫

r=|r−Rat|
d2Ωat pat(r) · δn(r) · Ylm(Ωat). (32)

The multipole components δñat,lm(r) are then spline-interpolated
onto a dense logarithmic grid. The Green’s-function solution to
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Fig. 7. Convergence of total energies and the energy difference of two different conformers of the polypeptide Ala20 (Figs. 5a and 5b) with les
max [Eq. (34)], at the tier 1 basis

set level in DFT-PBE (see Fig. 5c). Reference energy in all cases: les
max = 12. (a) Total energy convergence of the α helix. (b) Total energy convergence of the extended structure.
(c) Convergence of the energy difference between α-helical and extended conformer.
Poisson’s Equation for multipoles from classical electrostatics [69]
connects ñat,lm(r) to electrostatic multipole potentials ṽat,lm(r):

δ ṽat,lm(r) =
r∫

0

dr< r2
<gl(r<, r)δñat,lm(r<)

+
∞∫

r

dr> r2
>gl(r, r>)δñat,lm(r>). (33)

The Green function for the unscreened Hartree potential is
gl(r<, r>) = rl

</rl+1
> .

We use a third-order linear multistep integrator [117] to com-
pute δ ṽat,lm(r), which are then splined and reassembled to the full
electrostatic potential of δn(r),

δves(r) =
∑
at,lm

δ ṽat,lm
(|r − Rat|

)
Ylm(Ωat), and

ves(r) =
∑

at

ves,free
at

(|r − Rat|
) + δves(r). (34)

The sum runs over all atoms and m values, with l bounded by a
specified cutoff les

max.
The main computational effort in determining ves(r) is given

by the sum in Eq. (34), which grows as (les
max)

2 and which must
be evaluated separately at every grid point r. Thus, les

max should be
chosen as low as possible while still avoiding any significant cut-
off errors. Fortunately, quadratic total energy convergence with the
electron density expansion error for finite les

max can be achieved by
computing the electrostatic double-counting correction in Eq. (7)
as [39]

1

2

∫
d3r nMP(r) · ves(r), (35)

where

nMP(r) =
∑

at

nfree
at

(|r − Rat|
)

+
∑
at,lm

δñat,lm
(|r − Rat|

)
Ylm(Ωat), (36)

i.e., using the multipole expansion nMP(r) (capped at les
max) for the

electron density also in the double-counting expression.
A detailed convergence analysis including also the electron den-

sity and potential components themselves has also been given by
Delley [10]. For our own implementation, we display the energy
convergence with les

max in Fig. 7 for the molecular total energies and
energy difference of the fully extended vs. the α-helical Ala20 con-
formers already discussed in Section 3.5 (Fig. 5) above. The total
energies for both conformers are converged to ≈0.2 eV at les

max = 4
(i.e., ≈1 meV/atom). This total energy error is drastically dimin-
ished at les

max = 6 (remaining error: 0.025 eV ≈ 0.1 meV/atom).
Finally, the total energy error cancels practically completely in the
energy difference between both conformers already at les
max � 3.

We have found these specific observations to hold across a wide
range of systems. In practice, we find that les

max = 4 is normally
sufficient for meV/atom-converged energy differences, while truly
tight convergence can be achieved with les

max = 6. Similar expansion
orders for local atomic potential components are found, e.g., in
the full-potential (linearized) augmented plane wave [FP-(L)APW]
[118] and other muffin-tin based methods. In any case, the con-
vergence of les

max can always be verified explicitly for key results.
Since Eq. (34) invokes all atoms on all grid points, it formally

scales as O(N2) with system size. However, the extent of all elec-
tron density components δñat,lm(r) is bounded by the partition
function pat(r), which in turn is limited by the free-atom elec-
tron density or other method used to create it [Eqs. (15) and
(17), or Ref. [25]]. It is thus prudent to limit the range of the
free-atom density itself by a separate, adjustable cutoff radius.
In practice, its value can be chosen equal to the largest cutoff
radius for any basis function associated with the atom in ques-
tion. Outside the adjustable free-atom cutoff radius δ ṽat,lm(r) is
then a simple analytical field that decays as mat,lmr−(l+1) . Here,
mat,lm are the finite, classical multipole moments for the poten-
tial components δ ṽat,lm(r) outside the radius where the density
component δñat,lm(r) becomes zero. As pointed out in Ref. [26],
the single slow-decaying l = 0 component normally does not die
away anywhere even for the largest systems. Nonetheless, the mere
elimination of the fastest-dying, most expensive high-l components
improves the scaling of Eq. (34) significantly in practical calcula-
tions for large systems.

For periodic boundary conditions, the real-space electrostatic
potential can be handled in much the same way, but with pos-
sible finite multipole moments mat,lm for the difference density
components δ ṽat,lm(r), long-range components from distant unit
cells must now be accounted for. For the superposition of (neu-
tral) free-atom potentials ves,free

at (r), this problem does not arise:
The electronic charge is always compensated by the nucleus, and
the sum ves,free

at (r)+ Z/r is bounded by the extent of the free-atom
density nfree

at (r) (see also Section 4.6 for the resulting, “neutral-
ized” total energy expressions). However, the same is not true for
δ ṽat,lm(r)—in fact, for charged unit cells, the electrostatic potential
would even diverge.

We follow Ref. [116] and solve the long-range electrostatic
potential in periodic systems using Ewald’s method of adding
and subtracting smooth compensating Gaussian charge densities
around each multipole. While the compensating densities are
added only formally, the respective compensating potentials are ac-
tually evaluated in real and reciprocal space. Effectively, this proce-
dure splits each analytical potential tail r−(l+1) into a long-ranged
and a short-ranged part, e.g.,

1

r
= erf(r/r0) + erfc(r/r0)

r
(37)

(and similar for l > 0, with somewhat more complex expressions as
given in detail in Ref. [116]; multipolar Ewald sums for overlapping
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densities have also been used in other implementations [12,119,
120], including a full presentation in Ref. [121]). Only the short-
range part is then accounted for in real space, while the long-range
part is conveniently treated in reciprocal space.

In periodic systems, the zero level of the electrostatic potential
is not necessarily unique in periodic boundary conditions (for a
discussion, see Ref. [122]). We therefore set the potential zero to
be the spatial average of δves(r) [Eq. (34)].

For charged unit cells, any charge in the potential is effec-
tively neutralized by leaving away the G = 0 component of the
reciprocal-space potential part. In effect, this procedure corre-
sponds to adding a constant, neutralizing background charge den-
sity (“jellium background”) n0 to the entire system. However, un-
like in fully reciprocal space methods (where also the density is
handled in reciprocal space), n0 must then also be accounted for
in those total-energy expressions that involve the real-space den-
sity (see Section 4.6).

The scaling parameter r0 determines the smoothness of the
splitting, and thus the maximum reciprocal lattice vector in the
Fourier part of the potential, Gmax. We estimate Gmax by demand-
ing that a conservative estimate of the smallest Fourier series com-
ponent in the expansion still remains smaller than a given error
threshold η. By direct comparison with the exact potential expres-
sion (4) in Ref. [116], we obtain

4π

Ωcell
· 1

G2
max

· exp

(
− r2

0 G2
max

4

)
· |Gmax|les

max < η. (38)

In principle, r0 and η are adjustable parameters. In practice, we
find that, e.g., r0 = 3.0 bohr and η = 5 · 10−10 Ha guarantee full
accuracy across a wide range of systems, without becoming a bot-
tleneck in production calculations.

Like the Hamiltonian integration and electron density update,
Eq. (34) parallelizes naturally with the integration grid distributed
across different CPUs. However, each grid point r needs access to
most of the splined atomic potential components δ ṽat,lm(r) in the
structure. Since this array grows linearly with system size, keep-
ing a full copy on every CPU quickly becomes a memory bottle-
neck on low-memory, massively parallel architectures. Therefore,
we optionally trade some additional communication for full mem-
ory parallelism memory of δ ṽat,lm(r): We first distribute δ ṽat,lm(r)
across separate processes for different atoms. On every CPU, we
then fetch the contribution from each atom one by one, thus build-
ing the full ves(r) and nes(r) step by step.

4.4. Achieving self-consistency

The chicken–egg problem of electronic structure theory is self-
consistency: The correct electronic Hamiltonian hij should yield as
output the same Kohn–Sham orbitals, electron density and poten-
tials as were used to construct it. This subject continues to be a
focus of much effort in the community; we here summarize the
algorithms employed in our own implementation, including a gen-
eralization of the Kerker preconditioner [123–125] to the present
all-electron case, using the electrostatic-potential framework out-
lined in the preceding section.

In the standard self-consistent field (s.c.f.) method, the prob-
lem is tackled iteratively. Beginning from an initial guess for the
electron density, Kohn–Sham orbitals, or potential, a trial Hamilto-
nian h(0)

i j is constructed. The output wave functions |ψ(1)

l 〉 are used
to construct an updated electron density, potentials, and thus an
updated Hamiltonian h(1)

i j , and so forth. The procedure is consid-
ered converged when the total energy, sum of eigenvalues, electron
density difference norm and/or other quantities no longer change
by more than a certain threshold.
When beginning a calculation from scratch, we form the initial
electron density n(0) from a superposition of spherical free-atom
electron densities:

n(0)(r) =
∑

at

nfree
at

(|r − Rat|
)
. (39)

For spin-polarized and/or charged systems, nfree
at may be replaced

by the electron density of free ions or spin-polarized atoms. By de-
fault, a spin-polarized calculation is initialized using spin-polarized
free atoms occupied following Hund’s rules. For Hartree–Fock or
hybrid functionals, the initial Hamiltonian is created with an ini-
tial DFT-LDA or -GGA s.c.f. cycle. The resulting Kohn–Sham orbitals
|ψ(1)

l 〉 initialize the non-local exchange operator from the first
Hartree–Fock (or hybrid) iteration onwards.

Alternatively, when a self-consistent result for a nearby struc-
ture is already available (e.g., from an earlier relaxation or molecu-
lar dynamics step), it is advantageous to reinitialize the electron
density using that existing set of Kohn–Sham orbitals, after re-
orthonormalizing it for the new geometry.

Presently, we combine three separate approaches to ensure sta-
ble self-consistency:

1. Damping of electron density oscillations. During the s.c.f. cycle,
we obtain updated Kohn–Sham orbitals |ψ(μ)

l 〉 from a Hamilto-

nian h(μ−1)

i j , which is based on an electron density n(μ−1) . Be-

fore constructing the next Hamiltonian h(μ)

i j , we first dampen
the density change between s.c.f. iterations (μ − 1) and μ. To
that end, we base h(μ)

i j not directly on n(μ)

KS := ∑
l f μ

l |ψμ
l |2, but

rather on:

n(μ)

dmp = n(μ−1) + Ĝ1(n(μ)
KS − n(μ−1)

)
. (40)

If Ĝ1 is a constant, this is simple linear mixing between the
present and previous electron densities. However, Ĝ1 may also
be a non-local preconditioner (see below), damping, e.g., long-
range density changes stronger than short-range ones [123–
126].

2. Electron density mixing. In addition to simple damping, the s.c.f.
procedure is further stabilized by mixing in earlier electron
density iterations. We employ Pulay’s direct inversion of the it-
erative subspace (DIIS) [127] scheme in the modified form of
Ref. [126], which keeps the electron density norm constant
by construction, rather than by way of a separate constraint.
Based on the actual electron density residual between the
present and previous iteration,

R(μ) = n(μ)
KS − n(μ−1); (41)

the goal is to estimate a linear combination of all previous
electron densities that would have minimized the residual:

nopt = n(μ−1) +
N p∑

k=1

ᾱk
(
n(μ−k+1) − n(μ−k)

)
. (42)

Kresse and Furthmüller [126] showed how to rewrite Pu-
lay’s [127] original linear algebra to obtain ᾱk from scalar
products between differences of electron density residuals,
〈R(ν) − R(ν−1)|R(κ) − R(κ−1)〉. In practice, we combine nopt with
electron density damping to read

n(μ) = Ĝ1

[
R(μ) +

N p∑
k=1

ᾱk
(

R(μ−k+1) − R(μ−k)
)]

+ n(μ−1) +
N p∑

ᾱk
(
n(μ−k) − n(μ−k−1)

)
. (43)
k=1
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To retain a consistent electron density description, precisely
the same mixing operations must be applied to both spin com-
ponents, to density gradients, and to the density matrix in the
case of single-determinant exchange (for hybrid functionals or
Hartree–Fock).

3. Occupation broadening at the Fermi level. In metallic systems
with many states close to the Fermi level, additional stabil-
ity is achieved by occupying the states |ψl〉 by a distribution
fl which is slightly broadened about the Fermi level, e.g.,
the Fermi-function [48], Gaussian [128], or Methfessel–Paxton
[129] broadening schemes. It is worth noting that an entropy
function S( fl) can be associated with each partially occupied
level (see, e.g., Refs. [126,130,131] for details). Its significance
is that any energy derivatives (forces) that do not explicitly ac-
count for the change of fl with atomic positions are no longer
exact derivatives of the total energy equation (7). Rather, they
correspond to the electronic free energy F = Etot − σ

∑
l S( fl),

where σ is the width of the broadening distribution.

In practice, Eq. (43) brings the number of required s.c.f. cycles
for tight convergence of total energies and gradients to ≈ 10–20
in standard cases (e.g., 14 s.c.f. cycles for 10−7 eV convergence of
Etot for the Ala20 molecules of Fig. 5 above), with the “damping
operator” Ĝ1 chosen to be a simple constant. There is, however, no
convergence guarantee, and certain pathological cases (e.g., certain
metals or cluster geometries with crossing levels) may converge
significantly slower or not at all when Ĝ1 remains constant. In
such cases, a more sophisticated choice of Ĝ1 provides significant
additional flexibility to ensure a faster and more stable conver-
gence [123–125].

In the plane wave community, a successful approach is to damp
long-range oscillations in R(μ) stronger than short ranged ones,
using Ĝ1 = Ak2/(k2 + k2

0) (Kerker preconditioning [125]). A is the
simple linear damping factor mentioned above and k0 is a cutoff
wavelength for the damping. We have implemented a real-space
version of this method, formally:

Ĝ1 = A

(
1 − k2

0

k2 + k2
0

)
≡ A

(
1 + k2

0

∇2 − k2
0

)
(44)

[we here use operator language to clarify Eq. (46) below, i.e.,
1/(∇2 −k2

0) should be read as the inverse of an operator]. The long-
wave length components in a real-space electron density residual
R(μ) are thus reduced by adding a correction term k2

0 Rcorr:

Ĝ1 R(μ)(r) = R(μ)(r) + k2
0 Rcorr. (45)

Rcorr is given by the modified Helmholtz equation(∇2 − k2
0

)
Rcorr(r) = R(μ)(r). (46)

This can be solved in real space by using the same multipole ex-
pansion method as for the electrostatic potential [Eqs. (31)–(34)].
The Green function for the solution of the preconditioned residual
is [69]

gl(r<, r>) = il(k0r<)kl(k0r>). (47)

The functions il and kl are modified spherical Bessel functions of
half-integer order, which can be easily calculated from recursion
relations or series expansions for small arguments [117].

The numerical effort for our damping scheme is thus formally
equivalent to that of the Hartree potential; however, since the
main goal is to dampen the long-range components, the effort can
be reduced by choosing a smaller lmax in Eq. (34) for the angu-
lar momentum expansion of Ĝ1. In practice, e.g., in large metallic
slabs, we find that even lmax = 0 (damping the monopole compo-
nent on each atom only) already provides the required stabilization
effect of Ĝ1. We also find that k0 ≈ 1.5 bohr−1 often gives good
performance, although the exact optimum choice for k0 remains
somewhat system-dependent.

Finally, we comment briefly on the details of evaluating the to-
tal energy, Eq. (7), during the approach to self-consistency. The
Kohn–Sham energy functional is defined in Eq. (6) as

EKS := Ts[n] + V ext[n] + Ees[n] + Exc[n] + Enuc-nuc (48)

for the self-consistent electron density n. When evaluating the
same expression before self-consistency is reached, an ambiguity
arises: Since the evaluation of the single-particle kinetic energy Ts

requires the knowledge of a set of Kohn–Sham eigenstates con-
sistent with n, we can generally evaluate Ts only for the output
density from a given iteration, n(μ)

KS , but not for the (in general)
mixed and preconditioned input density n(μ−1) used to construct
the Hamiltonian. Conversely, we compute the electrostatic poten-
tial ves routinely for the input density after mixing, n(μ−1) , but not
for the output density n(μ)

KS . In order to avoid having to evaluate the
point-wise electrostatic potential, Eq. (34) twice, Ees is thus most
economically evaluated for n(μ−1) , and not for n(μ)

KS .
The total energy expression that we thus evaluate while ap-

proaching self-consistency was first discussed by Wendel and Mar-
tin [132] and is commonly referred to as the Harris functional [133,
134]. It combines precisely the pieces that are available anyway in
the course of a regular self-consistency cycle:

E(μ)

Harris =
Nstates∑

l=1

f (μ)

l ε
(μ)

l −
∫

d3r
[
n(μ−1)(r)vxc

[
n(μ−1)

]
(r)

]
+ Exc

[
n(μ−1)

]
− 1

2

∫
d3r

[
n(μ−1)(r)v(μ−1)

es (r)
] + Enuc-nuc.

(49)

Here, the single-particle eigenvalues supply the kinetic energy for
the output electron density n(μ)

KS , while the double-counting cor-
rections are strictly evaluated for the mixed and preconditioned
electron density used to set up the Hamiltonian, n(μ−1) . Eq. (49)
obviously agrees with the Kohn–Sham functional Eq. (6) for the
final, self-consistent electron density. Moreover, Eq. (49) can be
shown [135] to converge noticeably faster towards the final self-
consistent energy for large and/or metallic systems than if Eq. (6)
were evaluated strictly for the same density, n(μ)

KS .
To check the s.c.f. convergence in practice, a convergence crite-

rion of 10−6 eV for the variational total energy E(μ)

Harris between
successive iterations usually guarantees the convergence of this
quantity, but not necessarily the sufficient convergence of any non-
variational quantities (sum of Kohn–Sham eigenvalues, forces). In
particular, converged forces (typically, to 10−4 eV/Å between suc-
cessive s.c.f. iterations) must thus be ensured explicitly. Since com-
puting the full force expression (Section 4.7 below) in each s.c.f.
cycle is expensive, we do not compute forces until all energy-based
quantities are converged, which includes specifically also the non-
variational sum of eigenvalues. We find that, once this quantity
is sufficiently converged, only two additional s.c.f. iterations with
forces (the minimal number to ensure explicit force convergence)
are normally required.

4.5. Scalar relativity

The single-particle kinetic energy operator of Schrödinger’s
equation is a simple differential operator on a scalar wave func-
tion
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〈
r
∣∣t̂s

∣∣ψ 〉 = −∇2

2
ψ(r). (50)

In contrast, the correct relativistic description of electrons is given
by Dirac’s four-component equation,(

v cσ · p
cσ · p −2c2 + v

)(
Ψ
χ

)
= ε

(
Ψ
χ

)
, (51)

where p = −i∇ is the momentum operator, σ is a vector of Pauli
spin matrices, and Ψ and χ themselves have two components
each. For ε − v(r) � 2c2, this reduces to Schrödinger’s equation,
which is obviously satisfied for valence-like electrons in the spa-
tial region relevant for chemical bonding. However, |ε− v(r)| easily
approaches ≈ 2c2 near the nuclear Coulomb singularity for all elec-
trons. More specifically, beyond the lightest elements, any wave
functions with a non-negligible part near the nucleus are thus
modified appreciably. Relativity thus affects not just deep core
states, but also valence states (e.g., 6s and 6p like states in 5d
transition metals), whereby chemical bonding properties are sig-
nificantly affected as well (see Ref. [136] for a detailed discussion
of relativistic effects).

To describe chemical properties correctly in a full-potential
framework, our primary interest is to capture the effect of near-
nuclear relativity on valence- and semicore-like electrons, while
retaining the computational effort of a Schrödinger-like equation.
We adopt here a one-component, scalar-relativistic scheme, which
in its most general form is found by solving one of the sub-
equations of Eq. (51) for χ and then eliminating χ from the other
one. By neglecting spin–orbit coupling, we obtain:(

p · c2

2c2 + εl − v
· p + v

)
ψl = εlψl. (52)

This expression is, e.g., the familiar one-dimensional Koelling–
Harmon expression for scalar relativity [137]. Obviously, the pres-
ence of εl in the kinetic energy part is a complication, since
this defines a different Hamiltonian ĥKS(l) for each eigenstate ψl .
[Note that the kinetic energy indeed reduces to the non-relativistic,
εl-independent form (50) for (εl − v) � 2c2.]

There are (at least) two ways to create a manageable yet ac-
curate scalar-relativistic kinetic energy operator. One is to separate
core and valence states as done, e.g., in muffin-tin based meth-
ods (FP-(L)APW [138], augmented spherical waves [139], linearized
muffin-tin orbitals [140], Korringa–Kohn–Rostoker [141]), i.e., solv-
ing separately for each localized core state and setting εl = 0 uni-
formly for each valence state. The other is to approximate the
scalar-relativistic Hamiltonian in Eq. (52) as a whole, and then cor-
rect for the approximation by a subsequent perturbative treatment.

We presently pursue the second option, using the scaled ze-
roth order regular approximation (ZORA) suggested by van Lenthe
et al. [142]. In this scheme, self-consistent solutions |ψl〉 are first
obtained using the ZORA [143–145] kinetic energy operator

t̂ZORA = p · c2

2c2 − v
· p, (53)

corresponding to |εl| � 2c2, a potentially harsh approximation for
deep core states. After self-consistency is reached, each eigenvalue
is rescaled using the “scaled ZORA” expression

εscaled
l = εZORA

l

1 + 〈ψl|p c2

(2c2−v)2 p|ψl〉
. (54)

For total energies [Eq. (7)], the sum of ZORA eigenvalues εZORA
l is

then replaced with the sum of scaled ZORA eigenvalues εscaled
l .

One important feature of scaled ZORA is that it restores almost
exactly the gauge invariance against shifts of the potential zero,
which is lost in Eq. (53). Van Lenthe et al. [142] showed how this
rescaling can be justified by way of a Foldy–Wouthuysen transform
[146] of the Dirac Hamiltonian. As a consequence, the scaled ZORA
Hamiltonian is for example exact for a one-electron hydrogen-like
atom (this is relevant because the near-nuclear potential resembles
this situation in any atomic structure). For completeness, we note
that it is also possible to perform a simple separation between lo-
calized core states and extended semicore/valence states, enabling
an accurate single-site treatment of core-state scalar relativity ac-
cording to Eq. (52), as done, e.g., in the FP-(L)APW method [147].

It has been noted [148,149] that the missing gauge invariance
in ZORA is also restored by substituting in Eq. (53) for v only the
on-site free-atom potential v free

at( j) at the atomic center [at( j)] asso-
ciated with a basis function j:

t̂at.ZORA|ϕ j〉 = p · c2

2c2 − v free
at( j)

· p|ϕ j〉. (55)

We refer to Eq. (55) as “atomic ZORA”. Because t̂at.ZORA now de-
pends on basis function j, an explicit symmetrization is needed
for matrix elements:

Tij = 1

2

(〈ϕi |t̂at.ZORA|ϕ j〉 + 〈ϕ j|t̂at.ZORA|ϕi〉
)
. (56)

As is illustrated further below, our present experience is that
relaxed atomic geometries from this approximation correspond
practically exactly to both scaled ZORA results and to FP-(L)APW
benchmark results.

In practical calculations, we can use the kinetic energy expres-
sion (53) directly in the construction of the free-atom “minimal
basis” functions, by integrating Eq. (8) on an accurate logarithmic
grid as in the non-relativistic case. However, a subtle issue arises
for three-dimensional integrations on a sparser radial grid, such as
Eq. (18). Compared to the non-relativistic case, a direct integral

Tij = −
∫

d3r

{
ϕi(r) · ∇

[
c2

2c2 − v(r)
· ∇ϕ j(r)

]}
(57)

would require a derivative of the local potential v(r). We can cir-
cumvent this by an integration by parts [142]

Tij = −
∫

d3r

{[∇ϕi(r)
] · c2

2c2 − v(r)
· [∇ϕ j(r)

]}
, (58)

and the latter expression can be evaluated without potential
derivatives. For GGA’s, the contribution of the explicit gradient
derivative in Eq. (29) to the local potential is not evaluated dur-
ing a normal s.c.f. cycle, since it is itself already treated by an
integration by parts. Since this is small compared to [2c2 − v(r)],
we omit it in the denominator of Eq. (58).

The direct expression (57) benefits from an additional cancella-
tion of integration errors near the nucleus. In this region, we have
for all free-atom like basis functions |ϕat〉 (e.g., all core functions):(
t̂[v] + v

)|ϕat〉 ≈ (
t̂
[
v free

at

] + v
)|ϕat〉

= (
εat − v free

at + v
)|ϕat〉. (59)

The difference v − v free
at cancels the deep Coulomb singularity at

the origin; in the non-relativistic case, this is exact. The constant
free-atom eigenvalue εat is accurately known from solving Eq. (8)
on a logarithmic grid. In contrast, Eq. (58) does not allow for the
same cancellation, and would therefore need a denser integration
grid near the nucleus than the non-relativistic case.

In order to restore the integration accuracy on the standard ra-
dial integration grid, Eq. (18), we therefore integrate instead the
difference between the kinetic energy for the full potential and
that of a sum of free-atom potentials:
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Fig. 8. Different levels of relativistic theory at the tier 2 NAO basis set level com-
pared to benchmark FP-(L)APW calculations [118,150] for the binding curve for
Au2 in DFT-LDA. The “atomic ZORA” [Eq. (55)] and “scaled ZORA” [Eq. (53) for
self-consistency, with perturbative post-processing according to Eq. (54)] approxi-
mations agree closely with relativistic Wien2k benchmark results. For comparison,
the non-relativistic binding curves (same level of agreement) are also shown.

Tij = −
∫

d3r

{[∇ϕi(r)
] ·

[
c2

2c2 − v(r)

− c2

2c2 − ∑
at v free

at (r)

]
· ∇ϕ j(r)

}

+
∫

d3r

{
ϕi(r) · ∇

[
c2

2c2 − ∑
at v free

at (r)
· ∇ϕ j(r)

]}
. (60)

The first integrand (the difference term) is now small by construc-
tion. The computational effort for this term can additionally be
reduced by evaluating it only at grid points where the integrand
is larger than a certain threshold. The second integrand exhibits
the desired error cancellation, and can be integrated as it stands
since the analytic derivative of the sum of free-atom potentials∑

at v free
at (r) is accurately known on a logarithmic grid.

Fig. 8 illustrates the quality of our present relativistic treat-
ment for a simple testcase, the Au dimer in DFT-LDA, compared
to benchmark relativistic full-potential (L)APW calculations [118,
150]. The NAO binding curves of Au2 were obtained using the well-
converged tier 2 basis set of Table 1 (cf. also Fig. 2). The relativistic
equilibrium distance at the scaled ZORA and atomic ZORA levels is
2.45 Å, with binding energies of −3.27 eV and −3.26 Å, respec-
tively. These results and binding curves compare almost exactly to
the FP-(L)APW results (2.45 Å/−3.23 eV), which are also shown in
the figure. We note in passing that the same level of agreement is
attained between both methods for the non-relativistic case.

4.6. Non-divergent total energy for non-periodic, neutral and charged
periodic systems

As already noted, we use Eq. (7) viz. Eq. (49) for practical total
energy computations. As written, both equations contain as sepa-
rate terms (i) the double-counted classical interelectronic repulsion
energy, and (ii) the internuclear repulsion energy of the entire sys-
tem:

Edouble + Enuc-nuc

= −1

2

∫
d3r

[
n(r)ves(r)

] + 1

2

∑
′

Zat Zat′

|Rat − Rat′ | . (61)

at 	=at
Both terms are straightforward to compute in cluster systems, but
unfortunately, each one on its own diverges with increasing system
size, and outrightly for periodic boundary conditions.

To ensure a stable total energy expression, Eq. (61) is rewritten
[12] to exploit the combined charge neutrality of all electrostatic
contributions (electronic and nuclear) associated with a given
atom. Similar ideas have been employed, e.g., in early muffin-tin
based work [151–153], and for overlapping electron density par-
titions in Refs. [119–121], closer to the procedure summarized
below.

The (electrostatic) electron + nuclear potential for each atom
reads

ves,tot
at (r) = ves

at

(|r − Rat|
) + Zat

|r − Rat| , (62)

where

ves
at

(|r − Rat|
) = ves,free

at

(|r − Rat|
)

+
∑
lm

δ ṽat,lm
(|r − Rat|

)
Ylm(Ωat) (63)

sums over all (partitioned) electronic electrostatic contributions
due to atom at. It is important to note that, by construction, the
free-atom like part of ves,tot

at (r) is strictly localized within the ra-
dius of the electron density of a free atom, which in turn can be
restricted by a global confining potential.

We rewrite Eq. (61) to reflect separately the energy of the elec-
tronic charge density and the energy of all nuclei in the combined
electron–nuclear potentials ves,tot

at (r). Turning to the electronic part
first, we add

−
∫

d3r n(r)ves(r)

→ −
∫

d3r n(r)ves(r) −
∫

d3r n(r)
∑

at

Zat

|r − Rat|

= −
∫

d3r n(r)

[∑
at

ves,tot
at

(|r − Rat|
)]

(64)

by straightforward algebraic manipulation (but note the comment
regarding charged periodic systems below).

The nuclear part of Eq. (61) is equally straightforward by ex-
ploiting the definition of the electronic electrostatic potential at
each nucleus,∫

d3r
n(r)

|r − Rat| = ves(Rat). (65)

Then,∑
at,at′ 	=at

Zat Zat′

|Rat − Rat′ |

→
∑

at,at′ 	=at

Zat Zat′

|Rat − Rat′ | +
∫

d3r n(r)
∑

at

Zat

|r − Rat|

=
∑

at

Zat

[ ∑
at′ 	=at

Zat′

|Rat − Rat′ | + ves(Rat)

]

=
∑

at

Zat

[
ves

at(0) +
∑

at′ 	=at

ves,tot
at′

(|Rat − Rat′ |
)]

. (66)

For neutral periodic boundary systems, the formalism is identi-
cal, except that the long-range electronic potential is additionally
split into a real- and reciprocal space part. The electronic poten-
tial energy equation (64) is reduced to an energy per unit cell by
simply restricting the integration volume to the unit cell only. The
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nuclear contribution per unit cell, Eq. (66), is obtained by evaluat-
ing the outer sum over nuclei (

∑
at) within the unit cell only.

As mentioned in Section 4.3, the use of Ewald’s method nat-
urally accounts for charged unit cells in the (otherwise divergent)
electrostatic potential, by leaving away the G = 0 component of
the reciprocal-space potential term. For a unit cell charge q, this
procedure amounts to the addition of a constant, neutralizing back-
ground charge density n0 = −q/Ωcell (Ωcell is the unit cell volume)
to the system. Since Eq. (64) above is handled entirely in real
space, this constant density offset does not vanish, but must be
accounted for explicitly, most conveniently by evaluating the av-
erage electrostatic potential of electrons and nuclei. The respective
term in Eq. (64) becomes:

−
∫

d3r n0

[∑
at

ves,tot
at

(|r − Rat|
)] =: q · ves

avg. (67)

4.7. Total-energy derivatives (forces)

For structure optimizations, vibrational properties (via finite dif-
ferences), or ab initio molecular dynamics, we require total energy
derivatives (forces)

F at = − ∂

∂ Rat
Etot. (68)

All needed derivatives follow directly from Eq. (6), with technical
adjustments due to Eqs. (64) and (66). We here discuss the deriva-
tives needed for DFT-LDA and -GGA, which we provide in our own
implementation, FHI-aims [17].

Analytical energy derivatives with atom-centered basis sets
have been discussed by many previous authors (e.g., Refs. [154–
157]), emphasizing the fact that explicit derivatives beyond simple
Hellmann–Feynman forces [158,159] are required. For the specific
derivatives arising for atom-centered basis sets in DFT-LDA/GGA,
see, e.g., Refs. [101,115,160,161]; we here only summarize the
salient expressions in our own notation.

Hellmann–Feynman forces. These are the forces that arise by em-
bedding each nucleus into the electrostatic fields of the electron
density and all other nuclei [158,159]:

F HF
at =

∑
at′,at′ 	=at

Zat Zat′

|Rat − Rat′ |3 (Rat − Rat′)

−
∫

d3r n(r)
∑

at

Zat

|r − Rat|3 (r − Rat). (69)

In periodic systems, electronic and nuclear terms cannot be
summed up separately, but only combined as follows:

F HF,conv
at = Zat ·

[
∇at ves

at(0) +
∑

at′,at′ 	=at

∇at

(
Zat′

|R ′
at − Rat|

+ ves
at′

(|R ′
at − Rat|

))]
. (70)

Electrostatic multipole derivatives. A first correction term arises
because the electrostatic potential expression (34) is always trun-
cated beyond a given les

max and the additional derivative of the
double-counting correction equation (35) has to be taken into ac-
count. The missing multipole terms “move” with Rat, and thus give
rise to an extra force term [160]

F MP
at = −

∫
d3r

[
n(r) − nMP(r)

] · ∇at
[
ves

at

(|r − Rat|
)]

. (71)
Here, nMP is the multipole expansion of the full electron density,
Eq. (36), used to define the electrostatic potential. Since the pe-
riodic Hellmann–Feynman expression (70) involves the electronic
electrostatic potential, a corresponding multipole error arises also
there; this is compensated by redefining

F MP,conv
at = −

∫
d3r

[
n(r) − nMP(r)

]
× ∇at

[
Zat

|r − Rat| + ves
at

(|r − Rat|
)]

(72)

for the periodic case. For production settings (les
max � 4), F MP

at or
F MP,conv

at are small compared to F HF
at or F HF,conv

at , but never negligi-
ble.

Pulay forces. A further class of significant derivatives arises be-
cause the basis functions “move” with Rat [154–156], often called
Pulay forces for short. These terms vanish for basis sets whose
Hilbert space is independent of the atomic positions, e.g., by in-
cluding basis derivatives outrightly [162,163] in the basis set. How-
ever, the goal of a (reasonably) efficient basis set renders this
remedy impractical in an all-electron description that relies on
atom-centered radial functions. Through n(r) = ∑

l fl|ψl(r)|2, εl =
〈ψl|ĥKS|ψl〉, and up to the local (density-only) parts of exchange–
correlation, the respective derivative of Eq. (7) is

F P
at = −2

∑
li j

fl

∫
d3r cli

[∇atϕi(r)
](

ĥKS − εl
)
cljϕ j(r). (73)

For GGAs, the explicit density gradient derivative in Eq. (29) yields
a further term. We formally separate this term out because it re-
quires the explicit Hessian matrix of n, and is thus numerically
costly:

F GGA
at = −4

∫
d3r

∂ fxc

∂|∇n|2
∑
li j

{
flcliclj

[∇atϕi(r)
][∇ϕ j(r) · ∇n(r)

]
+ flclicljϕi(r)

[∇at∇ϕ j(r)
] · ∇n(r)

}
. (74)

In periodic systems, all sums over states l also include k. Both for
F P

at and F GGA
at , any explicit sums over l within the integrations are

avoided by first evaluating separately the density matrix (27) and
its equivalent weighted by εl .

Scalar-relativistic derivatives (atomic ZORA). Since, in general,
a scalar-relativistic “atomic ZORA” produces very good geometries,
it is convenient to evaluate scalar relativistic energy gradients at
this level of theory [Eq. (55) above]. Because t̂at.ZORA depends on
v free

at , it no longer commutes with ∇at [unlike in the non-relativistic
Pulay force expression, Eq. (73)]. The kinetic energy expression
thus incurs an explicit derivative. Together with the explicit sym-
metrization in Eq. (56), this leads to a combined expression for the
Pulay forces,

F P,at.ZORA
at

= −2
∑

li j

fl

∫
d3r cliclj

×
{

1

2

[∇atϕi(r)
]
t̂at.ZORAϕ j(r) + 1

2
ϕ j(r)∇at

[
t̂at.ZORAϕi(r)

]
+ [∇atϕi(r)

][
v(r) − εl

]
ϕ j(r)

}
, (75)

where the operator t̂at.ZORA always acts to the right. The important
point is that we know the expression t̂at.ZORAϕ j(r) accurately on
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each atom’s logarithmic grid, from the solution of the defining ra-
dial equation (8). From its splined form, we can easily determine
its derivative ∇at[t̂at.ZORAϕ j(r)], and thus have all needed pieces to
evaluate Eq. (75) as it stands.

In principle, analytical derivatives can also be formulated for
the scaled ZORA total energy expression, which is based on the
perturbatively corrected eigenvalue expression (54). However, their
implementation is complicated by the fact that higher deriva-
tives of the potential v(r) are needed. Instead, and as already
noted above, we are presently developing [147] a scalar-relativistic
scheme based on a separation of core and valence states, for which
the corresponding relativistic force expression will be revisited.

Atom-centered (“mobile”) integration grids. For completeness,
we note that integrations of the form of Eq. (15) formally in-
cur another derivative [101,161]: Since all integration points move
with their atomic centers, their integration weights depend on Rat
through the partition function pat(r) [Eq. (16)]. While some work-
ers place great emphasis on this term [161], others [101] find it to
be largely irrelevant for reasonably converged integration grids.

In our experience, noticeable grid-dependent derivatives would
arise only if the simple, non-neutralized total energy expression of
Eq. (61) is used, leading for example to inconsistent force and en-
ergy landscapes very close to a local structure minimum (typically,
residual forces � 5 · 10−3 eV/Å for light-weight angular grids). In
contrast, any inconsistencies at this level do not occur for the neu-
tralized total energy expression of Eqs. (64) and (66). Apparently,
the separate Hartree energy of the charged electronic subsystem in
the naive expression (61) increases the missing grid derivative to
a noticeable level, compared to the correct neutralized electron–
nucleus expression. For practical purposes, we conclude that no
formal “grid” derivative along the lines of Refs. [101,161] appears
to be required at least for tightly converged structure optimiza-
tions.

4.8. Using energy gradients: Structure optimization and
Born–Oppenheimer ab initio molecular dynamics

Once total energy gradients are available, a plethora of uses
becomes available that, in principle, no longer depends on the
numerical origin of the forces (from NAOs or otherwise): geom-
etry relaxation, ab initio molecular dynamics, harmonic or an-
harmonic vibrational properties, or nudged-elastic band transition
state searches (to list only those uses presently available in our
own code, FHI-aims [17]). Although technically independent of
the use of NAOs, we nevertheless summarize briefly the specific
choices made in our implementation of structure relaxations and
molecular dynamics.

For structure optimization, we employ the now-standard Broy-
den–Fletcher–Shanno–Goldfarb (BFGS) algorithm [164]. In brief,
the BFGS method starts with a steepest descent from an initial set
of atomic positions Rat,0, and is iterated from there:

Rat,i+1 = Rat,i + li Sat,i (76)

(S i is the search direction and li a dimensionless linestep). The
initial search direction Sat,0 is equal to the forces in dimensionless
units, and l0 = 1. The following relaxation steps successively refine
an estimate for the local Hessian of the total energy, Ĥi , and use
this to update the search direction Sat,i+1 by inverting

Ĥi+1 Sat,i+1 = �F at,i+1, (77)

where �F at,i+1 = F at,i − F at,i+1. Initially, Ĥ0 is set to unity (cor-
responding to pure steepest descent), and then updated according
to [164]
Ĥi+1 = Ĥi + �F at,i+1(�F at,i+1)
T

�F at,i+1 · (li Sat,i)
− (Ĥi Sat,i)(Ĥi Sat,i)

T

Sat,i Ĥ i Sat,i
. (78)

By default, we keep the line step to update the atomic positions at
the estimate for a harmonic total energy surface (li = 1). We also
enforce a predefined maximum coordinate displacement, typically
0.2 Å.

After each line step li , we can estimate a posteriori the step
length lopt that would have been optimal, i.e., where the force com-
ponent along the search direction would have been zero according
to a simple linear interpolation:

lopt,i = F at,i−1 · Sat,i

F at,i−1 · Sat,i − F at,i · Sat,i
li . (79)

Depending on this estimate, we adapt our version of BFGS for three
special scenarios:

(1) For serious discrepancies between li and lopt,i , the search step
is repeated with lopt,i instead of li . The pertinent criterion is
|lopt,i/li − 1| < η (by default, η = 3).

(2) If the total energy increased by more than a small tolerance
(e.g., 10−4 eV) in the last relaxation step, we always repeat the
line search with lopt,i . If the total energy then still increases,
we conclude that either the potential energy surface E(Rat) is
not nearly quadratic, or the present Hessian Ĥ is insufficient
to locally represent the energy hypersurface near Rat. In that
case, we reset the Hessian matrix to unity and restart with a
steepest descent.

(3) If the a posteriori estimate of lopt,i is negative, the potential
energy surface must have a negative curvature in the search
direction, which also means that the Hessian matrix is not
positive definite. In order to exit from the negative curvature
region with as few relaxation steps as possible, we then reini-
tialize the Hessian to unity and enforce the maximally allowed
relaxation step size in the direction of the forces.

For Born–Oppenheimer ab initio molecular dynamics (MD) sim-
ulations, we integrate the classical Newton equations of motion for
a system of atoms,

mat R̈at = F (Rat). (80)

To solve for the molecular trajectories, we use by default the
velocity-Verlet algorithm [165]. Our current implementation allows
for MD in the NVE and NVT ensembles. For constant temperature
simulations, we provide a Berendsen thermostat [166], and (for
the canonical NVT-ensemble) a simple, stochastic Andersen ther-
mostat [167], and a Nosé–Hoover thermostat [168,169]. Work to
implement further thermostats and constant pressure simulations
is ongoing as well. Finally, a fourth-order symplectic integrator
(Ref. [170], referred to as “SI4” in Ref. [171]) is available for very
accurate NVE trajectories. Regardless of the integrator used, we
note that rather tight s.c.f. convergence criteria must be applied
in Born–Oppenheimer molecular dynamics to avoid slow energy
drifts in NVE.

Both for structure optimization and for molecular dynamics,
we routinely remove any spurious residual translations and rota-
tions of the system as a whole for cluster geometries (or pure
translations for periodic systems). In principle, no such rotations
or translations should arise, but very small deviations may occur
due to the finite accuracy of the integration grids in the numeri-
cal calculation of energies and forces. While usually a small effect,
these components could introduce unwanted slow rotations in long
molecular dynamics runs. In practice, we therefore formally project
out such residual components from the forces, using the Eckart–
Sayvetz conditions [172,173]. In molecular dynamics, these condi-
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Fig. 9. Wall clock time per s.c.f. iteration with system size for two series of polyalanine conformers Alan in DFT-PBE, on 16 IBM p5+ CPU cores. Subtimings are shown
for the individual parts of each s.c.f. iteration: Electrostatic potential summation ves(r), electron density update n(r), hij matrix element integration, and solution of the
eigenvalue problem (EVP) using ScaLapack. Thin line: slope for linear scaling. (a) Fully extended conformers (n = 1–200), using settings appropriate for accurate geometry
pre-relaxations: tier 1 basis set, les

max = 4, nmax = 302 for Lebedev grids on radial integration shells. (b) α-helical conformers (n = 1–100), using settings appropriate for tightly
converged energy differences: tier 2 basis set, les

max = 6, nmax = 590 for Lebedev grids on radial integration shells.
tions may also be enforced for the velocities themselves, in order
to correct for the effects of a finite time step.

5. Performance in practice

In this section, we quantify the performance of the algorithms
presented here (scaling with size of the investigated system, and
with number of CPU cores on parallel architectures), using our
own code FHI-aims on modern computer hardware, and for
two classes of physical systems: (i) a series of fully extended vs.
α-helical polyalanine molecules Alan , characteristic of large light-
element molecules in cluster-type geometries (n = 1–200, i.e., 13–
2003 atoms; see Figs. 5a and 5b for the respective Ala20 conform-
ers); and (ii) a series of Au(100)-(5×n) surface slabs, characteristic
of large-scale, heavy-element periodic systems (n = 1–20, i.e., 26–
526 atoms per unit cell). The computers employed range from
commodity PC cluster architectures up to special, massively par-
allel architectures (IBM BlueGene/P).

5.1. Polyalanine conformers Alan (n = 1–200)

We first turn to the light-element series of molecules, (i). Fig. 9
shows the wall clock time required as a function of system size
(number of atoms), for a single s.c.f. iteration and its parts, exe-
cuted in parallel on 16 CPU cores of an IBM Power5+ computer
(1.9 GHz clock frequency). Approximately 15 s.c.f. iterations are
required for tight force convergence (� 10−4 eV/Å) in each case.
Fig. 9a refers to a series of fully extended conformers of Alan
(Fig. 5a). Due to their spatial extent, these structures should ben-
efit most from exploiting the localization of basis functions on
a real-space grid, particularly the electron density update and
the integration of matrix elements hij . The computational settings
are characteristic of accurate geometry pre-relaxations, with small
tier 1 basis sets for all elements (confining potential: ronset = 3.5 Å,
w = 2.0 Å, respectively), lmax

es = 4 for the electrostatic potential
ves(r), and integration grids totaling ≈ 10,800 points per atom
(with a maximum of 302 angular integration points per radial inte-
gration shell). Scaling exponents a1 were fitted to the three largest
conformers shown, assuming a separate polynomial scaling law
t = a0Na1 for each operation of the s.c.f. iteration; these exponents
are listed in Table 2.

With respect to the scaling exponents, it is gratifying to see
that those operations which should in principle exhibit strict O(N)
Table 2
Fitted CPU time scaling exponents a1 for the largest polyalanine conformers Alan

included in Figs. 9a and 9b, respectively, assuming t = a0 Na1 .

Operation a1 (extended Alan) a1 (α helical Alan)

Total s.c.f. iteration 1.9 1.8
Electrostatic potential ves(r) 1.7 1.5
Electron density n(r) 1.2 1.1
hij matrix elements 1.2 1.1
Eigenvalue problem 3.3 3.3

scaling, namely the updates of the electron density n(r) and the
Hamilton matrix elements hij , come close to this expected be-
havior already for rather manageable molecule sizes (a1 = 1.2 for
� 100 atoms). The crossover where a density matrix based update
of n(r) becomes favorable according to Eq. (28) occurs just above
100 atoms for this structure and basis choice. With these two op-
erations out of the picture, the scaling exponent a1 = 1.7 for the
electrostatic potential update, Eq. (34), dominates the available sys-
tem sizes; its low-angular momentum components simply fall off
too slowly with system size. Beyond system sizes of the order of
≈ 1000 atoms, the ∼ O(N3) scaling of the ScaLapack eigenvalue
solver takes over as expected.

Fig. 9b contrasts these findings with a series of more compact
α-helical conformers. At the same time, the computational settings
are now chosen to reflect tight convergence of conformational en-
ergy differences (e.g., ≈0.12 meV/atom for the energy difference
discussed in Fig. 5): tier 2 basis sets, lmax

es = 6 for the electrostatic
potential ves(r), and dense integration grids totaling ≈ 16,400
points per atom. The immediate difference between Figs. 9b and 9a
is that the cross-over to linear scaling in both the density update
and the hij update happens significantly later for the more com-
pact helices. For the example of the density update, the density
matrix based update formula becomes favorable only between 400
and 600 atoms in the structure. Nonetheless, the large-scale scal-
ing exponents a1 for all individual operations in Table 2 are quite
similar for both sets of conformers, leading again to an approxi-
mate crossover of the ScaLapack O(N3) scaling at ≈ 1000 atoms.

In addition to good scaling of CPU time requirements with sys-
tem size, it is very important (particularly for applications such
as molecular dynamics) to be able to reduce the wall clock time
requirements for individual s.c.f. cycles efficiently by way of (mas-
sive) parallelization. For the 603-atom, extended Ala60 conformer
included in Fig. 9 (same computational settings), we demonstrate
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Fig. 10. Parallel scalability of FHI-aims for a 603 atom fully extended molecular
conformer Ala60 on a current Linux cluster architecture (see Fig. 9a for computa-
tional parameters and timing details). Each CPU core is a 64 bit AMD Opteron with
2.6 GHz clock frequency; nodes of four cores each are interconnected with Infini-
band. The thin line corresponds to ideal scaling.

the efficiency of this parallel scaling on a PC-based cluster archi-
tecture type that is widely available today. The computer system
consists of Infiniband-connected compute nodes with four 2.6 GHz
AMD Opteron CPU cores each, i.e., it makes heavy use of intern-
ode (rather than shared memory) communication. Nonetheless, the
parallel scalability for this system (shown in Fig. 10) is quite sat-
isfactory: Nearly no overall performance loss occurs up to 64 CPU
cores. The grid based operations [n(r) and hij integrals] scale with
no loss also beyond. The scalability limit of ScaLapack is here ap-
proached at ≈128 CPU cores (with 5724 × 5724, the size of the
matrices hij and si j is still small). In addition, some communication
limitations due to the distribution of the real-space multipole com-
ponents of the Hartree potential across different cores becomes
noticeable at ≈ 256 CPU cores.

Regarding the thus identified scaling limits of the current im-
plementation, we note the following areas to be tackled in the
future: (1) In principle, near-linear scaling solutions for a long-
range real-space electrostatic potential with free boundary con-
ditions are available in the context of electronic structure theory
(e.g., Refs. [174–177]), and such an implementation will alleviate
the main scaling bottleneck in Fig. 9a. (2) For very large systems,
the scaling limits of ScaLapack can be overcome by an iterative
eigenvalue solver strategy [107–113], as mentioned above. (3) Fi-
nally, the use of difference techniques between successive s.c.f.
iterations should greatly reduce the overall computational effort
expended on the grid based operations [n(r), hij , and ves(r)] for
any of the molecules shown in Fig. 9.

5.2. Au(100)-(5 × n) reconstructed surface slabs

As a characteristic example for periodic solid-state calculations
involving heavy elements, we consider the Au(100) large-scale sur-
face reconstruction. This surface forms a quasi-hexagonal layer on
top of a quadratic substrate, [178–181] leading to a large coinci-
dence period which can be approximated as (5 ×n), where n � 20.
Fig. 11 shows the CPU time scalings for this system class: the
pieces of a s.c.f. iteration on 32 IBM Power5+ CPU cores (1.9 GHz
clock speed), for DFT-PBE and production-quality numerical pa-
rameters: les

max = 6, ≈ 14,000 integration points per Au atom, and
the spdf section of the tier 1 basis set (shown to be a sufficient
basis choice in Section 3.5) with converged settings for the con-
fining potential (ronset = 4.0 Å, w = 2.0 Å, yielding an outer radius
rcutoff = 6.0 Å). Two k-points were considered for each slab. The
Fig. 11. CPU time scaling with system size for a series of large Au(100)-(5 × n) sur-
face unit cells (n = 1,5,10,15,20) in DFT-PBE, for five layer slabs: spdf section of
the tier 1 basis set, les

max = 6, and ≈14,000 points per atom (max. nmax = 590 angular
points per radial shell). The calculations were performed on 32 IBM Power5+ CPU
cores (1.9 GHz clock speed). Subtimings are reported for the electrostatic potential
ves(r), the electron density n(r), the integration of hij , and the ScaLapack eigen-

value solver (EVP). In addition, we use a Kerker preconditioner Ĝ1 in the density
mixing stage.

latter setting is appropriate from n �10 onwards, and is kept here
for consistency also for the smaller unit cells [(5 × 1) and (5 × 5)].

The important point is that, for periodic systems, all operations
on the real-space grid [n(r), hij , and ves(r)] scale as O(N) from the
outset. This is because already the smallest geometry takes into ac-
count the full overlap of basis functions also from neighboring unit
cells. In addition, the long-range part of the Hartree potential is
treated by Ewald’s method using a Fourier transform, which elimi-
nates the less favorable scaling for this part that was observed for
molecules. Due to the all-electron nature of the problem (79 elec-
trons per Au atom), the ScaLapack based eigensolver here becomes
dominant already for ≈ 400 atoms; in the near future, a separation
of core and valence states together with an iterative solver strategy
for the latter should alleviate this part.

The time required for the smaller cells in Fig. 11 remains man-
ageable (≈30–40 s.c.f. iterations are required to converge forces to
10−4 eV/Å), although even the (5 × 1) unit cell is already large
by conventional standards. However, significant CPU resources are
clearly required in order to study very large surface slabs, such
as (5 × 20) (526 atoms) or larger. By exploiting the good paral-
lel scaling properties of the algorithms presented here, even such
large problems can still be addressed successfully on modern, ded-
icated massively parallel computer architectures. For example, we
have ported FHI-aims to IBM’s BlueGene/P architecture. This ar-
chitecture unites thousands of CPU cores (in the case of the Blue-
Gene/P system “genius” at the Garching compute center of the
Max-Planck-Society, currently 16,384 CPU cores) that are individ-
ually relatively slow (850 MHz PowerPC 450 processors), and con-
nects them with a sophisticated communication interface. Since
furthermore each individual MPI task must be limited to less than
512 MB working memory, the efficient use of this modern archi-
tecture is only enabled by the full memory parallelization of all
important operations. A description of the porting effort and scal-
ing properties will be given elsewhere [106].

6. Conclusion

In the present work, we summarize a complete set of al-
gorithms that enables first-principles electronic structure theory
(here based on DFT-LDA and -GGA) using numeric atom-centered
orbitals as basis functions. These numerical algorithms and basis
functions form the base of our all-electron, full-potential electronic
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structure code FHI-aims, intended to be a versatile application
and development tool for all aspects of current electronic struc-
ture theory. While many of the individual algorithms have been
developed by a community of researchers over the years, our ob-
servations made in the context of their implementation should
be of use not just to users of a single code (FHI-aims), but
to the broader community of practitioners that employ NAOs for
other purposes as well. Our examples demonstrate the capabilities
and reliability of the algorithms presented here for a wide range
of tasks, including system sizes up to thousands of atoms, and
good performance from PC-like single-CPU up to massively parallel
computational architectures with thousands of CPU cores without
compromises on accuracy. Further examples with respect to new
developments in electronic structure theory itself will be given
separately [6], concerning particularly our implementation of the
two-electron Coulomb operator needed for, e.g., hybrid functionals,
Hartree–Fock, MP2 or GW many-body perturbation theories. We
have also outlined focal points for what we believe are the most
important future development directions, namely, an FP-LAPW like
implementation of scalar relativity [147], or an iterative eigenvalue
solver strategy to enable improved scaling towards significantly
more CPUs and even larger system sizes [114].

We believe that the sustained and continued development of
the algorithms presented here, whether embodied in FHI-aims
or elsewhere, represents a significant opportunity to leverage a
powerful, efficient yet accurate framework for future developments
of any aspect of electronic structure theory, and this is where our
efforts will be focused.
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