
INFORMATION AND CONTROL 19, 75--92 (1971) 

Joint Detection, Estimation and System Identification* 

D. G. LAINIOTIS 

Department of Electrical Engineering and Electronics Research Center, 
The University of Texas at Austin, Austin, Texas 78712 

Recent results of Mlddleton and Esposito (1968) and Lainiotis (1969) on 
single-shot joing detection-estimation for discrete data are extended to the 
single-shot continuous data case and generalized to joint Bayesian detection- 
estimation-system identification. Moreover, previous results were generalized 
to the case of causal estimator. Specifically, it is shown that the above problem 
constitutes a class of nonlinear rose estimation problems, with the attendant 
difficulties in realizing the optimal nonlinear estimators. However, by utilizing 
the adaptive approach, closed form integral expressions are given. These are 
given in terms of the generalized likelihood ratio A(t), which is a sufficient 
statistic for Bayes-optimal compound detection. The latter in turn is specified 
by a continuum (for continuous 0) 0-conditional likelihood ratious A(t/O) 
each of which is the LR for testing for the model specified by the parameter 
value 0. The latter LR's  are, moreover, given in terms of optimal mse causal 
estimators. In essence then, it has been shown that system identification is 
equivalent to multihypothesis testing, with a continuum or finite sequence of 
hypotheses, respectively, for continuous or finite discrete range of 0. 

I. INTRODUCTION 

The problem considered here is the single-shot, compound detection- 
estimation problem specified by the following equations 

z( t )  = s(t) + v( t)  

= fly(t) + e(t), (1) 

where {z(t)} is the m-vector observable random process, v(t) is the white 
gaussian, zero-mean observation noise random process with covariance 
matrix R(t), and fl is the so-called indicator variable which takes values 1 or 0 

* This work was supported by the Air Force Office of Scientific Research under 
Grant AFOSR 69-1764 and Joint Services Electronics Program Grant AFOSR 
69-1792. 
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depending on whether H 1 (signal present) or H o (signal absent) is true, with 
. . . . .  1 

a priori probablhty P l ,  Po, respecuvely (Zo Pi = 1). 
Moreover, the signal random process {y(t)} is assumed to be "adequately" 

modeled by the state-variable model 

and 

y( t )  = h(x(t), t; O) (2a) 

dx(t) 
dt - -  f (x ( t ) ,  t; O) + g(x(t), t; O) u(t), (2b) 

where {x(t)} is the n-vector signal "state" random process, and {u(t)} is a 
zero-mean q-vector white gaussian process, independent of {v(t)}, whose 
covariance matrix is the identity matrix. The  functionals h('), f ( ' ) ,  and g(') 
are time-varying nonlinear functionals of the state vector x(t), and of 0. 
The  s-vector parameter 0 is time-invariant and, if known, specifies the above 
model completely. However, in the compound problem considered, 0 is 
unknown and following the Bayesian approach, it is considered a random 
variable with known or assumed a priori density p(O). 

The  initial state-vector X(to) is independent of {v(t)} and {u(t)} for t > / t  o 
and has a known 0-conditional gaussian a priori density, denoted by 
p(x(to)/to, O) with means ~(to/to , O) and covariance matrix P(to/to , 0). 

Given the continuous record v, = {z(~-); ~- ~ (to, t) for the current baud, 
for which a decision is to be made, the Bayes-risk minimizing decision rule 
as well as the minimum mean-square estimates of the signal random process 
s(t), and the unknown parameter 0 are to be derived. 

Middleton and Esposito (1968) considered the single-shot joint detection- 
estimation problem for discrete data. Specifically, for both the strong- and 
weak-coupling case and for quandratic-cost function (rose) estimation of s(t), 
they obtained the following fundamental relationship 

A .  ~(t/~.,  13 = 1), (3) 
~(t/v.)  - -  1 + An 

where ~(tlt) ~ E[s(t)/v~], ~(t /v . , /3 = 1) -~ E[s(t)lvn, t3 = 1] and An is the 
generalized likelihood ratio Middleton and Esposito (1968) defined as 

p fp(v./13 = 1, O) p(O) dO 
A,~ ==- p(v./fl  = O) 

Pl (4) 
, P P0  ' 

where v~ = {z(tl), z(t2),..., z(t.);  t i c (to, t)}, and p(v./fi  = 1, 0) is the 
0-parameter conditional density of v. under Ha ,  and p(v~/fi = 0) is the 
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probability density of Vn under H 0 . Note 0 is connected to the signal only. No 
other restrictions were imposed on the model. 

Lainiotis (1969), moreover, recently established the fundamental fact that 
detection is indeed mean-square estimation of the indicator variable ~ for 
the model of Eq. (1). Specifically, he established that the Bayes-optimal 
decision procedure is to decide H 1 or H 0 depending on whether ]~(A**) ~ Co, 
respectively, where c o depends on the a priori costs for each decision, and 
I~(Vn) ~ E[~/~] .  Moreover, Lainiotis (1969) showed that 

I~(V,~) = P(5 = 1/v,~) 

A,~ 
1 q - A , ,  " 

(5) 

Note that Eq. (5) above is a special case, Esposito (1969), of Middleton 
and Esposito's formuls, since [~(v**/fi = 1) is obviously one. 

In  this paper, the above results of Middleton and Esposito (1968) and 
Lainiotis (1969) are extended to the continuous data case and generalized 
to joint detection-estimation-system identification, as well as to the case of 
causal mse estimators. 

II. OPTIMAL JOINT DETECTION, ESTIMATION 

AND SYSTEM IDENTIFICATION 

The  problem stated in the introduction constitutes joint detection (i.e., fi), 
signal estimation (i.e., s(t)), and system identification (i.e., 0). I t  may be shown 
to be simply a nonlinear mean-square estimation problem. T o  see this, 
augment the state-vector x(t) with 0 and fl, so that the augmented state-vector 
Xa(t) ~ [xT(t) ! 0r i ~]C Then  the model defining equations become 

&o(t) 
dt - -  f~(x~(t),  t) + g~(x~(t), t) u(t),  (6a) 

~(t) = ho(.o(t), t) + v(t), (6b) 

where 

f~(x~(t), t) ~ DCr(x(t), t; O) ! 0 ! O] r, g~(x~(t), t) =~ [gr(x(t) ,  t; O) i 0 i O] r 

and 

ha(x~(t), t) =-- flh(x(t), t; 0). 
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It is apparent from their definitions thatf~('), ga('), and ha(" ) are, in general, 
nonlinear functionals of xa(t ). 

In view of the discussion in the introduction, it is readily seen 
that the optimal mean-square estimate (mse) of xa(t ) given v~, denoted 
~4~(t/t) ~ [~4r(t/t) ! Or(t) i/~(t)] r, contains all the quantities for the solution 
of the joint minimum Bayes-risk detection and rose estimation and system 
identification problem. Thus, the above problem is equivalent to rose 
nonlinear estimation, with the attendant difficulties in realizing nonlinear 
estimators, Jazwinski (1970). 

In this paper, by utilizing the adaptive approach, closed form formulas are 
obtained. The desired adaptive realization is obtained by considering both 0 
and fl as an augmented parameter vector ~ = [0Tiff] r. The adaptive 
realization is given in the following: 

THEOREM I. (Partition Theorem). 

p ~ A(t/O) p(O) dO (7a) 
fi(t) = 1 q- p f A(t/O) p(O) dO ' 

p f A(t/O) p(O) dO 
~(t/t) = 1 q- p f A(t/O)p(O) dO ~l(t/t)' (7b) 

p ~ OA(t/O) p(O) dO (7c) 
O(t) = O(to)p( fl = O/t) @ 1 -[- p f A(t/O) p(O) dO' 

where 

fi(t) ~ E[~/t] 

= P ( 3  = 1/t) = 1 - - P ( 3  = O/t), 

~(t/t) ==- E[s(t)/t], 

~(t / t )  ~ E[s(t)/t, fi = 1 ] ,  

O(t) _=__ E[Olt], 

and where 

p(o/ t )  = 1 + oA(t/O) 
1 + p f A(t/O)p(o) aO p(O), 

O(to) = E[O/to] = th~ a priori  mean, 
(7d) 
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and 

f II h1(6/°', 2 o)11~-~(,;) do-, (7e) 
to 

where ftl(a/cr, O) ~ E[h(x(e), , ;  0)/•, 0, fi = 1]. 

Proof. The proof is given in the appendix. 
The following remarks on the above results are pertinent: 
It is seen from Eq. (7a) that the statistic sufficient for Bayes-optimal 

detection is A(t) =-- p f A(t/O) p(O) dO. A(t) is the continuous data generalized 
likelihood ratio for compound detection. In terms of A(t), Eq. (7a) is the same 
as the one obtained by Lainiotis (1969) for discrete data. 

Moreover, we note that the generalized likelihood ratio is specified by a 
continuum of 0-conditional likelihood ratios (LR) A(t/O), each of which is the 
LR for the detection problem 

H 1 : z(t) = h(x(t), t; O) + v(t), 

t t o  : z ( t )  = ~( t ) ,  

for 0 a specified admissible value (admissible in the sense of p(O)). In other 
words, A(t/O) is the LR for testing whether the signal generated by the model 
specified by parameter value 0 is present. This leads us to the conclusion that, 
essentially, system identification is equivalent to multihypothesis testing 
with a continuum of hypotheses (for continuous 0) corresponding to each 
possible model indexed by 0. 

In addition, we note from Eq. (Te) that A(t/O) is in the canonical estimator- 
correlator form of Kailath (1969), which is particularly well-suited to 
interpretation and approximation. However, it must be pointed out that the 
generalized likelihood ratio for continuous data A(t) is applicable to Bayes- 
optimal compound detection and as such is more general than Kailath's (1969) 
LR, the latter being applicable to classical hypothesis testing without consid- 
eration of prior probabilities. 

Equation (7b) above is the continuous data version of Middleton and 
Esposito's [1969] result. We note that it has similar form and interpretation 
as their result, with, however, a very significant difference. Namely, Middleton 
and Esposito's [1969] results were valid, essentially, for noncausal estimators 
since in the discrete approach used in their paper the waveform is estimated 
as a whole given all the data. In contrast the results given herein, generalize 
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Middleton and Esposito's (1969) results not only to the continuous case but 
also to the case of causal estimators. I 

Using Eq. (7a), f(t/t) may be given the interesting form 

~(t/t) = fl(t) gl(t/t). (8) 

Similarly, for 0(t), we have 

O(t) = O(to)[1 - -  ~(t)] -t- 
p f OA(t/O) p(O) dO 

1 + p f A(t/O)p(O) dO 
(9) 

COROLLARY 1. 

where 

~(t/t) =/~(t)  hi(t/t), (lOa) 

P~(t/t) ~- ]~(t) Phi(tit), (lOb) 

f,~(t/t) =_ e[h(x(t), t, O)/t, ~ = 1], 

P~(t/t) =- E{[s(t) - -  ~(t/t)][s(t) - -  ~(t/t)]r/t}, 

and 

Phl(t/t) ==- E{[h(x(t), t, O) --  ]h(t/t)][h(x(t), t, O) --  hl(t/t)]T/t, fi = 1}, 

hi(tit) = f hl(t/t,  O) pl(O/t) dO, (lOc) 

where h~(t/t, O) was defined previously and p~(O/t) is given by 

p~(O/t) =~ p(O/t,/3 = 1) = A(t/O) 
f A(t/O) p(O) dO p(O), (11) 

where p(O) is the a priori density of  O; p and A(t/O) were defined previously. 

1 This  important difference was pointed out to the author by the reviewer. 

Equations (8-9) establish once more the fact that optimal estimation of s(t) 
and 0 requires nonlinear processing of the data. This  is true even in the case 
of linear models, namely, when f ( ' ) ,  g('), and h(.) are linear functionals of 
the state-vector x(t). 

In  the following corollary, expressions for the mse estimates of h(-) and s(t) 
as well as the corresponding conditional error-covariance matrices are given. 
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The conditional error-covariance matrix Phl(t/t ) is given by 

Phi(t/t) = f {Phi(t/t, O) + [hi(t/t, O) -- hl(t/t)][hl(t/t, O) - hl(t/t)]T}pl(O/t) dO, 
(12) 

where Ph~(t/t, O) and hi(t/t, O) are given (]azwinski, 1970), as the solution of 
coupled partial differential equations, whose solution is possible only for special 
cases, e.g., for linear models. 

Proof. The proof is given in the appendix. 
At this point we note that the realization of the nonlinear estimator and 

the associated computational requirements depend essentially on the range 
of admissible values for 0, viz., whether the range of 0 is discrete (finite) or 
continuous. In most applications, the range is continuous resulting in 
excessive computational requirements. One approach for alleviating the 
problem is to quantize the 0-space. Moreover, such quantization is reasonable 
in view of the fact that quantization occurs naturally in any physical realization 
of a system. In any case, either because 0 is discrete or because of quantization 
of a continuous range, p(O) ~_ Z~=I p(O~) 3(0 - -  0~). For such p(O) all inte- 
grations with respect to 0 in Theorem I and Corollary 1 become sums of 
Nterms, each term corresponding to a particular value of 0, 0i, i = 1, 2 ..... N. 

It was shown earlier that system identification constitutes in essence a 
hypothesis testing problem with a continuum of hypotheses. Parameter space 
quantization, however, has reduced the problem to one with a finite set of 
hypotheses. In this context, system identification constitutes a sequence 
of hypotheses testing problems each corresponding to testing for the model 
indexed by parameter value 0~, i = 1, 2,..., N. 

Applying It6's, Jazwinski (1970), differentiation rule to Eqs. (7a, 7d, 11), 
we obtain stochastic differential equations for the temporal evolution of/~(t), 
p(O/t) and pl(O/t). These are given in the following corollary: 

COROLLARY 2. 

d~(t) -~ /~(t)[l --/~(t)] ~lr(t/t) R-l(t)[dz(t) -- ~(t) hi(tit) dr] 

with initial condition ~(io) = Pl , and 

dpl(O/t ) : pl(O/t)[ftl(t/t , O) - -  f~l(t/t)] R-l(t)[dz(t) - -  ~(t) ftl(t/t ) dt] 

with initial condition pl( O/to) = p( O) 

dp(O/t) = ~(t)[pl(O/t ) fqT(t/t, 0) --p(O/t) fhr(t/t)] R-l(t)[dz(t) --~(t)  ~l(t/t) dt] 

with initial condition p( O / to) = p( O). 

643,/I9fI-6 
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Proof. The proof consists of straightforward application of Ito's differ- 
entiation rule to Eqs. (7a, 7d, 11), and as such it is omitted. 

Again it must be emphasized that algorithms for the evaluation of [,l(t/t, O) 
are needed• Such algorithms are possible for special cases only, such as the 
case of linear models• This case is treated in the following section. 

We note that both integral expressions as well as stochastic differential 
equations for /~(t), pl(O/t) and p(O/t) were given above. However, in the 
opinion of this author, the integral expressions are far more valuable from a 
practical standpoint, namely implementation, as well as from an interpretation 
point of view. These opinions are based on the fact that the stochastic 
differential equations are nonlinear and coupled, and their solution is, in 
general, not easily forthcoming. Moreover, approximate solutions of these 
equations are ad hoe and the effect of the approximations made can not easily 
be assessed. In contrast, note that the effects of approximations made in 
evaluating the integral expressions, such as the (finer) quantization of the 
0-range, can be easily assessed and improved upon if desired. 

III. SPECIAL CASE: LINEAR MODELS 

In this section, the case of linear dynamic models is considered. That is, 
the signal random process is given by 

and 
y(t) = H(t, O) x(t), (13a) 

dx(t) --  F(i, O) x(t) + G(t, O) u(t), (13b) 
dt 

where {y(t)}, {u(t)} and {x(/)} were defined previously. The results for this 
case are summarized in the following corollary: 

COROLLARY 3. 

.¢(t/t) = ~(t) f~l(t/t), (14a) 

Ps(t/t) = #(t) [ f  {H(t, 0) Pl(t/t, 0) HT(t, 0) + [H(t, 0) ~l(t/t, O) -- fJl(t/t)] 

• [H(t, O) ~l(t/t, O) -- ~l(t/t)]T}pl(O/t) dO], (lgb) 

~here 

~l(t/t) = f H(t, O) ~z(t/t, O) pl(O/t) dO 
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and ~(t) and pl(O/t ) are given by the stochastic differential equations: 

d~(t) z /~( t )[1 --/~(t)] #lr(t/ t)  R-l( t)[dz(t)  - -  ~(t) #l(t/t)  dr] (14c) 

with initial condition ~( to) = Pl , and 

dpl(O/t ) = pl(O/t)[H(t, O) ~l(t/t, O) --  i~a(t/t)] R-l(t)[dz(t)  --  f,l(t/t) dt], (14d) 

with initial condition pl(  O/to) = p( O). 

dp(O/t) = ]~(t)[pl(O/t ) H(t ,  O) ~l(t/t, O) 

--  p(O/t) f~l(t/t)] R-l( t)[dz(t)  --  fi(y) 21(t/t) dt] (14e) 

with initial condition p(O/to) = p(O). 

Integral expressions for ~(t) and pa(O/t) are given by Eqs. (7a) and (11), 
where now A(t/O) takes the form 

A(t/O) =-- exp ~r(a /a ,  O) HT(e, O) R-~(e) z(e) d~ 

(15) 
to 

The signal and model conditional estimate ~l(t/t, O) and the corresponding 
error-covariance matrix Pl(t/ t ,  O) are now given by the well-known Kalman- 
Bucy, Jazwinski (1970) equations: 

d~l(t/t , O) ~ F(t, O) ~l(t/t, O) 

-~- Pl(t/t ,  O) HT(t)O) R-l(t)[dz(t)  --  H(t,  O) ~l(t/t, 0)] (16a) 

with initial condition fq(t/t, O) = ~(to/to) , and 

dPl(t/t)  
dt --  F(t,  O) Pl(t/t ,  O) @ P~(t/t, O)Fr(t, O) -]- G(t, O) GT(t, O) 

- -  Pa(t/t, O) Hr( t ,  O) R-~(t) H(t ,  O) Pl(t/ t ,  O) (16b) 

with initial condition P~( to/ to) = P( to/ to). 

Proof. The proof is based on simple application of Theorem I and 
Corollary 1 to the linear model given in Eqs. (13), and as such it is omitted. 
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IV. SUBOPTIMAL NONLINEAR ESTIMATION ALGORITHM 

It was shown in Section II, that the problem of joint detection-estimation- 
system identification constitutes a nonlinear estimation problem. But, as was 
pointed out earlier, the optimal nonlinear filter is specified, in general, by 
an infinite set of coupled stochastic partial differential equations. Such 
specification is not useful since it is in general unrealizable. This problem 
was partially alleviated by using an adaptive approach with quantization of 
the unknown parameter space• In this section an approximate nonlinear 
estimation algorithm is used that does not require parameter space quanti- 
zation. This is based on the so-called relinearized Kalman-Bucy filter 
(Light, 1970). 

It is widely known that the simplest method of suboptimal nonlinear 
filtering is that of Kalman-Bucy filtering about a nominal trajectory. Licht 
(1970) demonstrates that if the optimal estimate instead of fixed a priori 
trajectory is chosen as the nominal trajectory, the resulting approximate 
relinearized filter is much more effective than the usual linearized filter about 
constant nominal trajectory. 

The relinearized Kalman-Bucy filter for the model defined by 6(a) and 6(b) 
is given by the following set of differential equations: 

dka(t/t) 

where 

d-----i-- =f~(Xa(t/t) '  t) 4- P(t / t )  Vhar(~a(t/t), t) R-l( t)[z(t)  - -  ha(ka(t/t), t)], 
(17a) 

dP(t/ t)  
dt ~ Vfa(k~(t/t), t) P(t / t )  + P(t / t)  VfaT(~a(t/t), t) @ ga(~a(t/t), t) 

• gaT(~a(t/t), t) - -  P(t/ t)  VhaT(~a(t/t), t) R- l ( t )  Vha(ka(t/t), t) P(t/ t) ,  
(17b) 

&a(t/t) = E[xa(t)/t], 

P(t/ t)  = E[[xa(t ) - -  &a(t/t)][xa(t) - -  ka(t/t)]T], 

with initial conditions 

ka(to/to) --~ E[Xa(to)], 

P(to/to) = E[[xa(to) - -  &~(to/to)][x~(to) - -  &a(to/to)]r], 

where Vha(xa(t/t), t) and Vfa(Xa(t/t), t) are Jacobian matrices of h~(x~(t/t), t) 
and f ~(Xa( t/t), t), respectively. 
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In order to illustrate the implementation of the relinearized filter, the 
linear model in Section III is considered. The results are given in the 
following corollary: 

COROLLARY 4. 

d?c(t/t)] [F(t, O(t)) ~(t/t)] [ ~(t) HT(t, O(t)) ] 
dO(t) I = 0 dt -[- P(t/t) I]~(t) ~T(t/t) VHT(t, O(t)) I 
dl~(t) J 0 [ .~r(t/t) HT(t, O(t)) J 

• R-l(t)[dz(t) -- t~(t) H(t, O(t)) ~(t/t) dt], (18a) 

[F(t':(t)) F(t'O(t))x(t/t) i] 
P(t/t) = 0 P(t/t) dt 

k 0 0 

[ FT(t,O(t)) 0 i ]  
@ P(t/t) I~r(t/t) VFr(t, O(t)) 0 dt 

t 0 0 

-]- [G(t'O(t))Gr(t'O(t)) 0 i ] O 0  O0 dt 

r ¢(t) HT(t, O(t)) 1 
- -  P(t/t) I~(t) ~r(t/t) VHT(t, O(t))l 

k ~T(t/t) Hr(t, O(t)) J 

r fl(t) HT(t, O(t)) ] 
• R-a(t) |~(t) ~T(t/t) VHT(t, 0(t)) / P(t/t) dt (18b) 

t NT(t/t) HT(t,O(t)) ] 

with initial conditions 

x(to/to) = E[x(to)], /~(to) = Pl, O(to) = E[O] and P(to/to) = P(to) , 

and where P(t/t) is the error covariance matrix of the estimate, i.e., 

l[x(t)--~(t/t)][x(t)--C~(t/t)Jr/} 
P(t/t) = e I O--O(t) l] o-o(t) / t .  

k t~-¢(t )  J J. ~ - ¢ ( t )  J 

Proof. The proof consists of application of the relinearized equations to 
the linear model of Section III, after augmenting the state vector as in (6a) 
and (6b), and will therefore be omitted. 
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In the following, two special cases of the corollary are given solely for 
illustrative purpose. 

Case I. Estimation~System identification. Let fi = 1, O, a scalar param- 
eter and the model equations have the following form: 

z(t) = x(t) -~- v(t). 

Then the relinearized Kalman-Bucy filter equations for the optimal estimates, 
N(t/t) and ~(t) and estimation error covariance matrix are given by the 
following 

[d~(t/t)l 
dO(t) ] = [t~(t);(t/t)] dt + P(t/t) [/] R-l(t)[dz(t) - ~(t/t)dt], 

[ O(t)I 

÷ [~ 00]~t ~ , .~ [o  -~ ~]~t.~t 
As one can easily see upon examining the above equations, the highest 

conditional moments of x(t) and 0 that are required to obtain x(t/t) and O(t) 
are second order moments. Instead, the differential equation for optimal 
estimates require that the lower order moments equations contain terms 
which are functions of higher order moments, resulting in infinite dimensional 
problem. 

Case H. Joint detection-estimation. Let 0 = 1 and/3, unknown, and let 
this joint detection-estimation problem take the following form: 

F~ '~] = [~'~] + [~o] ~¢t~, z(t) = fix(t) @ v(t), 

where fi = 1, or 0. 
Then the relinearized Kalman-Bucy differential equations for the optimal 

estimates and error covariance matrix are given by the following equations: 
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and 

-- P(t/t) [ I~(t)I ] R -1 [~ I~(t)I ] P(t/t) dt. 
[/~(t) ~r(t/t)] //3(0 ~(t/t)] 

The comments given previously in case I apply here also. 

V. CONCLUSIONS 

Recent results of Middleton and Esposito (1968) and Lainiotis (1969) on 
single-shot joint detection-estimation for discrete data are extended to the 
single-shot continuous data case and generalized to joint Bayesian detection- 
estimation and system identification, as well as to causal estimators. Speci- 
fically, it is shown that the above problem constitutes a class of nonlinear 
mse estimation problems, with the attendant difficulties in realizing the 
optimal nonlinear estimators. However, by utilizing the adaptive approach, 
viz., by considering (0, fi) as an unknown parameter to be learned, closed 
form expressions are given. These are given in terms of the generalized 
likelihood ratio A(t), which is a sufficient statistic for Bayes-optimal com- 
pound detection. The latter, in turn, is specified by a continuum (for 
continuous 0) 0-conditional likelihood ratios A(t/O), each of which is the LR 
for testing for the model specified the parameter value 0. In essence, then, 
it has been shown that system identification is equivalent to multihypothesis 
testing, with a continuum or finite sequence of hypotheses, respectively, for 
continuous or finite discrete range of 0. 

In addition to the integral expressions for 0(t), ~(t/t), and ]~(t), stochastic 
differential equations have been obtained describing the temporal evolution 
of fi(t), pl(O/t) and p(O/t). Moreover, for the special case of linear models 
stochastic differential equations are obtained for the temporal evolution of 
/~(t), pa(O/t), ~l(t/t, 0), Pl(t/t, O) and p(O/t). Finally, a simple, suboptimal 
nonlinear estimation algorithm is given, based on the relinearized Kalman 
filter. 

APPENDIX 

The proofs of Theorem 1 as well as of the associated corollaries are given 
below: 

Proof of Theorem 1 (Partition Theorem). The proof is based on Bucy's 
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representation theorem (Jazwinski, 1970), and the smoothing property of 
expectations. Specifically, the desired mean-square estimate of/3 and 0 are, 
as is well known, their conditional means given yr. Thus, the a posteriori 
conditional densities p(fllt) and p(OIt ) must be obtained. These are easily 
obtained from the joint density p(O, flit). Using Bayes's rule, the latter is given 
by 

p(O, flit) --  p[x(t), O, flit] (I-1) 
p[x(t)/t, O, [3] " 

Applying Bucy's representation theorem to Eqs. (6), we obtain the a posteriori 
density of the augmented state vector Xo(t) = [xr(t) " O r " flit, viz., 

p[x~(t)/~d ~ p[x(t), O, flit], 

E~*[exp P(t)/x(t), O, ~] p[x(t), O, fl] 
Evt[exp/~(t)] 

(I-2) 

where EV*[ .] stands for the operation of expectation holding vt constant at 
the measured values, and F(t) is defined as 

r ( t )  j hj(,~o(,~), ,~) R-l(,,) ~(,,),t,, ~ f if ho(xo),,), _ 2 == - ~)IIR-I~o) do 
to to 

( i 4 )  

If we apply the representation theorem once more to Eqs. (I-2) for given 
(0, fl), we obtain the a posteriori density of the signal state-vector x(t); 
namely, we obtain 

p[x(t)/ut , O, fi] ~ p[x(t)lt ,  O, fl] 

= EV'[exp r( t) /x( t) ,  o,/3] p[x(t)/o, N 
E[exp l~(t)/O, fl] (I-4) 

Combining Eqs. (I-1, I-2, and I-4) yields 

eV'[exp F(t)lO, fl] 
p(O, flit) = E",[exp F(t)] p(O, fl) 

E~'[exp r(t) /o,  N 
f Ev,[exp I'(t)[O, 8] p(O, fl) dO dfl 

p(o, fl). (I-5) 
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Note that in view of the independence of 0 and 19, we have 
p(O, fi) = p(O) p(fl), and Eq. (I-5) may be written as 

E~t[exp F(t)/O, 19] p(O) p(19) 
p(O, 19/t) = f E~*[exp F(t)/O, 19] p(O) p(19) dO d19 

E~*[exp F(t)/O, 19] 
= ~Po I E~*[exp F(t)/O, 19 = 0] p(O) dO ~ p(O) p(19), 

+ Pl J" Ev*[exp V(t)/O, 19 = 1] p(O) dO~ (1-6) 

where the fact that p(19) = Po8(19) + p13(fi - -  1), was used in obtaining the 
latter equality. 

Duncan (1967) established that the denominator of the representation 
theorem is a likelihood function and proved that 

EV'[exp I'(t)/O, 19] = exp O/vo , O, 19) R-I(~) z(a) d~ 

a; I ½ f 1l 19hr(x("), 01~, O, 2 19)]IR-~(,~) do- , (1-7) 
to 

where [z(x(a), a; O/v~ , O, 19) =-- E[h(x(a), a; O)/v~ , O, 3]. 
Moreover, we note that for 19 = 0, E"*[exp F(t)/O, 19 = 0] = 1, while 

for 19 = 1, E"@xp P(t)/O,/3 = 1], denoted A(t/O), is given by 

A(t/O) exp , ,  O) R-a(o -) z(o-) ½ f Ii = - 0)llR-lc~) d a  , 
t o~ 0 t o 

(1-8) 
where [*l(a/a, O) =--/~(x(a), a/v,,, 0,19 = 1). 

In  view of the above, Eq. (I-6), takes the following form 

A(t/O) (I-9) 
p(O, 19/t) = Po + Pl f A(t/O) p(O) dO' 

where p(19) = po8(19) + p,8(19 - -  1). 
The  a posteriori probabilities p(O/t) and p(19 = 1/t) are obtained in a 

straightforward fashion from p(O, 19/0. Namely, 

p(O/t) = f p(O, 19/t) dfl 

= 1 + pA(t/O) p(O), 
1 + o I a(t/O)p(O) ao 

(i-m) 
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where p =- Pl/ Po , and 

P I A(t/O) p(O) dO 
D(t) = p(fl = 1/0 = 

1 + p f A(t/O)p(O) dO 

Using Eq. (I-lO), we obtain O(t) as follows: 

(I-11) 

O(t) ==- f @(Off) dO 

= I @(o) do + p I oA(t/o) p(o) do 

1 + o I A(t/o)p(o) do 

= O(to ) 1 + p fOA(t/O) p(O) dO 
1 ÷ p fA(t/O)p(O) do 1 + p fA(t/O)p(O) dO 

p f OA(t/O) p(O) dO 
= 0(t0)[1 - -  ~(t)] q 

1 + p f A(t/O)p(O) dO " 

Moreover, by using the smoothing property of expectations, we have 

(I-12) 

f( t / t)  = e{E[s(t) /vt ,  fl = i]/vt} 

1 

= ~ ~( t / t )p( f l  = i/t) 
i = 0  

= p(fl = 1/t) ~dt/t) 

= ~(t) s~(t/t), 

(I-13) 

where ~,(t/t) -= E[s(t)/vt,  fl = i], i = 0, 1, and go(t/t) = 0 since s(t) = fly(t). 
In  view of the latter, fl(t/t) = fh(t / t )  = ft(t/t). This completes the proof of 
Theorem 1. 

Proof of  Corollary I. From Eq. (I-13) above, we have 

f( t / t)  = f l ( t )  fh(t/t  ). 

Moreover, f rom the definition of Ps(t/t)  and the smoothing property of 
expectations we have 

1 

Ps(t/t) = ~ Ps(t/t,  fl = i )p( f l  = i/t) 
i = 0  

= Ps(t/t, fl = 1)p(fl = 1It) 

= [~(t) Phi(tit), 

(I-14) 
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the latter two equalities resulting because, under hypothesis H i ,  
s(t)  ~ - h ( t ) ,  and under hypothesis H o ,  s(t) = O, and g o ( t / t ) =  O, as well 
as E[s(t )  sr ( t ) / t ,  fi = O] = O. 

Again using the smoothing property, we have 

]t l( t / t )  = E { E [ h ( t ) / v t ,  O, fi = 1] /v t ,  fi = 1} 

= f h l ( t / t  , O)pl (O/ t )  dO, 
(I-is) 

E{[h(x ( t ) ,  t; O) - -  ] t l ( t / t )][h(x( t ) ,  t; O) - -  ] t i ( t / t )]r / t ,  O, fl = 1} 

= E[h(x ( t ) ,  t; O) hT(x( t ) ,  t; O)/t, O, fl = 1] -b- ]t l( t / t )  ]tiT(t/ t)  

- -  ] t l ( t / t )  ]tiT(t/t ,  O) - -  ]t l(t / t ,  O) ]t iT(ti t)  

where 

The  conditional error-covariance matrix Pl~( t / t )  is obtained as follows: 

Ph~(t / t )  ~ E{[h(x ( t ) ,  t; O) - -  h l ( t / t ) ] [h(x ( t ) ,  t; O) - -  h l ( t / t ) ]T/ t ,  /3 = 1} 

= E[E{[h (x ( t ) ,  t; O) - -  h l ( t / t ) ] [h(x ( t ) ,  t; O) (I-16) 

- -  ]t l( t / t )]T/t ,  O, fl = 1}It, fl = 1], 

= E{[h(x ( t ) ,  t; O) - -  h i ( t i t  , O)][h(x(t),  t; O) - -  h i ( t i t  , O)]T/t, O, fi = 1} 

÷ [hi( t i t ,  O) - -  h i ( t i t ) ] [h i ( t i t ,  O) - h i ( t / t ) ]  T 

= Phi ( t i t ,  o) q-  [h i ( t i t  , o) - h l ( t / t ) ] [h l ( t / t  , o) - ha(ti t)] T. (I-17) 

Combining Eqs. (I-16) and (I-17), we obtain Eq. (12). This  completes the 
proof of Corollary I. 

RECmVED: November 2, 1970; I~VISED: February 11, 1971 

where f f i ( t / t ,  O) ~ E[h( t ) / v~ ,  O, [3 = 1] and pl(O/ t )  --~ p ( O / v t , / 3  = 1) is ob- 
tained in a straightforward fashion by pl(O/ t )  = p(O, fi = 1 / t ) /p ( f i  = 1/t) ,  
and given by 

A(t/o) 
A ( O / t )  = f A( t /O)  p(O) dO p(O). 
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