Invariant Hamming graphs in infinite quasi-median graphs

Marc Chastand, Norbert Polat*

L.A.E., Université Jean Moulin (Lyon III), 15, quai Claude Bernard, 69239 Lyon Cedex 2, France

Received 4 November 1992; revised 13 October 1994

Abstract

It is shown that a quasi-median graph G without isometric infinite paths contains a Hamming graph (i.e., a cartesian product of complete graphs) which is invariant under any automorphism of G, and moreover if G has no infinite path, then any contraction of G into itself stabilizes a finite Hamming graph.

0. Introduction

For several classes of graphs, it has been shown that each member of these classes contains a regular subgraph of the same class which is invariant under any automorphism, or that any contraction of that graph into itself stabilizes a regular subgraph of the same class. One can find various examples of such classes, particularly with finite graphs. See for example: Nowakowski and Rival [8] for trees, Poston [12] for finite contractible graphs, Quillot [13] for finite ball-Helly graphs, Polat [10, 11] for infinite dismantlable graphs and infinite ball-Helly graphs, Bandelt and Mulder [1] for finite pseudo-median graphs, Bandelt and van de Vel [3] for finite median graphs, and Tardif [16] for infinite median graphs.

The graphs that we consider in this paper are the quasi-median graphs. These graphs have been defined independently by several authors and with various approaches. The finite quasi-median graphs were introduced as a generalization of median graphs (see [7]), as connected subgraphs of Hamming graphs (i.e., cartesian products of complete graphs) that are closed under the quasi-median operation (see [7, 5]), as retracts of Hamming graphs (see [17, 5]), as graphs in which there exists an optimal strategy for a particular dynamic location problem (see [5]). Note that median graphs are the bipartite quasi-median graphs and that the regular quasi-median graphs are precisely the Hamming graphs. Bandelt et al. [2] gave several characterizations of (finite or infinite) quasi-median graphs, by bringing together

* Corresponding author

0012-365X/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0012-365X(95)00151-4
different approaches, and in particular by linking those graphs with some ternary algebras called quasi-median algebras.

Some special sets of vertices, called prefibers, related to the structure of metric space which is naturally associated with a graph, are very important for the study of quasi-median graphs. In any graph, the family of all prefibers has the Helly property (i.e., every finite family of pairwise non-disjoint prefibers has a nonempty intersection). Moreover this property also holds for every infinite family of nondisjoint prefibers if the graph has no isometric rays (i.e., no distance-preserving one-way infinite paths), and this enables to prove that:

A quasi-median graph without isometric rays contains a Hamming graph which is invariant under any automorphism.

This result holds a fortiori if the graph is rayless (i.e., without infinite paths), but in this case we also have the following:

Any contraction of a rayless quasi-median graph stabilizes a finite Hamming graph.

These results generalize those recently obtained by the first author for finite quasi-median graphs [4] as well as some results of Tardif on median graphs [16].

1. Notation and definitions

The graphs we consider are undirected, without loops and multiple edges. We denote by \(V(G) \) the vertex set of a graph \(G \), and by \(E(G) \) its edge set. If \(x \) and \(y \) are two vertices of a graph \(G \) we write \(x \equiv a y \) if \(x = y \) or \(\{x, y\} \in E(G) \). If \(x \in V(G) \), the set \(V(x; G) := \{y \in V(G): \{x, y\} \in E(G)\} \) is the neighborhood of \(x \). The subgraph of \(G \) induced by a subset \(A \) of \(V(G) \) is denoted by \(G[A] \), or simply by \(A \) whenever no confusion is likely; and we set \(G - A := G[V(G) - A] \). A path \(W := <x_0, \ldots, x_n> \) is a graph with \(V(W) = \{x_0, \ldots, x_n\} \), \(x_i \neq x_j \) if \(i \neq j \), and \(E(W) = \{\{x_i, x_{i+1}\}: 0 \leq i < n\} \); \(x_0 \) and \(x_n \) are its endpoints, and \(W \) is also called an \(x_0x_n \)-path. A ray or one-way infinite path \(R := <x_0, x_1, \ldots> \) is defined similarly.

The (geodesic) distance in \(G \) between two vertices \(x \) and \(y \), that is the length of an \(xy \)-geodesic (i.e. a shortest \(xy \)-path) in \(G \), is denoted by \(d_G(x, y) \); and every graph \(G \) is endowed with the structure of metric space associated with this distance. A subgraph \(H \) of \(G \) is isometric if \(d_H(x, y) = d_G(x, y) \) for all vertices \(x \) and \(y \) of \(H \). If \(x \) is a vertex of \(G \) and \(r \) a nonnegative integer, the set \(B_G(x, r) := \{y \in V(G): d_G(x, y) \leq r\} \) is the ball of center \(x \) and radius \(r \) in \(G \). If \(x \) and \(y \) are two vertices of \(G \), then the interval \(I_G(x, y) \) is the set of vertices of all \(xy \)-geodesics. Clearly \(I_G(x, y) := \{z \in V(G): d_G(x, z) + d_G(z, y) = d_G(x, y)\} \). A subset \(C \) of \(V(G) \) is geodesically convex, for short convex, if it contains the interval \(I_G(x, y) \) for all \(x, y \in C \). The convex hull \(co_G(C) \) of \(C \) in \(G \) is the smallest convex set of \(G \) containing \(C \). Thus \(co_G(C) = \bigcup_{n \geq 0} C_n \) where \(C_0 = C \) and \(C_{n+1} = \bigcup_{x, y \in C_n} I_G(x, y) \).
Let \((u_1, u_2, u_3)\) be a triple of vertices of a graph \(G\). A quasi-median of \((u_1, u_2, u_3)\) is a triple of vertices \((x_1, x_2, x_3)\) such that

- \(x_i, x_j\) lie on a \(u_iu_j\)-geodesic, \(i, j \in \{1, 2, 3\}\);
- \(d_G(x_1, x_2) = d_G(x_2, x_3) = d_G(x_3, x_1) = k\);
- \(k\) is minimal with respect to these conditions.

If \(k = 0\), then the quasi-median is reduced to a single vertex \(x\), which is called a median of the triple \((u_1, u_2, u_3)\). A median graph is a graph in which every triple of vertices has a unique median.

If \(G\) and \(H\) are two graphs, a map \(f : V(G) \rightarrow V(H)\) is a contraction if \(f\) preserves the relation \(\equiv\), i.e., \(x \equiv_G y\) implies \(f(x) \equiv_H f(y)\). Notice that a contraction \(f : G \rightarrow H\) is a non-expansive map between the metric spaces \((V(G), \text{dist}_G)\) and \((V(H), \text{dist}_H)\), i.e., \(\text{dist}_H(f(x), f(y)) \leq \text{dist}_G(x, y)\) for all \(x, y \in V(G)\). A contraction \(f\) from \(G\) onto an induced subgraph \(H\) of \(G\) is a retraction, and \(H\) is a retract of \(G\), if its restriction \(f|_H\) to \(H\) is the identity. The cartesian product \(G \times H\) of two graphs \(G\) and \(H\) is defined by \(V(G \times H) = V(G) \times V(H)\), and \((x, y) \equiv_{G \times H} (x', y')\) if and only if \(x = x'\) and \(y \equiv_H y'\), or \(x \equiv_G x'\) and \(y = y'\). Clearly \(d_{G \times H} = d_G + d_H\). A contraction \(f\) of \(G\) (into itself) is said to stabilize a set \(A\) of vertices (resp. a subgraph \(H\) of \(G\)) if \(f(A) = A\) (resp. \(f(H) = H\)). A subgraph \(H\) of \(G\) is said to be invariant if it is stabilized by any automorphism of \(G\).

A complete graph is simply called a simplex, and a clique is a simplex which is maximal with respect to inclusion. A Hamming graph (resp. hypercube) is a cartesian product of simplices (resp. \(K_2\)). As usual \(K_{2,3}\) (resp. \(K_{1,1,2}\)) denotes the complete bipartite (resp. tripartite) graph whose subsets of vertices have 2 and 3 (resp. 1, 1 and 2) elements, respectively. Roughly \(K_{1,1,2}\) is \(K_4\) minus an edge.

2. Prefibers

The concept of prefiber generalizes that of fiber of a cartesian product of metric spaces; it has been studied in particular by Dress and Scharlau [6] and by Tardif [14, 15].

2.1. Definition. Let \((\mathcal{X}, d)\) be a metric space. A prefiber (or gated set) of \(\mathcal{X}\) is a subset \(A\) of \(\mathcal{X}\) such that, for all \(x \in \mathcal{X}\), there is \(y \in A\) with \(d(x, z) = d(x, y) + d(y, z)\) for every \(z \in A\). The element \(y\) is unique, and the map \(\text{proj}_A : \mathcal{X} \rightarrow A\) defined by \(y = \text{proj}_A(x)\) is the projection onto \(A\).

In this paper we will use the following properties:

2.2. Properties (Tardif [14]). (i) If \(A\) and \(B\) are two prefibers of a metric space \((\mathcal{X}, d)\), then \(\text{proj}_A(B)\) is a prefiber of \(\mathcal{X}\). Moreover, if \(A \cap B \neq \emptyset\), then \(A \cap B\) is a prefiber of \((\mathcal{X}, d)\) and

\[
\text{proj}_{A \cap B} = \text{proj}_A \circ \text{proj}_B = \text{proj}_B \circ \text{proj}_A.
\]
(ii) The family of prefibers of a metric space has the Helly property (i.e., every finite family of pairwise nondisjoint prefibers has a nonempty intersection).

(iii) If \((X, d)\) is a complete metric space, and \(F\) a family of prefibers of \(X\) such that \(\bigcap F \neq \emptyset\), then \(\bigcap F\) is a prefiber of \(X\).

When the metric space of a graph is concerned, the projection associated with a prefiber is clearly an idempotent contraction, and a prefiber is a retract of this graph. We will give two properties that will be useful in the following. The first, which is a property on nested prefibers, enables to show the existence of some particular geodesic.

2.3. Proposition. Let \((W_n)_{n \geq 1}\) be a nested sequence of prefibers of connected graph \(G\) such that \(W_{n+1} \subseteq W_n\) for all \(n \geq 0\). If, for \(x_0 \in W_0\), the sequence \((x_n)_{n \geq 0}\) is defined by \(x_{n+1} = \text{proj}_{W_{n+1}}(x_n)\), then, for every \(n \geq 0\), there is an \(x_0x_n\)-geodesic \(P_n\) such that \(P_n \supseteq P_k\) for all \(k\) with \(0 \leq k \leq n\).

Proof. Construct \(P_0, P_1, \ldots\) such that \(P_n\) is an \(x_0x_n\)-geodesic containing \(P_k\) for \(0 \leq k \leq n\), as follows. Set \(P_0 := \langle x_0 \rangle\). Suppose that \(P_0, \ldots, P_n\) have already been constructed. If \(x_0 \in W_n\) then \(x_n = x_0\); let \(P_{n+1} := P_n\). If \(x_0 \notin W_n\) then \(x_n = \text{proj}_{W_n}(x_0)\) and \(x_n \in I_G(x_0, z)\) for every \(z \in W_n\), thus in particular for \(x_{n+1}\), therefore there exists an \(x_0x_{n+1}\)-geodesic \(P_{n+1}\) containing \(P_n\).

By 2.2(ii) the family of prefibers of a graph has the Helly property, but this can be strengthened if the graph has no isometric rays.

2.4. Proposition (Strong Helly property). If \(G\) is a graph without isometric rays, then any (finite or infinite) family of pairwise nondisjoint prefibers has a nonempty intersection.

Proof. Let \(F\) be a family of pairwise nondisjoint prefibers of \(G\). Assume that \(\bigcap F = \emptyset\). Construct prefibers \(W_0, W_1, \ldots\) of \(F\) and vertices \(x_0, x_1, \ldots\) such that \(x_n \in \bigcap_{0 \leq i \leq n} W_i\), as follows. Let \(W_0 \in F\) and \(x_0 \in W_0\). Suppose that \(W_0, \ldots, W_n\) and \(x_0, \ldots, x_n\) have already been constructed. There is \(W_{n+1} \in F\) such that \(x_n \notin W_{n+1}\), otherwise \(\bigcap F \neq \emptyset\); moreover \(\bigcap_{0 \leq i \leq n} W_i \neq \emptyset\) by the Helly property, thus \(\bigcap_{0 \leq i \leq n} W_i\) is a prefiber of \(G\) that is strictly included in the prefiber \(\bigcap_{0 \leq i \leq n} W_i\) and which does not contain \(x_n\). Let \(x_{n+1} := \text{proj}_{W_{n+1}}(x_n)\); clearly \(d(x_n, x_{n+1}) \geq 1\).

By Proposition 2.3 there exists a sequence \((P_n)_{n \geq 0}\) such that \(P_n\) is an \(x_0x_n\)-geodesic with \(P_n \subseteq P_{n+1}\) (where \(\subseteq\) denotes the strict inclusion) since \(d(x_n, x_{n+1}) \geq 1\). Thus \(\bigcup_{n \geq 0} P_n\) is an isometric ray, which is a contradiction with the hypothesis. Therefore \(\bigcap F \neq \emptyset\). Note that, by 2.2(iii), this intersection is a prefiber.
3. Quasi-median graphs

3.1. Definition. A graph G is quasi-median if

(i) each triple of vertices of G has a unique quasi-median,
(ii) $K_{1,1,2}$ is not an induced subgraph of G,
(iii) the convex hull of any isometric 6-cycle of G is a 3-cube.

3.2. In order to recall some characterizations of quasi-median graphs given by Bandelt et al. [2] we introduce the following notation, definition and properties.

3.2.1. A graph G has the triangle property if, for any vertices u, v, w with $d_G(u, v) = d_G(u, w) = k > 1$ and $d_G(v, w) = 1$, there exists a common neighbor x of v and w with $d_G(u, x) = k - 1$. G has the quadrangle property if, for any vertices u, v, w, z with $d_G(u, v) = d_G(u, w) = d_G(u, z) = k > 1$ and $d_G(v, w) = 2$ with z a common neighbor of v and w, there exists a common neighbor x of v and w with $d_G(u, x) = k - 1$. A connected graph is said to be weakly modular if it has the triangle property as well as the quadrangle property.

3.2.2. The prefibers of a quasi-median graph G has the following properties:

- A subset S of $V(G)$ is prefiber if and only if it is convex and A-closed (i.e., if S contains two vertices of a K_3 then it contains the third as well).
- As a convex set, any prefiber is closed under the quasi-median operation.

3.2.3. If $\{a, b\}$ is an edge of a graph G we denote

$$W_{ab} := \{w \in V(G): d_G(a, w) < d_G(b, w)\}.$$

$$U_{ab} := \{u \in W_{ab}: u \text{ has a neighbor in } W_{ba}\}.$$

If G is quasi-median, then these sets are such that:

- W_{ab} and U_{ab} are prefibers of G.
- The map $f: U_{ab} \to U_{ba}$, defined by $f(u) = v$ if and only if $\{u, v\}$ is an edge, is an isomorphism.

Theorem 3.3 (Bandelt et al. [2]). For a connected graph G the following are equivalent:

(i) G is a quasi-median graph;
(ii) Every interval of G induces a median graph, and, for any three vertices u, v, w of G,

$$I_G(u, v) \cap I_G(u, w) = \{u\} \implies d_G(v, w) \geq \max\{d_G(u, v), d_G(u, w)\};$$

(iii) G is weakly modular and contains neither $K_{1,1,2}$ nor $K_{2,3}$ as induced subgraphs;
(iv) Every clique of G is a prefiber, and the set U_{ab} is convex for every edge $\{a, b\}$ of G.

Since Hamming graphs are the quasi-median graphs that contain no convex path of length 2, one deduces the following result:

Corollary 3.4 (Bandelt et al. [2]). For a connected graph G the following are equivalent:

(i) G is a Hamming graph;

(ii) Every interval of G induces a hypercube, and, for any three vertices u, v, w of G,

$$I_G(u, v) \cap I_G(u, w) = \{u\} \Rightarrow d_G(v, w) \geq \max\{d_G(u, v), d_G(u, w)\};$$

(iii) G is weakly modular and contains neither $K_{1,1,2}$ nor $K_{2,3}$ as induced subgraphs, nor path of length 2 as a convex subgraph;

(iv) Every clique of G is a prefiber, and the set U_{ab} and W_{ab} are equal and convex for every edge $\{a, b\}$ of G.

4. Invariant Hamming graph

In order to find an invariant Hamming graph in a quasi-median graph without isometric rays we introduce a particular family of prefibers satisfying the strong Helly property.

4.1. **Definition.** A prefiber W of a graph G is said of maximal type if

(i) $d_G(x, W) = 1$ for all $x \in V(G - W)$;

(ii) $G - \bigcup_{x \in V(G - W)} B_G(x, 1) \neq \emptyset$ (i.e., $W - \text{proj}_w(G - W) \neq \emptyset$).

We denote by G' the intersection of all prefibers of maximal type of G.

4.2. **Lemma.** Let G be a graph. We have the following:

(i) if W and W' are two prefibers of maximal type, then $W \cap W'$ is nonempty;

(ii) G' is empty or is a prefiber;

(iii) if G is nonempty and without isometric rays, then G' is nonempty;

(iv) if f is an automorphism of G, then, for every prefiber W of maximal type, $f(W)$ is also a prefiber of maximal type;

(v) if G' is nonempty, then G' is a subgraph of G that is invariant under any automorphism of G.

Proof.

(i) If $W \cap W' = \emptyset$, then $W \subseteq G - W'$ and $W' \subseteq G - W$. Hence $d_G(y, W') = 1$ for all $y \in W$. This implies that $W \subseteq \bigcup_{z \in W'} B_G(z, 1)$. Thus $W \subseteq \bigcup_{z \in G - W} B_G(z, 1)$. Therefore $G - \bigcup_{z \in V(G - W)} B_G(z, 1) = \emptyset$, a contradiction to Definition 4.1(ii).

(ii) This is a consequence of Property 2.2(iii).

(iii) The prefibers of maximal type, being pairwise nondisjoint by (i), have a nonempty intersection if G has no isometric rays by Proposition 2.4.
(iv) $f(W)$ is a prefiber of G since an automorphism is distance preserving. Let $y \in G - f(W)$. Then $d_{G}(y, f(W)) \geq 1$; and also $y = f(x)$ for some $x \in G - W$, which implies that $d_{G}(y, f(W)) \leq 1$. Consequently $d_{G}(y, f(W)) = 1$.

(v) Consequence of (iv).

4.3. Definition. Let G be a graph. For any ordinal α, we define $G^{(\alpha)}$ inductively as follows:

- $G^{(0)} := G$
- $G^{(\alpha + 1)} := (G^{(\alpha)})'$
- $G^{(\alpha)} := \bigcap_{\beta < \alpha} G^{(\beta)}$ if α is a limit ordinal.

We will denote $d(G) := \min \{\alpha : G^{(\alpha)} = G^{(\alpha + 1)}\}$ and $G^{(\infty)} := G^{d(G)}$.

4.4. Lemma. Let G be a graph. We have the following:

(i) For any ordinal α, the graph $G^{(\alpha)}$ (or more precisely its vertex set) is a prefiber of G if it is nonempty.

(ii) If $G^{(\alpha)}$ is nonempty, then, for all ordinals α and β with $\alpha \leq \beta$, $G^{(\beta)} \subseteq G^{(\alpha)}$, and the map $f_{\alpha\beta} : G^{(\alpha)} \to G^{(\beta)}$ defined by $f_{\alpha\beta} = \text{proj}_{\alpha\beta}$ is a retraction of $G^{(\alpha)}$.

(iii) If G is nonempty and without isometric rays, then $G^{(\alpha)}$ is nonempty.

(iv) $G^{(\alpha)}$ is a subgraph of G which is invariant under any automorphism of G.

(v) If G is quasi-median, then so is $G^{(\alpha)}$ for every ordinal α.

Proof. (i) is a consequence of 2.2(iii), and (ii) is obvious.

(iii) We will prove by induction on α that $G^{(\alpha)}$ is nonempty if G has no isometric rays. This is clear if $\alpha = 0$. Let $\alpha \geq 0$. Suppose that this holds for any ordinal less than α. If $\alpha = \beta + 1$, then $G^{(\alpha)} = (G^{(\beta)})'$ and the result is then a consequence of Lemma 4.2(iii). If α is a limit ordinal, then $G^{(\alpha)}$ is the intersection of a sequence of prefibers that are nonempty by (i) and the induction hypothesis, and pairwise nondisjoint since nested. Thus $G^{(\alpha)}$ is nonempty by Proposition 2.4.

(iv) We will also prove by induction on α that $G^{(\alpha)}$ is invariant. This is clear if $\alpha = 0$. Let $\alpha \geq 0$. Suppose that this holds for any ordinal less than α. If $\alpha = \beta + 1$, then $G^{(\alpha)} = (G^{(\beta)})'$ and the result is then a consequence of Lemma 4.2(v). Assume that α is a limit ordinal, and let f be an automorphism of G, and $x \in V(G^{(\alpha)})$. For every $\beta < \alpha$, $x \in V(G^{(\beta)})$ and $G^{(\beta)}$ is invariant. Thus $f(x) \in V(G^{(\beta)})$. Hence $f(x) \in \bigcap_{\beta < \alpha} V(G^{(\beta)}) = V(G^{(\alpha)})$. Therefore $G^{(\alpha)}$ is invariant under f.

(v) is a consequence of the convexity of every prefiber of a quasi-median graph.

4.5. We will now show that $G^{(\infty)}$ is a Hamming graph whenever G has no isometric rays. If $\{a, b\}$ is an edge of a subgraph H of G, we denote by $K_{H}(a, b)$ the maximal simplex included in H and containing a and b. When no confusion is likely we write $K(a, b)$ for $K_{G}(a, b)$.

If G as well as H are quasi-median, the simplex $K_{H}(a, b)$ is necessarily unique because of the lack of $K_{1,1,2}$ as an induced subgraph.
If H is a prefiber of G, then $K_H(a, b) = K(a, b)$, since a simplex is included in any prefiber which contains one of its edges, and a prefiber is a A-closed convex set.

The subgraph induced by $\bigcup \{ U_{xy} : x, y \in K(a, b) \}$ and $x \neq y$ is isomorphic to $U_{ab} \times K(a, b)$ since, if x and y are neighbors of a and b then $x \equiv_G y$ by the lack of $K_{1,1,2}$, and since the prefibers U_{xy} and U_{ab} are isomorphic (see (3.2.3)); furthermore $d_G(z, U_{ba}) = d_G(z, W_{ba}) = 1$ for every $z \in \bigcup \{ U_{xy} : x, y \in K(a, b) \}$.

4.6. Lemma. Let G be a quasi-median graph without isometric rays. If G is not a Hamming graph, then there exists an edge $\{a, b\}$ of G such that

(i) $U_{ab} \neq W_{ba}$,
(ii) $U_{xb} = W_{xb}$ for all $x \in V(K(a, b)) \setminus \{b\}$.

Proof. Note that the finite case of this lemma was already proved by Wilkeit in [17, Proposition 7.2]. Let $\{x, y\}$ be an edge of G. We distinguish two cases.

Case 1: $U_{zx} = W_{zx}$ for every vertex z of $K(x, y)$. We construct inductively two sequences $(x_n)_{n \geq 0}$ and $(G_n)_{n \geq 0}$ as follows. Let $x_0 := x$, $x_1 := y$, $G_0 := G$ and $G_1 := U_{xx} = U_{x_1x_0}$ (i.e., $G_0 = G_1 \times K(x_1, x_0)$). Suppose that x_n and G_n have already been constructed for some $n \geq 1$. If $U_{xx_n} \cap G_n = W_{xx_n} \cap G_n$ for every vertex z of $K(x_n, x_{n-1})$, and if $|U_{xx_n} \cap G_n| > 1$, take $x_{n+1} \in V(x_n; G) \cap U_{xx_n} \cap G_n$ and $G_{n+1} := U_{xx_{n+1}} \cap G_n$ (G_{n+1} is a relative prefiber of G_n, thus a prefiber of G). Then one has $G_n = G_{n+1} \times K(x_{n+1}, x_n)$.

The path $\langle x_0, \ldots, x_n \rangle$ of length n is isometric by Proposition 2.3, thus, since G has no isometric rays, the sequence $(x_n)_{n \geq 0}$ must be finite and there are two possibilities:

- $U_{xx} \cap G_n = \langle x_n \rangle$ for some $n \geq 0$. Then $G = K(x_0, x_1) \times \cdots \times K(x_{n-1}, x_n)$. Thus G is a Hamming graph;
- $U_{xx_n} \cap G_n \neq W_{xx_n} \cap G_n$ for some vertex z of $K(x_n, x_{n-1})$. We are then in the second case with $x = z$ and $y = x_{n-1}$.

Case 2: $U_{zx} \neq W_{zx}$ for some vertex z of $K(x, y)$. If z is unique we can take $a := x$ and $b := z$. Otherwise there are at least two different vertices z and z' of $K(x, y)$ such that $U_{zx} \neq W_{zx}$ and $U_{z'x} \neq W_{z'x}$. Note that $U_{zz} \neq W_{zz}$ and $U_{z'z} \neq W_{z'z}$ since $K(x, y) = K(z, z')$. Construct by induction three sequences $(x_n)_{n \geq 0}$, $(z_n)_{n \geq 0}$ and $(t_n)_{n \geq 0}$ of vertices and a sequence $(P_n)_{n \geq 0}$ of x_0x_n-geodesics, as follows (cf. Fig. 1).

Let $x_0 := z_0 := z$, $t_0 := z'$, and $P_0 := \langle x_0 \rangle$. Clearly $U_{tz_0} \neq W_{tz_0}$. Let $n \geq 0$. Suppose that x_n, z_n, t_n and P_n have already been constructed so that $U_{tz_n} \neq W_{tz_n}$ and $P_{n-1} \subseteq P_n$. Define $x_{n+1} := \text{proj}_{t_n}(x_n)$, and z_{n+1} as any vertex of U_{tz_n} having a neighbor t in $W_{tz_n} - U_{tz_n}$. One has once again two possibilities:

- if $U_{zx_{n+1}} = W_{zx_{n+1}}$ for all vertices z of $K(t, z_{n+1}) \setminus \{z_{n+1}\}$, then take $a := t$ and $b := z_{n+1}$;
- otherwise $U_{tz_{n+1}} \neq W_{tz_{n+1}}$ for some vertex t_{n+1} of $K(t, z_{n+1}) \setminus \{z_{n+1}\}$. Then, by Proposition 2.3, there is an x_0x_{n+1}-geodesic P_{n+1} of length greater than n such that $P_{n+1} \supseteq P_n$; and this implies that the sequence $(x_n)_{n \geq 0}$ must be finite since G has no isometric rays. \[\square\]
The prefiber W_{ba} we got in the preceding lemma is of maximal type and is strictly included in G, hence:

4.7. Corollary. Let G be a quasi-median graph without isometric rays. If G is not a Hamming graph, then $G' \neq G$.

We can then prove the first of our main results:

4.8. Theorem. Every quasi-median graph without isometric rays contains a Hamming graph which is invariant under any automorphism.

Proof. Since $G^{(x)}$ is quasi-median for every ordinal x, $G^{(\infty)}$ is then a nonempty Hamming graph by Corollary 4.7, which is invariant by Lemma 4.4(iv).

4.9. Remarks. This invariant Hamming graph must be the cartesian product of finitely many simplices since it has no isometric rays.

Note that a quasi-median graph may contain rays but no isometric rays. Tardif in [16] exhibited a median graph, thus a quasi-median graph, with this property. For rayless quasi-median graphs Theorem 4.8 enables to get the following fixpoint-like result.

4.10. Theorem. Every contraction of a rayless quasi-median graph stabilizes a finite Hamming graph.

To prove it we need several lemmas and the following concept.
4.11. **Definition.** A set A of vertices of a graph G is *fragmented* if there is a finite subset S of $V(G)$ such that the elements of A are pairwise separated by S (i.e., every path joining two distinct elements of A contains a vertex in S).

4.12. **Lemma** (Polat [9, Theorem 3.12]). A graph G is rayless if and only if every infinite set of vertices of G contains an infinite fragmented subset.

4.13. **Lemma.** Let G be a rayless graph. If all intervals of G are finite, then the convex hull of any finite set of vertices of G is finite.

Proof. Let F be a finite subset of $V(G)$. Its convex hull is $\hat{F} = \bigcup_{n \geq 0} F_n$ where $F_0 := F$ and $F_{n+1} := \bigcup_{x, y \in F_n} I_G(x, y)$. Clearly every F_n is finite since so are all intervals of G. Suppose that \hat{F} is infinite. By Lemma 4.12 \hat{F} contains an infinite fragmented subset H. Then there is a finite set S that pairwise separates the elements of H, and that is minimal with respect to inclusion. W.l.o.g. we can suppose that $S \subseteq F$, otherwise we would consider the set $F' := F \cup S$ and take its convex closure.

Since H is infinite and $S \subseteq F$, there exist infinitely many components of $G - F$ that contain an element of H. Moreover, among those, there are infinitely many of them that are disjoint from F_1, since F_1 is finite. Let C be one of them, and let n be the least integer greater than 1 with $C \cap F_n \neq \emptyset$. Such an integer exists since $C \cap H \neq \emptyset$ and $H \subseteq \hat{F} = \bigcup_{n \geq 0} F_n$. Let $x \in C \cap F_n$. Then, by the definition of F_n, x belongs to an a-b-geodesic P for some $a, b \in F_{n-1}$. As $C \cap F_{n-1} = \emptyset$, the endpoints a and b of P do not belong to C. Hence, since C is a component of $G - F$, the ax-subpath (resp. bx-subpath) of P contains at least a vertex of F, say a' (resp. b'). Then the $a'b'$-subpath P' of P is an $a'b'$-geodesic that contains x and whose endpoints a' and b' belong to $F = F_0$. Therefore $x \in V(P') \subseteq V(F_1)$, contrary to the hypothesis $C \cap F_1 = \emptyset$. \[\square\]

4.14. **Lemma** (Polat [10, Corollary 2.4]). Every contraction of a rayless connected graph stabilizes a finite nonempty subgraph.

4.15. **Proof of Theorem 4.10.** Let f be a contraction of a rayless quasi-median graph G. By the preceding lemma there is a finite nonempty subset F of $V(G)$ such that $f(F) = F$. Moreover any interval of a quasi-median graph is convex [7] and induces a median graph (Theorem 3.3); but the convex hull of a finite set of vertices of a median graph is finite [16]. Consequently every interval of a quasi-median graph is finite. Therefore, by Lemma 4.13, the convex hull $co(F)$ of F is finite, and also quasi-median by convexity.

Let $F_0 := co(F)$ and, for every nonnegative integer n, let $F_{n+1} := f(F_n) \cap F_0$. Obviously $F_{n+1} \subseteq F_n$ for all n. Finally let $F := \bigcap_{n \geq 0} F_n$. This is clearly a finite subgraph of G containing F such that $f(F) = F$. We will prove that it is quasi-median using the characterization 3.3(iii). First F, being an induced subgraph of F_0 which is quasi-median, cannot contain $K_{1,1,2}$ or $K_{2,3}$ as induced subgraphs. Now let u, v, w be three...
vertices of \(\tilde{F} \) with \(d_G(u, v) = d_G(u, w) = k > 1 \) and \(d_G(v, w) = 1 \); since \(F_0 \) is quasi-median and finite, the set \(X \) of common neighbors \(x \in F_0 \) of \(v \) and \(w \) with \(d_G(u, x) = k - 1 \) is nonempty and finite. We will show that \(X \cap \tilde{F} \neq \emptyset \).

As \(\tilde{F} \) is finite, there is \(p \geq 0 \) with \(f^p(z) = z \) for every \(z \) in \(\tilde{F} \). Thus \(d_G(f^{mp}(u), f^{mp}(v)) = d_G(u, v) = k \) for all \(m \geq 0 \), and more generally \(d_G(f^n(u), f^n(v)) = k \) for all \(n \geq 0 \). Let \(x \in X \). We claim that \(f^n(x) \in F_n \) for all \(n \geq 0 \). This is trivial if \(n = 0 \). Suppose that \(f^n(x) \in F_n \) for some \(n \geq 0 \). Note that, since \(\langle u, x, v \rangle \) is a geodesic and since \(f \) is a nonexpansive map with \(d_G(f^{n+1}(u), f^{n+1}(v)) = k \), \(\langle f^{n+1}(u), f^{n+1}(x), f^{n+1}(v) \rangle \) is also a geodesic. Hence \(f^{n+1}(x) \in F_0 \) by the convexity of this set. Thus \(f^{n+1}(x) \in f(F_n) \cap F_0 = F_{n+1} \). Therefore \(f^{mp}(x) \in X \cap F_{mp} \) for all \(m \geq 0 \). This implies that \(X \cap F_n \neq \emptyset \) for all \(n \geq 0 \). Thus \(X \cap \tilde{F} \neq \emptyset \) by the finiteness of \(X \).

Consequently \(F \) has the triangle property. One can prove analogously that \(\tilde{F} \) has the quadrangle property too.

\(\tilde{F} \) is then a finite and quasi-median induced subgraph of \(G \) for which \(\tilde{f} \), restriction of \(f \) to \(\tilde{F} \), is an automorphism. Therefore, by Theorem 4.8, there exists a finite Hamming graph in \(\tilde{F} \) that is invariant under \(\tilde{f} \), thus under \(f \).

Tardif proved in [16] that every contraction of a median graph without isometric rays stabilizes a finite hypercube. Thus in that result the absence of isometric ray is a sufficient restriction. We conjecture that this weaker constraint is also sufficient for quasi-median graphs, i.e., that the statement of Theorem 4.10 holds true if one replaces ‘rayless graph’ by ‘graph without isometric rays and infinite simplices’.

Acknowledgements

We want to thank C. Tardif for pointing out an error in the proof of the last theorem.

References