

Available online at www.sciencedirect.com

brought to you by 🐰 COI provided by Elsevier - Publisher Connec

J. Math. Anal. Appl. 339 (2008) 1253-1263

www.elsevier.com/locate/jmaa

ANALYSIS AND Applications

Journal of MATHEMATICAL

Quasi-Suslin weak duals

J.C. Ferrando^{a,2}, J. Kąkol^{b,1,2}, M. López Pellicer^{c,2}, S.A. Saxon^{d,*}

^a Centro de Investigación Operativa, Universidad M. Hernández, E-03202 Elche (Alicante), Spain

^b Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland

^c Departamento de Matemática Aplicada y IMPA, Universidad Politécnica, E-46022 Valencia, Spain

^d Department of Mathematics, University of Florida, PO Box 11805, Gainesville, FL 32611-8105, USA

Received 4 July 2006

Available online 7 August 2007

Submitted by Richard M. Aron

Abstract

Cascales, Kąkol, and Saxon (CKS) ushered Kaplansky and Valdivia into the grand setting of Cascales/Orihuela spaces E by proving:

(K) If *E* is countably tight, then so is the weak space $(E, \sigma(E, E'))$, and (V) $(E, \sigma(E, E'))$ is countably tight iff weak dual $(E', \sigma(E', E))$ is *K*-analytic.

The ensuing flow of quasi-Suslin weak duals that are not *K*-analytic, *a la* Valdivia's example, continues here, where we argue that locally convex spaces *E* with quasi-Suslin weak duals are (K, V)'s best setting: largest by far, optimal *vis-a-vis* Valdivia. The vaunted CKS setting proves *not* larger, in fact, than Kaplansky's. We refine and exploit the quasi-LB strong dual interplay. © 2007 Elsevier Inc. All rights reserved.

Keywords: K-analytic; Quasi-Suslin; Quasi-LB; Quasibarrelled

1. Introduction

Originally, (K) and (V) had little in common. Kaplansky set (K) in the class \mathcal{K} of locally convex spaces (lcs) whose weak duals are countable unions of compact sets [9, §24, 1(6)]. Decades later, Valdivia set (V) in the class \mathcal{V} of strong duals of Fréchet spaces, omitting tightness [16, p. 66, (24)]. The common setting by CKS [2] in the Cascales– Orihuela class \mathfrak{G} was a major advance measured by the bounty of $\mathfrak{G} \setminus (\mathcal{K} \cup \mathcal{V})$, which contains, e.g., all nonmetrizable (*LF*)-spaces that are not (*DF*)-spaces.

Corresponding author.

E-mail addresses: jc.ferrando@umh.es (J.C. Ferrando), kakol@math.amu.edu.pl (J. Kąkol), mlopezpe@mat.upv.es (M. López Pellicer), saxon@math.ufl.edu (S.A. Saxon).

¹ Supported by the Komitet Badań Naukowych (State Committee for Scientific Research), Poland, Grant No. 2P03A 022 25.

² Supported with project MTM2005-01182, co-financed by European Community (Feder projects).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.07.081

CKS [2, Problem 2] asked "Are there nice classes other than \mathfrak{G} for which (K) holds?" We answer in Theorem 1 with the class \mathfrak{M} of lcs having quasi-Suslin weak duals. Valdivia evokes \mathfrak{M} and CKS essentially proves the theorem. But we must prove that \mathfrak{M} is nice (large) enough to make Theorem 1 appreciably better than its predecessors. It is known that $\mathfrak{M} \supset \mathcal{K}, \mathcal{V}$. To prove that $\mathfrak{M} \supset \mathfrak{G}$ (Corollary 1), we must solve [6, Problem 2]. To see that \mathfrak{M} is substantially larger than \mathfrak{G} , we introduce a nice class \mathfrak{M}_{ac} and show that $\mathfrak{M} \supseteq \mathfrak{M}_{ac} \supseteq \mathfrak{G}$.

Note that \mathfrak{G} is not as nice as an understated Kaplansky might suggest (see [2]): our Example 1, a quasibarrelled space in $\mathcal{K} \setminus \mathfrak{G}$, shows that the *original* Kaplansky is *not* corollary to CKS, even if we consider only Mackey spaces.

From the start (1987) it was known that $\mathfrak{M} \neq \mathfrak{G}$: any nonseparable Hilbert space is in \mathfrak{G} , \mathcal{K} , \mathfrak{M} , but with its weak topology is no longer in \mathfrak{G} , since the weak unit ball is compact and nonmetrizable. Indeed, \mathfrak{G} lacks the duality invariance of \mathcal{K} and \mathfrak{M} and excludes most weak topologies (Proposition 2).

We refine the study [6] of \mathfrak{G} . Although \mathfrak{M} and \mathfrak{G} share subspace stability, \mathfrak{G} is also stable under the taking of countable products and countable direct sums [4, Propositions 4, 5], and \mathfrak{M} likely is not: the argument in [16, p. 55, (4)] fails. We show (Corollary 2) that *uncountable* products are never in \mathfrak{M} , hence never in \mathfrak{G} . The proof is via the folkloric Lemma 1, which is vital to Example 3, which illustrates superiority of \mathfrak{M} in Theorem 1, which is the main theme of the paper.

2. The best class theorem

Here we review some definitions and prove Theorem 1. We designate and define class \mathfrak{M} , the theorem's new setting, and argue that \mathfrak{M} has the following merits:

- It incorporates into Theorem 1 all previous versions of (K) and (V).
- It restores Kaplansky's duality invariance.
- It is optimal for Valdivia's purpose.

Let us consider completely regular Hausdorff topologies only, equip the positive integers \mathbb{N} with the discrete topology, $\mathbb{N}^{\mathbb{N}}$ with the product topology, and for $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$, write $\alpha \leq \beta$ to mean that $\alpha(i) \leq \beta(i)$ for each $i \in \mathbb{N}$.

A lcs *E* belongs to Cascales and Orihuela's *class* \mathfrak{G} [4] if there is a family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of subsets of its topological dual *E'* (called a \mathfrak{G} -representation) such that:

(G1) $E' = \bigcup \{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\};$

(G2) $A_{\alpha} \subset A_{\beta}$ when $\alpha \leq \beta$;

(G3) in each A_{α} , sequences are equicontinuous.

To indicate (G2), we may simply say that $\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is an *ordered family*. A \mathfrak{G} -representation is *closed* if every A_{α} is $\sigma(E', E)$ -closed; *bornivorous* if every $\beta(E', E)$ -bounded set is contained in some A_{α} . A \mathfrak{G} -base for a lcs E is a base $\{U_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of neighborhoods of the origin in E such that $U_{\beta} \subset U_{\alpha}$ for $\alpha \leq \beta$ in $\mathbb{N}^{\mathbb{N}}$. A large class with good stability properties, \mathfrak{G} contains all (LF)-spaces, (DF)-spaces, etc., and is a preferred setting for several classic theorems.

In the prequel [6, Example 3] we proved that some lcs admit \mathfrak{G} -bases, and thus closed \mathfrak{G} -representations, but no bornivorous \mathfrak{G} -representations. This solves [6, Problem 1]. Yes, we confess, we overlooked our own answer! As penance we offer Corollary 1, the sacrificial solution to [6, Problem 2] that began this paper.

A topological space X is *quasi-Suslin* (respectively, *K-analytic*) if it admits a *quasi-Suslin* (respectively, *K-analytic*) map, i.e., a map T from $\mathbb{N}^{\mathbb{N}}$ into the family of all subsets (respectively, all compact subsets) of X such that

(K1) $\bigcup \{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\} = X$; and

(K2) if a sequence $\{\alpha_n\}_n$ in $\mathbb{N}^{\mathbb{N}}$ converges to α and $x_n \in T(\alpha_n)$ for all $n \in \mathbb{N}$, then $\{x_n\}_n$ has an adherent point in X contained in $T(\alpha)$.

Variant definitions [16] are reconciled by Rogers [13].

1255

(†)

If X is covered by a sequence $\{C_n\}_n$ of (countably compact) [compact] sets, then X is (quasi-Suslin) [K-analytic]: a (quasi-Suslin) [K-analytic] map T is given by writing $T(\alpha) = C_{\alpha(1)}$ ($\alpha \in \mathbb{N}^{\mathbb{N}}$). Let \mathfrak{M} (respectively, \mathfrak{N}) denote the class of lcs E with quasi-Suslin (respectively, K-analytic) weak dual $(E', \sigma(E', E))$. Clearly,

$$\mathfrak{M} \supset \mathfrak{N} \supset \mathcal{K}.$$

Valdivia [16, pp. 65–67] explicitly proved that $\mathfrak{M} \supset \mathcal{V}$ and $\mathfrak{M} \setminus \mathfrak{N} \neq \emptyset$.

Let us say that a lcs *E* is an *absolutely convex quasi-Suslin* (acqS) space if it admits an acqS *map*, i.e., a quasi-Suslin map *T* for which $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is an ordered family of absolutely convex sets. Let \mathfrak{M}_{ac} denote the class of lcs whose weak duals are acqS. Obviously, $\mathfrak{M} \supset \mathfrak{M}_{ac}$.

A topological space X is: *countably tight* if, for each subset A, each closure point of A is a closure point of a countable (possibly finite) subset of A; *realcompact* if X is homeomorphic to a closed subset of a product of reals; Lindelöf if every open covering admits a countable subcovering. A lcs E is, respectively, $\langle quasi \rangle barrelled$ or ℓ^{∞} - $\langle quasi \rangle barrelled$ if every $\sigma(E', E)$ -bounded $\langle \beta(E', E)$ -bounded \rangle set or sequence is equicontinuous [12]. A lcs E has property (C) or (qC) if, respectively, the $\sigma(E', E)$ - or $\beta(E', E)$ -bounded sequences have adherent points in $(E', \sigma(E', E))$ [10]. Clearly, $\langle quasi \rangle barrelled \Rightarrow \ell^{\infty}$ - $\langle quasi \rangle barrelled \Rightarrow property (\langle q \rangle C)$.

Let us reset [2, 4.6–4.8] and [6, Theorem 1] from \mathfrak{G} to \mathfrak{M} and \mathfrak{M}_{ac} in a single theorem. Happily, \mathfrak{M} , \mathfrak{M}_{ac} and properties (C), (qC) match the duality invariance of conditions (a), (b), ..., quite unlike \mathfrak{G} in [2, 4.6], whose proof we follow. We anticipate independently proved results from later sections. Orihuela [11, Example (C) and Theorem 5] proved that each $E \in \mathfrak{M}$ is weakly angelic, so that in $(E, \sigma(E, E'))$, the closure of any relatively countably compact set A is countably tight. The conclusion holds for arbitrary A if and only if E is also in \mathfrak{N} (Theorem 1(\mathbb{A})).

Theorem 1. Consider the following conditions for a lcs E.

- (a) The weak space $(E, \sigma(E, E'))$ is countably tight.
- (b) (E, \mathcal{T}) is countably tight for some $\langle E, E' \rangle$ -compatible topology \mathcal{T} .
- (c) The weak dual $(E', \sigma(E', E))$ is realcompact.
- (d) $E \in \mathfrak{N}$; *i.e.*, the weak dual $(E', \sigma(E', E))$ is *K*-analytic.
- (e) The finite product $(E', \sigma(E', E))^n$ is Lindelöf for every n = 1, 2, ...
- (f) The weak dual $(E', \sigma(E', E))$ is Lindelöf.
- (α) The Mackey space $(E, \mu(E, E'))$ is countably tight.
- (β) The Mackey space ($E, \mu(E, E')$) is barrelled.
- (β') The Mackey space $(E, \mu(E, E'))$ is quasibarrelled.

(A) If $E \in \mathfrak{M}$, then (a), ..., (f) are equivalent.

- (B) If $E \in \mathfrak{M}$ and E has property (C), then (a), ..., (f), (α), (β) are equivalent.
- (C) If $E \in \mathfrak{M}_{ac}$ and E has property (qC), then (a), ..., (f), (α), (β') are equivalent.

Proof. (A) Assume $E \in \mathfrak{M}$.

(a) \Rightarrow (b). Obvious.

(b) \Rightarrow (c). A simple application of [16, p. 137, (6)]; see [2, 4.6].

(c) \Rightarrow (d). Theorem 2 covers $(E', \sigma(E', E))$ with an ordered family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of countably compact sets, and we proceed exactly as in [2, 4.6].

(d) \Rightarrow (e). From [16, (9), (12) on pp. 61, 62].

Just as in [2, 4.6], we see that (e) \Rightarrow (a) from Arkhangel'skii's theorem, and note that [(e) \Rightarrow (f)] and [(f) \Rightarrow (c)] are trivial and well known, respectively. Thus (a), ..., (f) are equivalent.

(B) In the next three arguments assume E also has property (C).

(c) \Rightarrow (β). Any absolutely convex $\sigma(E', E)$ -closed and bounded set is weakly countably compact by property (C), and then weakly compact by (c), hence equicontinuous under the Mackey topology.

 $(\beta) \Rightarrow (\alpha)$. Theorem 6 implies $(E, \mu(E, E')) \in \mathfrak{G}$, and (quasi)barrelled spaces in \mathfrak{G} are countably tight by either [2, 4.8] or Corollary 5.

 $(\alpha) \Rightarrow$ (b). Obvious.

(\mathbb{C}) Assume that $E \in \mathfrak{M}_{ac}$ and has property (qC).

(c) \Rightarrow (β'). Every $\beta(E', E)$ -bounded set A is contained in the bipolar $A^{\circ\circ}$ which, by properties (qC) and (c), is equicontinuous under the Mackey topology.

 $(\beta') \Rightarrow (\alpha)$. Apply [Corollary 5, (iii) \Rightarrow (vii)].

 $(\alpha) \Rightarrow (b)$. Always. \Box

Part (\mathbb{A}) is [2, 4.6], the full CKS version of (V), but with \mathfrak{M} replacing \mathfrak{G} , and with (b) added and CKS's (ii), (iii) dropped for brevity's sake. Because \mathfrak{M} is substantially larger than \mathfrak{G} in theory and practice (Remark 1 and Example 3), part (\mathbb{A}) substantially improves [2, 4.6].

The same is true for [2, 4.7], i.e., for (K). Indeed, [*E* is countably tight] \Rightarrow (b) \Rightarrow (a), if $E \in \mathfrak{M}$, which proves (K) directly from (A) in the larger setting \mathfrak{M} .

Next, consider [2, 4.8], which says that

 $[E \in \mathfrak{G} \text{ and } E \text{ is quasibarrelled}] \Rightarrow [E \text{ is countably tight}].$

Since the hypothesis implies $[E \in \mathfrak{M}_{ac}, E$ has property (qC), and $E = (E, \mu(E, E'))]$, the conclusion is immediate from $[(\mathbb{C}), (\beta') \Rightarrow (\alpha)]$.

Our [6, Theorem 1(I)] says that if *E* has a bornivorous \mathfrak{G} -representation, equiv., if $E \in \mathfrak{G}$ and *E* is ℓ^{∞} quasibarrelled (see Theorem 9), then [(a) $\Leftrightarrow (\alpha) \Leftrightarrow (\beta')$]. This is immediate from (\mathbb{C}).

Two-thirds of [6, Theorem 1(II)] says that if E has a bornivorous \mathfrak{G} -representation, then

[*E* is quasibarrelled] \Leftrightarrow [*E* is countably tight].

This follows from $[(\mathbb{C}), (\beta') \Leftrightarrow (\alpha)]$, since countably tight ℓ^{∞} -quasibarrelled spaces are Mackey [6, Proposition 4]. One featured application is [6, Corollary 4]: A Fréchet space *F* is distinguished if and only if its strong dual *E* is countably tight.

Comparison with the originals is interesting, as well. Valdivia's version of (V) [16, p. 66, (24)] says precisely that

If $E \in \mathcal{V}$, then $[(d) \Leftrightarrow (\beta)]$. (VvV)

Members of \mathcal{V} are ℓ^{∞} -barrelled, hence have property (C), so that (VvV) is corollary to $[(\mathbb{B}), (d) \Leftrightarrow (\beta)]$. Moreover, the latter result, and not the former, applies to Examples 2, 3, which add to our bounty [6, Section 5] of spaces in $\mathfrak{M} \setminus \mathfrak{N}$. Part (\mathbb{A}) optimally suits Valdivia's need to find lcs in $\mathfrak{M} \setminus \mathfrak{N}$, since it tests *all* members of \mathfrak{M} for membership in \mathfrak{N} , not just those in \mathcal{V} .

Finally, Kaplansky's version of (K) [9, §24, 1(6)] says precisely that

If
$$E \in \mathcal{K}$$
, then (a) holds. (KvK)

From (†), [(A), (d) \Rightarrow (a)] simply says that *if* $E \in \mathfrak{N}$, *then* (a) *holds*, which, again by (†), betters (KvK), and considerably so, for $\mathfrak{N} \setminus \mathcal{K}$ contains, e.g., all nonmetrizable (*LF*)-spaces. (Barrelled spaces in \mathcal{K} are metrizable.)

But (K), itself, does not imply (KvK), because $\mathcal{K} \setminus \mathfrak{G} \neq \emptyset$ (Example 1); also, because \mathcal{K} contains uncountably tight lcs such as G of [6, Proposition 8].

3. Supporting results

Cascales [1, Theorem 2, Proposition 1] proved the following two facts.

Theorem 2 (*Cascales*). *X* is a quasi-Suslin space if and only if *X* admits a quasi-Suslin map *T* such that $T(\alpha) \subset T(\beta)$ for all $\alpha \leq \beta$.

Thus every quasi-Suslin space is covered by an ordered family $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of sets which, by (K2), are countably compact.

We say that $A \subset X$ is *full* if it contains all adherent points in X of sequences in A.

Theorem 3 (*Cascales*). *X* is quasi-Suslin if it is covered by an ordered family $\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of countably compact full subsets.

For X to be quasi-Suslin, then, it suffices that it be covered by an ordered family of compact sets. For K-analyticity, the condition is necessary, but not sufficient (Talagrand; also, see [6, Example 13]). For E to be in \mathfrak{M} , it suffices that E admit a closed \mathfrak{G} -representation, since closed sets are full.

Surprisingly, non-closed &-representations also suffice.

Theorem 4. If (E, τ) is in class \mathfrak{G} , its weak dual $(E', \sigma(E', E))$ admits an acqS map T such that $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a \mathfrak{G} -representation for (E, τ) .

Proof. Let $\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfy (G1)–(G3). For each $\alpha \in \mathbb{N}^{\mathbb{N}}$ define

 $B_{\alpha} := \bigcup \{ S^{\circ \circ} : S \text{ is a countable subset of } A_{\alpha} \}.$

Since countable unions of countable sets are countable, each sequence R in B_{α} is in the bipolar $S^{\circ\circ}$ of a sequence S in A_{α} that is equicontinuous by (G3). By the Alaoglu–Bourbaki and bipolar theorems, the equicontinuous absolutely convex $S^{\circ\circ}$ is $\sigma(E', E)$ -compact. Clearly, then, B_{α} is absolutely convex and R has weak adherent points, all of which are in $S^{\circ\circ} \subset B_{\alpha}$; i.e., B_{α} is absolutely convex and weakly countably compact and full. Moreover, $\{B_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfies (G1)–(G3).

For each $\alpha \in \mathbb{N}^{\mathbb{N}}$ and each $n \in \mathbb{N}$, define

$$B_{\alpha|n} := \bigcup \{ B_{\beta} \colon \beta \in \mathbb{N}^{\mathbb{N}} \text{ with } \beta(i) = \alpha(i) \text{ for } 1 \leq i \leq n \}.$$

For each $\alpha \in \mathbb{N}^{\mathbb{N}}$, define

$$T(\alpha) := \bigcap_{n \in \mathbb{N}} B_{\alpha|n}$$

By Cascales' proof of the above Theorem 3, as found in [1, Proposition 1], the map T is quasi-Suslin for $(E', \sigma(E', E))$.

Easily, each $B_{\alpha|n}$, hence $T(\alpha)$, is absolutely convex. Since $\{B_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfies (G1), (G2), so does $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$. Thus T is acqS.

Suppose $\{u_n\}_n$ is a sequence in $T(\alpha)$. For each $n \in \mathbb{N}$, then, $u_n \in B_{\alpha|n}$, which means that

$$u_n \in B_{\beta_n}$$

for some $\beta_n \in \mathbb{N}^{\mathbb{N}}$ with $\beta_n(i) = \alpha(i)$ for $1 \leq i \leq n$. Define $\mu \in \mathbb{N}^{\mathbb{N}}$ such that, for each $i \in \mathbb{N}$,

 $\mu(i) := \max \{ \beta_n(i) \colon n \in \mathbb{N} \}.$

Note that $\mu(i)$ is well defined, the maximum of at most *i* integers. Clearly $\beta_n \leq \mu$, thus $B_{\beta_n} \subset B_{\mu}$, and thus $u_n \in B_{\mu}$ for all $n \in \mathbb{N}$. By (G3), $\{u_n\}_n$ is equicontinuous. Therefore $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ also satisfies (G3). \Box

A stronger topology on E' is useful in [5, Theorem 3].

Theorem 5. The previous Theorem holds when $\sigma(E', E)$ is replaced by τ_p , the topology of uniform convergence on the precompact sets in (E, τ) .

Proof. Since τ_p and $\sigma(E', E)$ coincide on equicontinuous sets [9, p. 264], one merely repeats the previous proof.

Corollary 1. $\mathfrak{M} \supset \mathfrak{M}_{ac} \supset \mathfrak{G}$.

Remark 1. If $E \in \mathfrak{G}$ with dim $(E') > \aleph_0$, then $(E, \sigma(E, E')) \in \mathfrak{M}_{ac} \setminus \mathfrak{G}$ by Proposition 2, below. Example 3 is a Mackey space in $\mathfrak{M}_{ac} \setminus \mathfrak{G}$, and Example 1 is in $\mathfrak{M} \setminus \mathfrak{M}_{ac}$. Thus $\mathfrak{M} \supseteq \mathfrak{M}_{ac} \supseteq \mathfrak{G}$, making \mathfrak{M} substantially larger than \mathfrak{G} .

Lemma 1. If an uncountable set H is covered by an ordered family $\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$, then $H \cap A_{\mu}$ is infinite for some $\mu \in \mathbb{N}^{\mathbb{N}}$.

Proof. For all $p, n_1, \ldots, n_p \in \mathbb{N}$, set

$$B_{n_1...n_p} := \bigcup \{ A_\beta \colon \beta \in \mathbb{N}^{\mathbb{N}} \text{ with } \beta(i) = n_i \text{ for } 1 \leq i \leq p \}.$$

Since $\{B_k: k \in \mathbb{N}\}$ covers H, there exists $n_1 \in \mathbb{N}$ for which $B_{n_1} \cap H$ is uncountable. Next, note that the countable collection $\{B_{n_1k}: k \in \mathbb{N}\}$ covers B_{n_1} and hence covers the ucountable set $B_{n_1} \cap H$. Therefore there is some $n_2 \in \mathbb{N}$ such that $B_{n_1n_2} \cap H$ is uncountable. Continuing, we fix $(n_1, n_2, \ldots) \in \mathbb{N}^{\mathbb{N}}$ such that $B_{n_1\dots n_p} \cap H$ is uncountable for $p = 1, 2, \ldots$. We select a sequence $\{u_p\}_p$ of distinct points with u_p in $B_{n_1\dots n_p} \cap H$ and find corresponding $\beta_p \in \mathbb{N}^{\mathbb{N}}$ such that, for each $p \in \mathbb{N}$,

$$u_p \in A_{\beta_p}$$
 and $\beta_p(i) = n_i$ for $1 \leq i \leq p$.

As in the proof of Theorem 4, we find an upper bound μ for $\{\beta_p: p \in \mathbb{N}\}$, so that $\{u_p\}_p \subset A_\mu$. \Box

Proposition 1. For *E* a linear space with uncountable dimension, neither $(E, \sigma(E, E^*))$ nor $(E^*, \sigma(E^*, E))$ is quasi-Suslin.

Proof. *E* contains a linearly independent set $\{x_{\kappa}: \kappa \in \omega_1\}$, where ω_1 is the set of all countable ordinals. For each $\kappa \in \omega_1$ with $\kappa \ge \omega_0$, select a bijection $N_{\kappa}: \{\iota \in \omega_1: \iota \le \kappa\} \to \mathbb{N}$. Independence ensures that, for each $\iota \in \omega_1$, there exists $u_{\iota} \in E^*$ defined however we please at each x_{κ} . We merely insist that

$$\langle x_{\kappa}, u_{\iota} \rangle = N_{\kappa}(\iota) \text{ when } \kappa \ge \max(\omega_0, \iota).$$

If *S* is any countably infinite subset of ω_1 and $\kappa := \sup S$, then

$$\left\{ \langle x_{\kappa}, u_{\iota} \rangle = N_{\kappa}(\iota) \colon \iota \in S \right\}$$

is a set of distinct points necessarily unbounded in \mathbb{N} . Therefore $H := \{u_{\iota}: \iota \in \omega_1\}$ consists of \aleph_1 distinct points, and no infinite subset of H is $\sigma(E^*, E)$ -bounded, thus none is contained in a $\sigma(E^*, E)$ -countably compact set. In light of Theorem 2 and Lemma 1, then, $(E^*, \sigma(E^*, E))$ cannot be quasi-Suslin.

We may instead insist on the transpose, so that

 $\langle x_{\iota}, u_{\kappa} \rangle = N_{\kappa}(\iota) \text{ when } \kappa \ge \max(\omega_0, \iota),$

which similarly shows that $(E, \sigma(E, E^*))$ is not quasi-Suslin. \Box

In particular, if dim(*E*) > \aleph_0 , then the lcs(*E*, $\sigma(E, E^*)$) is not in \mathfrak{M} , hence not in \mathfrak{N} , even though its weak dual is obviously realcompact, which shows that [(c) \Rightarrow (d)] fails if the hypothesis of (\mathbb{A}) is omitted.

Proposition 2. *If E is a* lcs *with* dim $(E') > \aleph_0$, *then* $(E, \sigma(E, E')) \notin \mathfrak{G}$.

Proof. Otherwise, the completion $(E'^*, \sigma(E'^*, E'))$ of $(E, \sigma(E, E'))$ is also in \mathfrak{G} , thus in \mathfrak{M} ; i.e., $(E', \sigma(E', E'^*))$ is quasi-Suslin, contradicting Proposition 1. \Box

Clearly, \mathfrak{M} , \mathfrak{M}_{ac} , \mathfrak{N} do not preserve completions. Perhaps \mathfrak{M} and \mathfrak{M}_{ac} also deny finite products, as do countably compact sets, a fact overlooked in [16, pp. 55, 56]. Even \mathfrak{G} rejects *uncountable* products (see [4, Propositions 4, 5]).

Corollary 2. Let $\{E_i: i \in I\}$ be an uncountable collection of nonzero lcs. Neither the direct sum $S := \bigoplus_{i \in I} E_i$ nor the product $P := \prod_{i \in I} E_i$ is in class \mathfrak{M} .

Proof. Each E_i contains a 1-dimensional subspace L_i . Therefore *S* contains the subspace $M := \bigoplus_{i \in I} L_i$ and *P* contains the subspace $N := \prod_{i \in I} L_i$. The weak duals of *M* and *N* are, respectively, $(M^*, \sigma(M^*, M))$ and, by identification, $(M, \sigma(M, M^*))$. By Proposition 1, neither *M* nor *N* is in \mathfrak{M} . By subspace stability, neither *S* nor *P* is in \mathfrak{M} . \Box

Theorem 6. For an ℓ^{∞} -barrelled space E we have: $E \in \mathfrak{G} \Leftrightarrow E \in \mathfrak{M}$.

Proof. Corollary 1 proves one half. When $E \in \mathfrak{M}$, Theorem 2 provides a family of weakly countably compact sets $A_{\alpha} := T(\alpha)$ satisfying (G1), (G2). But, in any lcs, countably compact sets are bounded. Hence A_{α} is weakly bounded, and equicontinuity of its sequences follows from the fact that E is ℓ^{∞} -barrelled; i.e., (G3) holds. \Box

Proposition 3. An ℓ^{∞} -quasibarrelled space *E* is in \mathfrak{G} if its strong dual is quasi-Suslin.

Proof. In the previous proof, replace "weak(ly)" and " ℓ^{∞} -barrelled" with "strong(ly)" and " ℓ^{∞} -quasibarrelled."

Example 2 denies the converse, Corollary 6 affirms it for $E = C_p(X)$. By $C_c(X)$ and $C_p(X)$ we mean the continuous function space C(X) endowed with the compact-open and pointwise topologies, respectively.

The ℓ^{∞} -quasibarrelled spaces in \mathfrak{G} later prove to be the class \mathcal{F} defined by Cascales and Orihuela in terms of the strong dual [4, p. 371]. For the moment, we characterize \mathcal{F} in terms of the weak dual.

Theorem 7. For an ℓ^{∞} -quasibarrelled space E we have: $E \in \mathfrak{G} \Leftrightarrow E \in \mathfrak{M}_{ac}$.

Proof. Theorem 4 proves one part. If $E \in \mathfrak{M}_{ac}$, then $(E', \sigma(E', E))$ is covered by an ordered family $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of absolutely convex countably compact sets. The Banach–Mackey theorem ensures that $T(\alpha)$ is strongly bounded, so that, by ℓ^{∞} -quasibarrelledness, every sequence in $T(\alpha)$ is equicontinuous; i.e., $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfies (G1)–(G3). \Box

4. Quasi-LB strong duals

A *Banach disk* in a lcs *F* is an absolutely convex set *B*, bounded in *F*, whose generated normed space F_B is complete. Valdivia [15] defined a *quasi-LB representation* of a lcs *F* to be a family $\{B_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of Banach disks in *F* satisfying

(Q1) $F = \bigcup \{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ and (Q2) $B_{\alpha} \subset B_{\beta}$ when $\alpha \leq \beta$.

If F admits a quasi-LB representation, it is a quasi-LB space.

Theorem 8. Strong duals of spaces in \mathfrak{M}_{ac} are quasi-LB spaces. In fact, if T is any acqS map for the weak dual $(E', \sigma(E', E))$, then $\{T(\alpha): \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a quasi-LB representation of the strong dual $(E', \beta(E', E))$.

Proof. Each $T(\alpha)$ is weakly countably compact, hence a weak Banach disk by [12, 3.2.5]. By the Banach–Mackey theorem, $T(\alpha)$ is also strongly bounded. \Box

To the list in [8] we may add

Corollary 3. $C_c(X)$ is a df-space if and only if it belongs to class \mathfrak{G} and its strong dual is a Baire space.

Proof. If $C_c(X)$ is a df-space, then by a theorem of Buchwalter and Schmets, $C_c(X)$ is ℓ^{∞} -quasibarrelled (see [8, Corollary 3.3]), and in class \mathfrak{G} (see [6, Example 2(D')]). Moreover, the strong dual is a Fréchet space [8], and thus Baire.

Conversely, if $C_c(X)$ is in \mathfrak{G} and the strong dual is Baire, it is also quasi-LB (Theorem 8), therefore Fréchet [15, Corollary 1.6], which implies that $C_c(X)$ is a df-space [8]. \Box

Bornivorous \mathfrak{G} -representations are central to [6]. We proved there that the class of spaces for which they exist lies somewhere between the quasibarrelled spaces in \mathfrak{G} and the ℓ^{∞} -quasibarrelled spaces in \mathfrak{G} . We now show that it is simply the latter class.

Theorem 9. *The following five assertions are equivalent for a* lcs *E*.

- (1) E admits a bornivorous &-representation.
- (2) *E* is ℓ^{∞} -quasibarrelled and $E \in \mathfrak{G}$.
- (3) *E* is ℓ^{∞} -quasibarrelled and $E \in \mathfrak{M}_{ac}$.
- (4) *E* is ℓ^{∞} -quasibarrelled and its strong dual *E'* is a quasi-*LB* space.
- (5) *E* is ℓ^{∞} -quasibarrelled and its strong bidual *E*["] admits a \mathfrak{G} -base.

Proof. Throughout the argument it is assumed that $\beta(E', E)$ is the topology on E', and that E'' is the dual of E' endowed with the $\beta(E'', E')$ topology.

- $(1) \Rightarrow (2)$. This follows from the definitions.
- (2) \Leftrightarrow (3). Theorem 7.
- $(3) \Rightarrow (4)$. Theorem 8.

 $(4) \Rightarrow (5)$. Since E' is a quasi-LB space, Valdivia's [15, Proposition 2.2] provides a quasi-LB representation $\{B_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ with the additional property that every Banach disk in E' is contained in some B_{α} . Since E' is sequentially complete [12, 8.2.15(ii)], every bounded set in E' is contained in a Banach disk, and thus is contained in some B_{α} ; i.e., $\{B_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental family of bounded sets in E'. With U_{α} set equal to the polar of B_{α} in E'', it is now clear that $\{U_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a \mathfrak{G} -base for E''.

 $(5) \Rightarrow (1)$. Let $\{U_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -base for E'', and let A_{α} be the polar of U_{α} in E'. Clearly, (G1) and (G2) hold. Since U_{α} is a neighborhood of zero in the strong bidual, A_{α} is bounded in the strong dual. Therefore sequences in A_{α} are equicontinuous, since E is ℓ^{∞} -quasibarrelled; i.e., (G3) holds. Since every neighborhood of zero in E'' contains some U_{α} , every bounded set in E' is contained in some A_{α} . Therefore $\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a bornivorous \mathfrak{G} -representation. \Box

Theorem 9 adds nicely to the material in [6, Proposition 2, Examples 1, 2]. Example 2 shows that (1)–(5) \Rightarrow [*E* is ℓ^{∞} -quasibarrelled and its *strong* dual is quasi-Suslin], although the reverse implication holds by Proposition 3.

In the next three corollaries we progress from ℓ^{∞} -quasibarrelled spaces to quasibarrelled spaces to those of the form $C_p(X)$ and note an increasingly rich array of properties that characterize membership in \mathfrak{G} , including, in the last case, having a quasi-Suslin *strong* dual.

Corollary 4. For an ℓ^{∞} -quasibarrelled space *E*, the following are equivalent.

- (i) $E \in \mathfrak{G}$.
- (ii) E admits a bornivorous &-representation.
- (iii) $E \in \mathfrak{M}_{ac}$.
- (iv) The strong dual E' is a quasi-LB space.
- (v) The strong bidual E'' admits a \mathfrak{G} -base.

Corollary 5. For E quasibarrelled, (i)–(v) are equivalent to these conditions:

- (vi) E admits a G-base.
- (vii) $E \in \mathfrak{M}_{ac}$ and E is countably tight.
- **Proof.** When *E* is quasibarrelled, it is embedded in the strong bidual E'', so that $(v) \Rightarrow (vi)$. Suppose *E* admits a \mathfrak{G} -base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. For each $\alpha \in \mathbb{N}^{\mathbb{N}}$ and each $n \in \mathbb{N}$, define

$$D_{\alpha|n} := \bigcap \{ U_{\beta}^{\circ\circ} : \beta(i) = \alpha(i) \text{ for } 1 \leq i \leq n \}.$$

Let α be given and suppose there is a bounded set B with $B \not\subset nD_{\alpha|n}$ for n = 1, 2, ... Choose $x_n \in B$ such that $n^{-1}x_n \notin D_{\alpha|n}$, choose $\beta^{(n)} \in \mathbb{N}^{\mathbb{N}}$ such that $\beta^{(n)}(i) = \alpha(i)$ for $1 \leq i \leq n$ and $n^{-1}x_n \notin U_{\beta^{(n)}}$, and set $\mu = \sup_n \beta^{(n)}$ as before. Clearly, the 0-neighborhood U_{μ} misses the null sequence $\{n^{-1}x_n\}_n$, a contradiction. Therefore $V_{\alpha} := \bigcup_n D_{\alpha|n}$ absorbs all bounded sets B. In fact, the bornivorous barrel \overline{V}_{α} is a neighborhood of the origin satisfying

$$\overline{V}_{\alpha} \subset (1+\varepsilon)V_{\alpha} \subset (1+\varepsilon)U_{\alpha}^{\circ\circ}$$

for all $\varepsilon > 0$, according to [12, 8.2.27] and the definition of V_{α} . Hence $\{V_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a base of neighborhoods of the origin. If *A* is a set whose closure contains the origin, then from each of the countably many distinct nonempty intersections $D_{\alpha|n} \cap A$ choose one point. The aggregate is a countable subset of *A* whose closure contains the origin, thereby proving *E* is countably tight. Clearly, $\{U_{\alpha}^{\circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ witnesses that $E \in \mathfrak{G} \subset \mathfrak{M}_{ac}$. Therefore (vi) \Rightarrow (vii).

Trivially, (vii) \Rightarrow (iii). \Box

Remark 2. The countably tight argument refines earlier versions in [2,3,6]. The two corollaries efficiently contain three-fourths of, and significantly improve one-half of [3, Lemma 2]. Several times over, they conveniently describe the two Cascales/Orihuela classes \mathcal{F} and \mathcal{F}' [4, Corollary 2.2(i), (ii)]; most simply, as the quasibarrelled and ℓ^{∞} -quasibarrelled spaces in \mathfrak{G} , respectively.

Corollary 6. For $E = C_p(X)$, (i)–(vii) are equivalent to (viii)–(xi), below.

- (viii) X is countable.
- (ix) $C_p(X)$ is metrizable.
- (x) The strong dual E' of $C_p(X)$ is quasi-Suslin.
- (xi) The strong dual E' of $C_p(X)$ is K-analytic.

Proof. Since $C_p(X)$ is always quasibarrelled [7], (i)–(vii) are equivalent for all choices of the Tichonov space X. Obviously, (viii) \Rightarrow (ix) \Rightarrow (i). We have (i) \Rightarrow (viii) via Proposition 2, since $E = C_p(X)$ has its weak topology and $\dim(E') = |X|$. Thus (i)–(ix) are equivalent.

(viii) \Rightarrow (xi). If $|X| = \dim(E') \leq \aleph_0$, then E' is covered by an increasing sequence $\{C_n\}_n$ of finite-dimensional compact sets.

 $(xi) \Rightarrow (x)$. Obvious.

 $(x) \Rightarrow (i)$. Proposition 3 applies. \Box

Example 1. Let X be the union of an increasing sequence $\{K_n\}_n$ of uncountable compact sets, and put $E := C_p(X)$.

- $E \notin \mathfrak{G}$, because \neg (viii) $\Rightarrow \neg$ (i).
- *E* is quasibarrelled [7], therefore Mackey.
- $E \in \mathcal{K} \setminus \mathfrak{M}_{ac}$. From Theorem 7, $E \notin \mathfrak{M}_{ac}$. Identifying points of X with their evaluation maps, we may think of X as a Hamel basis for E'. Since points of E are continuous, X inherits a coarser topology from $(E', \sigma(E', E))$. Hence K_n is $\sigma(E', E)$ -compact. Define

$$C_n := \left\{ \sum_{i=1}^n a_i x_i \in E' \colon \sum_{i=1}^n |a_i| \leq n \text{ and } x_1, \dots, x_n \in K_n \right\}.$$

By continuity of vector operations in $(E', \sigma(E', E))$, it is clear that C_n is a continuous image of the product $\Lambda_n \times K_n^n$ for an appropriate compact set Λ_n in \mathbb{R}^n , and thus C_n is $\sigma(E', E)$ -compact. As $\{K_n\}_n$ covers X, so $\{C_n\}_n$ covers E'; i.e., $E \in \mathcal{K}$.

• $E \in \mathfrak{M} \setminus \mathfrak{M}_{ac}$, because $\mathfrak{M} \supset \mathfrak{N} \supset \mathcal{K}$.

5. Two examples in $\mathfrak{M} \setminus \mathfrak{N}$

Let Λ be an indexing set of size \mathfrak{c} (the continuum). The Banach space $\ell^1(\Lambda)$ has unit ball B, say, and strong dual $\ell^{\infty}(\Lambda)$ with unit ball $U = B^{\circ} = I^{\Lambda}$, where $I := \{c: c \text{ is a scalar with } |c| \leq 1\}$. We define

 $\ell_{cs}^{\infty}(\Lambda) := \left\{ u \in \ell^{\infty}(\Lambda) : u \text{ vanishes outside a countable subset of } \Lambda \right\}$ and set $U_{cs} := U \cap \ell_{cs}^{\infty}(\Lambda)$.

Example 2. Let G be the linear space $\ell^1(\Lambda)$, let $G' = \ell^{\infty}_{cs}(\Lambda)$, and give G the Mackey topology $\mu(G, G')$.

• *G* and $\ell^1(\Lambda)$ have the same bounded sets, since $c_0(\Lambda) \subset G'$.

- The strong dual of G is a Banach space with unit ball U_{cs} .
- G admits a bornivorous \mathfrak{G} -representation. Indeed, $A_{\alpha} := \alpha(1) \cdot U_{cs}$ easily satisfies the definition.
- The strong dual of G is not quasi-Suslin. It is metrizable and not separable, hence not Lindelöf, hence not quasi-Suslin [16, (12), (26), pp. 62, 67].
- $G \in \mathfrak{M}_{ac}$. By Corollary 1. Or, more directly, $T(\alpha) := \alpha(1) \cdot U_{cs}$ defines an acqS map T for the weak dual.
- G ∉ 𝔑. Since G has property (C) and is not quasibarrelled (G ≠ ℓ¹(A)), apply Theorem 1, part (𝔅) or (𝔅). Or use [(𝔅), (d) ⇒ (a)]: The origin is in the weak closure of the set A of all canonical unit vectors in G, and this is not the case for any countable subset of A.

Adding an idea from [14], we shall obtain a Mackey space F in $\mathfrak{M}_{ac} \setminus (\mathfrak{N} \cup \mathfrak{G})$ whose analysis, therefore, can only rest on Theorem 1, not its predecessor [2, 4.6].

Since $\ell^1(\Lambda)$ is a Banach space, every weakly bounded sequence in the dual $\ell^{\infty}(\Lambda)$ has a weak adherent point. Observe that the relative $\sigma(\ell^{\infty}(\Lambda), \ell^1(\Lambda))$ -topology coincides with the product topology on $U = I^{\Lambda}$; from now on, this will be the assumed topology on U. Let W denote the set of all countably infinite subsets of ω_1 . Note that $|W| = \mathfrak{c}$. We use W to index a partition $\{\Lambda_W : W \in W\}$ of Λ into \mathfrak{c} pairwise disjoint sets with each $|\Lambda_W| = \mathfrak{c}$. In choosing a set $\{u_{\theta} : \theta \in \omega_1\} \subset U$, we may demand, independently for each of the disjoint sets Λ_W , that the countable set of restrictions $\{u_{\theta}|_{\Lambda_W} : \theta \in W\}$ be any arbitrary countable subset of the uncountable product I^{Λ_W} . Since separability is \mathfrak{c} -multiplicative, then, there exists $\{u_{\theta} \in U : \theta \in \omega_1\}$ such that, for each $W \in W$,

the countable set of restrictions $\{u_{\theta}|_{A_W}: \theta \in W\}$ is dense in the uncountable separable product I^{A_W} . (*)

Let H_0 denote the linear span of $U_{cs} \bigcup \{u_{\theta}: \theta \in \omega_1\}$. One easily sees that $|H_0| = \mathfrak{c}$. Inducting on the well-ordered set ω_1 , we choose a family $\{H_{\theta}: \theta \in \omega_1\}$ of linear subspaces of $\ell^{\infty}(\Lambda)$ such that

each H_{θ} has size \mathfrak{c} and contains at least one weak adherent point fevery $\sigma(\ell^{\infty}(\Lambda), \ell^{1}(\Lambda))$ -bounded sequence

in H_{ι} , for all $\iota < \theta$.

Indeed, suppose $0 < \delta \in \omega_1$ and we are given $\{H_{\theta}: 0 \le \theta < \delta\}$ having the desired property, with H_0 fixed as above. The set $S := \bigcup \{H_{\theta}: 0 \le \theta < \delta\}$ is a countable union of sets of size \mathfrak{c} , and hence has size \mathfrak{c} , as does, then, the collection of all sequences from *S*. We constitute *R* by choosing a weak adherent point in $\ell^{\infty}(\Lambda)$ for each weakly bounded sequence in *S*, and let H_{δ} be the linear span of *R* to complete the induction.

By considering constant sequences from H_{ι} , it is clear that $H_{\iota} \subset H_{\theta}$ whenever $\iota < \theta$, and therefore

 $H := \bigcup \{ H_{\theta} \colon \theta \in \omega_1 \}$

is a linear subspace of $\ell^{\infty}(\Lambda)$ of size $\mathfrak{c} \cdot \aleph_1 = \mathfrak{c}$.

Example 3. Let F be the linear space $\ell^1(\Lambda)$, set F' = H, and give F the Mackey topology $\mu(F, F')$.

- (I) *F* and the Banach space $\ell^1(\Lambda)$ have the same bounded sets, since $F' \supset c_0(\Lambda)$.
- (II) The strong dual of F is a Banach space with unit ball $V := U \cap F'$. Indeed,
- (III) *V* is weakly countably compact. Any sequence in *V* is contained in some H_{θ} , and has a weak adherent point in $H_{\theta+1} \cap V$.
- (IV) The strong dual of F is a quasi-LB space. Take $B_{\alpha} = \alpha(1) \cdot V$.
- (V) $F \in \mathfrak{M}_{ac}$. Take $T(\alpha) = \alpha(1) \cdot V$.
- (VI) *F* is a Mackey space with property (C). The Banach–Steinhaus theorem puts each weakly bounded sequence in F' inside a positive multiple nV of V, and each nV is weakly countably compact (III).
- (VII) $F \notin \mathfrak{G}$. Otherwise, Lemma 1 provides $W \in \mathcal{W}$ such that $\{u_{\theta}: \theta \in W\}$ is equicontinuous, and thus its bipolar K is a closed subset of the compact U and of the weak dual F'. Let x be an arbitrary element of I^{A_W} . By (\star) , there is a net \mathcal{N} in $\{u_{\theta}: \theta \in W\}$ whose net \mathcal{R} of restrictions to A_W converges to x. As does every net in K, the net \mathcal{N} has an adherent point $u^{(x)}$ in K. Moreover, since \mathcal{R} converges to x, it is clear that $u^{(x)}|_{A_W} = x$. We have shown that $\{u|_{A_W}: u \in K\} = I^{A_W}$, a set of size $2^{\mathfrak{c}}$. Therefore

$$2^{\mathfrak{c}} \leqslant |K| \leqslant |F'| = \mathfrak{c},$$

a contradiction.

(VIII) *F* is not ℓ^{∞} -quasibarrelled. Theorem 7.

(IX) $F \notin \mathfrak{N}$. Otherwise, F is barrelled (Theorem 1), which contradicts (VIII).

Note that Examples 1–3 and Theorems 1, 4, 6 prove classes \mathfrak{M} , \mathfrak{M}_{ac} , \mathfrak{G} , \mathfrak{N} are distinct, yet identical within the purview of barrelled spaces.

References

- [1] B. Cascales, On K-analytic locally convex spaces, Arch. Math. 49 (1987) 232-244.
- [2] B. Cascales, J. Kąkol, S.A. Saxon, Weight of precompact subsets and tightness, J. Math. Anal. Appl. 269 (2002) 500-518.
- [3] B. Cascales, J. Kąkol, S.A. Saxon, Metrizability vs. Fréchet–Urysohn property, Proc. Amer. Math. Soc. 131 (2003) 3623–3631.
- [4] B. Cascales, J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987) 365-381.
- [5] J.C. Ferrando, J. Kakol, M. López Pellicer, Necessary and sufficient conditions for precompact sets to be metrisable, Bull. Austral. Math. Soc. 74 (2006) 7–13.
- [6] J.C. Ferrando, J. Kąkol, M. López Pellicer, S.A. Saxon, Tightness and distinguished Fréchet spaces, J. Math. Anal. Appl. 324 (2006) 862–881.
- [7] H. Jarchow, Locally Convex Spaces, B.G. Teubner, 1981.
- [8] J. Kąkol, S.A. Saxon, A.R. Todd, Pseudocompact spaces X and df-spaces $C_c(X)$, Proc. Amer. Math. Soc. 132 (2004) 1703–1712.
- [9] G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York, 1969.
- [10] M. Levin, S. Saxon, A note on the inheritance of properties of locally convex spaces by subspaces of countable codimension, Proc. Amer. Math. Soc. 29 (1971) 97–102.
- [11] J. Orihuela, Pointwise compactness in spaces of continuous functions, J. London Math. Soc. (2) 36 (1987) 143-152.
- [12] P. Pérez Carreras, J. Bonet, Barrelled Locally Convex Spaces, Math. Stud., vol. 131, North-Holland, Amsterdam, 1987.
- [13] C.A. Rogers, Analytic sets in Hausdorff spaces, Mathematika 11 (1968) 1-8.
- [14] S.A. Saxon, L.M. Sánchez Ruiz, Mackey weak barrelledness, Proc. Amer. Math. Soc. 126 (1998) 3279–3282.
- [15] M. Valdivia, Quasi-LB-spaces, J. London Math. Soc. 35 (1987) 149-168.
- [16] M. Valdivia, Topics in Locally Convex Spaces, Math. Stud., vol. 67, North-Holland, Amsterdam, 1982.