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Abstract

In this paper we study continuous piecewise linear polynomial approximations to the generalized Stokes
equations in the velocity–stress–pressure 2rst-order system formulation by using a cell vertex 2nite volume=
least-squares scheme. This method is composed of a direct cell vertex 2nite volume discretization step and
an algebraic least-squares step, where the least-squares procedure is applied after the discretization process is
accomplished. This combined approach has the advantages of both 2nite volume and least-squares approaches.
An error estimate in the H 1 product norm for continuous piecewise linear approximating functions is derived. It
is shown that, with respect to the order of approximation for H 2-regular exact solutions, the method exhibits
an optimal rate of convergence in the H 1 norm for all unknowns, velocity, stress, and pressure. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Continuous piecewise linear polynomials may be the most natural and simple approximating func-
tions in the numerical schemes, especially for large-scale computations, for solving partial di<erential
equations. This paper deals with the problem of continuous piecewise linear polynomial approxima-
tions to the generalized Stokes problem. We consider the generalized Stokes equations supplemented
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with the homogeneous Dirichlet velocity boundary condition in the velocity–stress–pressure 2rst-order
system formulation by using a cell vertex 2nite volume=least-squares numerical scheme. It is shown
that, with respect to the order of approximation for H 2-regular exact solutions, this combined scheme
exhibits an optimal rate of convergence in the H 1 norm for all unknowns (velocity, stress, and
pressure).

This study is motivated by some signi2cant observations from the numerical experiments of
least-squares 2nite element methods [8]. Over the past decade, least-squares 2nite element meth-
ods have become increasingly popular for the approximate solution of 2rst-order systems of partial
di<erential equations; a small sample of the recent literature is given in [3]. The speci2c features of
the least-squares 2nite element approach that make it potentially advantageous compared with, e.g.,
mixed 2nite element methods [4,15] are as follows:

• It leads to a minimization problem; it is not subject to the Ladyzhenskaya–Babuska–Brezzi con-
dition (cf. [4,15]).

• A single continuous piecewise polynomial space can be used for the approximation of all un-
knowns.

• The resulting linear system is symmetric and positive de2nite with condition number O(h−2),
where h denotes the mesh size.

• The value of the homogeneous least-squares functional of the approximate solution provides a
practical and sharp a posteriori error estimator at no additional cost.

Although the least-squares 2nite element approach exhibits many advantageous features, the practical-
ity of this approach is still not fully documented due to lack of study of the behavior of the approach
in the presence of diHculties arising from, for example, the application to convection-dominated prob-
lems, the need to conserve some global physical quantity such as mass (mass conservation is one
of major concerns of users of computational Iuid dynamic algorithms). The latter issue is the main
subject of the investigation [8]. In [8], it was reported that least-squares 2nite element methods do a
very poor job at conserving mass, and then a remedy was proposed. Unfortunately, this remedy loses
the positive de2niteness resulting from the least-squares formulation and is led to inde2nite problems
similar to those that arise in mixed 2nite element methods. See [8] for the numerical experiments.

On the other hand, in recent years 2nite volume methods have been widely and successfully
used for the numerical solution of conservation laws (cf. [7,10–12,17–19]). The popularity of this
class of schemes stems from their structural simplicity and the presence of conservation properties
inherited from the di<erential equations. Depending on the location of the points in the computational
cells where the unknowns are kept, the most common 2nite volume methods can be classi2ed as
cell vertex, cell center, or vertex-based methods. In [7], a combined cell vertex 2nite volume=least
squares for 2rst-order elliptic systems without the “reaction” term in the plane has been proposed
and analyzed. This method is composed of a cell vertex 2nite volume discretization step and an
algebraic least-squares step, where the least-squares procedure is applied after the discretization
process is e<ected. Hence, this combined approach has the advantages of both 2nite volume and
least-squares 2nite element methods.

The purpose of this paper is to extend this methodology to the generalized stationary Stokes
equations with the homogeneous Dirichlet velocity boundary condition in two- and three-dimensional
bounded domains. Aiming to develop stabilized methods for viscoelastic Iows, people usually 2rst
treat Newtonian Iows formulated in terms of velocity, stress, and pressure. In the recent literature,
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one can 2nd a number of methods proposed to solve the equations in terms of these variables
(see, e.g. [1,2,6,9,16,20,21]). Among the possible velocity–stress–pressure Stokes formulations, we
follow here the one introduced in the work of Cai et al. [6]. Introducing the velocity Iux variable
(we call stress here), de2ned as the vector of gradients of the Stokes velocities, we can recast the
generalized Stokes problem into an equivalent 2rst-order system formulation. The combined cell
vertex 2nite volume=least-squares method is then applied and analyzed. It can be shown that the
combined approach achieves an optimal rate of convergence in the H 1 product norm for piecewise
linear approximating functions for all unknowns, velocity, stress, and pressure.

The paper is organized as follows. In Section 2, we brieIy review the velocity–stress–pressure
formulation for the generalized Stokes equations and an a priori estimate for the 2rst-order system.
In Section 3, the cell vertex 2nite volume=least-squares scheme is described. In Section 4, an error
estimate in the H 1 product norm for continuous piecewise linear approximating functions is derived.
In Section 5, an H 1-equivalent a posteriori error estimator is discussed. Finally, in Section 6, some
concluding remarks are given.

2. Problem formulation

Let � be a bounded, open, and connected domain in Rd; d = 2 or 3, with Lipschitz boundary
@�. Let f = (f1; : : : ; fd)T ∈ [L2(�)]d be a given vector function representing the density of body
force. The stationary incompressible Navier–Stokes equations supplemented with the homogeneous
Dirichlet velocity boundary condition can be posed as [14,15]

−�Ou + (u · ∇)u + ∇p = f in �;

∇ · u = 0 in �;

u = 0 on @�;

(2.1)

where the symbols 
, ∇, and ∇· stand for the Laplacian, gradient, and divergence operators, re-
spectively; u = (u1; : : : ; ud)T is the velocity; p is the pressure satisfying the zero mean condition∫
� p d� = 0; 0¡�6 1 is the viscosity constant. All of variables are assumed to be nondimension-

alized.
According to the theory of Brezzi–Rappaz–Raviart [5], the formulation and analysis of discretiza-

tion methods for the Stokes problem are critical for the understanding of similar methods for the
Navier–Stokes problem. Thus, we restrict our attention to the Stokes Iows. Neglecting the nonlinear
term in the above system, we have

−�Ou + ∇p = f in �;

∇ · u = 0 in �;

u = 0 on @�:

(2.2)

Further, for the sake of generality, we consider the following generalized Stokes equations supple-
mented with the homogeneous Dirichlet velocity boundary condition

−�Ou + ∇p = f in �;

∇ · u + �p = g in �;

u = 0 on @�;

(2.3)
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where g∈H 1(�) is a given scalar function with
∫
� g d� = 0; � is a 2xed nonnegative constant

bounded uniformly in �. When � = 0; g = 0 we have the Stokes problem, and the case of �¿ 0
arises from the linear elasticity problem. See Remark 2.1 below for the details.

When d = 2, we de2ne the curl operator “∇×” for smooth two-component vector function v =
(v1; v2)T by

∇× v = @1v2 − @2v1:

When d = 3, we de2ne the curl of a smooth three-component vector function w = (w1; w2; w3)T by

∇× w = (@2w3 − @3w2; @3w1 − @1w3; @1w2 − @2w1)T:

Now, introducing the auxiliary d× d new independent variables

U = ∇uT = (∇u1; : : : ;∇ud)

called stresses here, we can transform (2.3) into the following so-called velocity–stress–pressure
2rst-order system formulation

−�(∇ ·U)T + ∇p = f in �;

U −∇uT = 0 in �;

∇ · u + �p = g in �;

u = 0 on @�:

(2.4)

Note that the de2nition of U, the “continuity” equation ∇ · u + �p = g in �, and the Dirichlet
boundary condition u = 0 on @� imply the respective properties

∇×U = 0 in �;

trU + �p = g in �;

n ×U = 0 on @�;

(2.5)

where the trace operator “tr” is de2ned as trU = U11 + · · · + Udd. Thus, an equivalent extended
system for (2.4) is given by

−�(∇ ·U)T + ∇p = f in �;

U −∇uT = 0 in �;

∇ · u + �p = g in �;

∇trU + �∇p = ∇g in �;

∇×U = 0 in �;

u = 0 on @�;

n ×U = 0 on @�:

(2.6)

Refer to Table 1 for the numbers of unknowns, equations, and boundary conditions of problem (2.6)
in di<erent dimensions.
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Table 1
Generalized Stokes system (2.6)

Dim. No. of unknowns No. of equations No. of boundary conditions

d2 + d + 1 3d2 − d + 1 2d2 − 2d
d = 2 7 11 4
d = 3 13 25 12

Remark 2.1. An important aspect of the pressure-perturbed form of the generalized Stokes problem
(2.3) is that it allows our results to apply to the Dirichlet problem for the linear elasticity equations.
In particular; consider the following Dirichlet problem

−�Ou − (� + �)∇(∇ · u) = f in �;

u = 0 on @�;

where u now represents displacements and �; � are the positive LamQe constants. This system can
be recast in form (2.3) by introducing the arti2cial pressure variable

p = − �
2�

(∇ · u)

by rescaling f ; and by letting g = 0; � = 2�=�; and � = �=(2(� + �)).

We use the standard notation and de2nition for the Sobolev spaces Hm(�), m¿ 0, with inner
products (·; ·)m;� and norms ‖ · ‖m;�. As usual, L2(�) = H 0(�), and L2

0(�) denotes the subspace
of L2(�) that consists of square integrable functions with zero mean. Let [Hm(�)]d denote the
corresponding product spaces, and the inner products and norms will be still denoted by (·; ·)m;� and
‖ · ‖m;�, respectively, when there is no chance of confusion. We will be interested in the following
three function spaces with respect to the unknown functions, velocity u, stress U, and pressure p

V = {v : v∈ [H 1(�)]d and v = 0 on @�}; (2.7)

S = {V : V∈ [H 1(�)]d
2
and n × V = 0 on @�}; (2.8)

Q = {q: q∈H 1(�) and (q; 1)0;� = 0}: (2.9)

The existence, uniqueness and smoothness of the weak solution (u; p) to problem (2.3) are
well-known. Problem (2.3) has a unique weak solution (u; p)∈ [H 1

0 (�)]d×L2
0(�) for any f ∈ [L2(�)]d

and g∈H 1(�) (see, e.g., [4,14,15]). Moreover, if the boundary @� of the domain � is C1;1, then
the following H 2 regularity result holds

�‖u‖2;� + ‖p‖1;�6C(‖f‖0;� + �‖g‖1;�): (2.10)

When the domain � is a convex polyhedron, a priori estimate (2.10) is still valid when �¿ 0. For
the case � = 0, one has only a weaker estimate (cf. [6]). Throughout this paper, in any estimate or
inequality, the quantity C with or without subscripts will denote a generic positive constant always
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independent of � and the mesh parameter h, which will be introduced later, and need not be the
same constant in di<erent occurrences.

We conclude this section with the following a priori estimate for the 2rst-order system (2.6) that
will play a crucial role in the error estimates for our continuous piecewise linear approximation
scheme. The proof can be found in [6]. De2ne the notation

K((v;V; q))≡‖ − �(∇ · V)T + ∇q‖2
0;� + �2‖V −∇vT‖2

0;�

+ �2‖∇ · v + �q‖2
0;� + �2‖∇trV + �∇q‖2

0;� + �2‖∇ × V‖2
0;�:

Theorem 2.1. Assume that the domain � is a bounded convex polyhedron or has C1;1 boundary
@� and that regularity estimate (2.10) holds. Then there exists a positive constant C independent
of � such that for any v∈V; V∈S; and q∈Q; we have

1
C

(�2‖v‖2
1;� + �2‖V‖2

1;� + ‖q‖2
1;�)6K((v;V; q))

6C(�2‖v‖2
1;� + �2‖V‖2

1;� + ‖q‖2
1;�): (2.11)

Throughout the remainder of this paper, we will always assume that the conditions in Theorem
2.1 hold such that we have the a priori estimate (2.11).

3. The cell vertex !nite volume scheme

For 2nite volume approximation, there are generally a pair of discretizations of the domain �, a
primal partition and a dual partition. However, these two discretizations of � are the same in the
cell vertex 2nite volume computations. Let {Th} be a family of regular triangulations of the domain
� (cf. [4,13]), where

Th = {�h
k : k = 1; : : : ; T (h)};

h=max{diam(�h
k): �h

k ∈Th} denotes the grid size, and T (h) denotes the number of triangles (cells).
Let �h

k denote the area (volume) of the cell �h
k , i.e., �h

k = |�h
k |. Let P1(�h

k) denote the space of linear
polynomials de2ned over �h

k . De2ne the following three continuous piecewise linear approximating
function spaces with respect to the triangulation Th,

Vh = {vh ∈V: vh|�h
k
∈ [P1(�h

k)]d for k = 1; : : : ; T (h)}; (3.1)

Sh = {Vh ∈S: Vh|�h
k
∈ [P1(�h

k)]d
2

for k = 1; : : : ; T (h)}; (3.2)

Qh = {qh ∈Q: qh|�h
k
∈P1(�h

k) for k = 1; : : : ; T (h)}: (3.3)

Then the 2nite-dimensional function spaces Vh, Sh, and Qh satisfy the following approximation
properties: for any v∈V ∩ [H 2(�)]d, V∈S ∩ [H 2(�)]d

2
, and q∈Q ∩ H 2(�), there exist vh ∈Vh,
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Vh ∈Sh, and qh ∈Qh such that

‖v − vh‖1;�6Ch1‖v‖2;�; (3.4)

‖V − Vh‖1;�6Ch1‖V‖2;�; (3.5)

‖q− qh‖1;�6Ch1‖q‖2;�; (3.6)

where C is a positive constant independent of v, V, q, and h.
We now present the cell vertex 2nite volume=least-squares algorithm. The 2rst step is to form an

overdetermined linear system of equations
Determine (uh;Uh; ph)∈Vh ×Sh × Qh such that

1√
�h
k

∫
�h

k

(−�(∇ ·Uh)T + ∇ph) d� =
1√
�h
k

∫
�h

k

f d�;

�√
�h
k

∫
�h

k

(Uh −∇uT
h ) d� = 0;

�√
�h
k

∫
�h

k

(∇ · uh + �ph) d� =
�√
�h
k

∫
�h

k

g d�;

�√
�h
k

∫
�h

k

(∇trUh + �∇ph) d� =
�√
�h
k

∫
�h

k

∇g d�;

�√
�h
k

∫
�h

k

(∇×Uh) d� = 0 (3.7)

for k = 1; : : : ; T (h).
The equations in (3.7) are simply formed by integrating the components of the di<erential system

(2.6) over each of the cells �h
k ∈Th. The scaling factors 1=

√
�h
k and �=

√
�h
k are not important in

practice, but are convenient for the analysis below.
The system (3.7) consists of (3d2 − d + 1)T (h) equations; the number of unknowns is less than

(d2 + d + 1)N (h), where N (h) is the number of vertices in the triangulation Th. Since, in general,
T (h) is roughly equal to 2N (h) for d = 2 and N (h) for d = 3, we see that (3d2 − d + 1)T (h) is
larger than (d2 + d + 1)N (h). Thus, once a basis for Vh × Sh × Qh is chosen, problem (3.7) is
equivalent to an overdetermined linear system of the form

AX = R: (3.8)

The second step is to solve the overdetermined problem by the following algebraic least-squares
problem
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Determine X̃ such that

‖AX̃ − R‖2 = min
X

‖AX − R‖2 (3.9)

or equivalently, to solve the normal equations
Determine X̃ such that

ATAX̃ = ATR: (3.10)

4. Error analysis

This section is devoted to the error analysis for the continuous piecewise linear approximate
solution (uh;Uh; ph) obtained by solving problem (3.10). We will show that problem (3.10) is
equivalent to a minimization problem on which the error analysis is based. To this end, for each
2xed triangulation Th, we de2ne the Th-dependent nonlinear functional Fh : V×S×Q → R by

Fh((v;V; q); f ; g) =
T (h)∑
k=1



∣∣∣∣∣∣

1√
�h
k

∫
�h

k

(−�(∇ · V)T + ∇q− f) d�

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
�√
�h
k

∫
�h

k

(V −∇vT − 0) d�

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
�√
�h
k

∫
�h

k

(∇ · v + �q− g) d�

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
�√
�h
k

∫
�h

k

(∇trV + �∇q−∇g) d�

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
�√
�h
k

∫
�h

k

(∇× V − 0) d�

∣∣∣∣∣∣
2
 :

Note that if (u;U; p)∈V×S× Q is the exact solution of problem (2.6), then

Fh((u;U; p); f ; g) = 0:

Therefore, we de2ne an approximate solution (ũh; Ũh; p̃h) to (u;U; p) as follows:
Determine (ũh; Ũh; p̃h)∈Vh ×Sh × Qh such that

Fh((ũh; Ũh; p̃h); f ; g) = min
(vh;Vh;qh)∈Vh×Sh×Qh

Fh((vh;Vh; qh)); f ; g): (4.1)
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Since Fh((ũh; Ũh; p̃h) + !(vh;Vh; qh); f ; g) is a nonnegative quadratic functional in !∈R, for any
given (vh;Vh; qh)∈Vh ×Sh × Qh, we have

d
d!

Fh((ũh; Ũh; p̃h) + !(vh;Vh; qh); f ; g)|!=0 = 0 (4.2)

which is equivalent to
Determine (ũh; Ũh; p̃h)∈Vh ×Sh × Qh such that

Bh((ũh; Ũh; p̃h); (vh;Vh; qh)) = Lh((vh;Vh; qh)) (4.3)

for all (vh;Vh; qh)∈Vh ×Sh × Qh,
where the bilinear form Bh(·; ·) and the linear form Lh(·) are respectively de2ned as follows:

Bh((v;V; q); (w;W; r))

=
T (h)∑
k=1




 1√

�h
k

∫
�h

k

(−�(∇ · V)T + ∇q) d�


 ·


 1√

�h
k

∫
�h

k

(−�(∇ ·W)T + ∇r) d�




+


 �√

�h
k

∫
�h

k

(V −∇vT) d�


 ·


 �√

�h
k

∫
�h

k

(W −∇wT) d�




+


 �√

�h
k

∫
�h

k

(∇ · v + �q) d�


×


 �√

�h
k

∫
�h

k

(∇ · w + �r) d�




+


 �√

�h
k

∫
�h

k

(∇trV + �∇q) d�


 ·


 �√

�h
k

∫
�h

k

(∇trW + �∇r) d�




+


 �√

�h
k

∫
�h

k

(∇× V) d�


 ·


 �√

�h
k

∫
�h

k

(∇×W) d�




 ;

Lh((v;V; q)) =
T (h)∑
k=1




 1√

�h
k

∫
�h

k

(−�(∇ · V)T + ∇q) d�


 ·


 1√

�h
k

∫
�h

k

f d�




+


 �√

�h
k

∫
�h

k

(∇ · v + �q) d�


×


 �√

�h
k

∫
�h

k

g d�




+


 �√

�h
k

∫
�h

k

(∇trV + �∇q) d�


 ·


 �√

�h
k

∫
�h

k

∇g d�





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for all (v;V; q); (w;W; r)∈V×S× Q. The unique solvability for problem (4.3) will be proved in
Theorem 4.1 later.

Now, it is easily seen, by choosing a basis for Vh ×Sh ×Qh, that problem (4.3) is equivalent to
problem (3.10). That is, they have the same linear system problem ATAX̃ =ATR and (uh;Uh; ph)=
(ũh; Ũh; p̃h). Therefore, throughout the remaining part of this section, we shall derive a priori error
estimates for the approximate solution (uh;Uh; ph) based on the variational formulation (4.3).

The next several lemmas will be useful in the proof of our main result, Theorem 4.2. Using the
fact that Vh, Sh, and Qh are continuous piecewise linear function spaces (all the second derivatives
of functions in them vanish on �h

k), we have the following coercivity estimate for the bilinear form
Bh(·; ·), which plays an important role in the error analysis.

Lemma 4.1. The bilinear form Bh(·; ·) satis3es the following coercivity property:

|Bh((v;V; q); (vh;Vh; qh))|

¿ |(−�(∇ · V)T + ∇q; −�(∇ · Vh)T + ∇qh)0;�

+ (�(V −∇vT); �(Vh −∇vT
h ))0;�

+ (�(∇ · v + �q); �(∇ · vh + �qh))0;�

+ (�(∇trV + �∇q); �(∇trVh + �∇qh))0;�

+ (�(∇× V); �(∇× Vh))0;�|

−Ch(�‖vh‖1;� + �‖Vh‖1;� + ‖qh‖1;�)

×(‖ − �(∇ · V)T + ∇q‖0;� + ‖�(V −∇vT)‖0;�

+ ‖�(∇ · v + �q)‖0;� + ‖�(∇trV + �∇q)‖0;� + ‖�(∇× V)‖0;�); (4.4)

for all (v;V; q)∈V×S× Q and (vh;Vh; qh)∈Vh ×Sh × Qh.

Proof. The proof is simple but long. The basic idea is based on the mean value theorem. Given
�h

k ∈Th; assume ’ : �h
k ⊂ Rd → R is a C1 mapping. Then the mean value theorem asserts that

for any x; y∈�h
k ; there exists z ∈ xy; z = tx + (1 − t)y for some 0¡t¡ 1; such that

’(x) − ’(y) = ∇’(z) · (x − y):

Taking integration with respect to y; we have∫
�h

k

’(x) − ’(y) d�y =
∫
�h

k

∇’(z) · (x − y) d�y
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which implies

’(x)
∫
�h

k

1 d�y =
∫
�h

k

’(y) d�y +
∫
�h

k

∇’(z) · (x − y) d�y

and hence

’(x) =
1
�h
k

∫
�h

k

’(y) d�y +
1
�h
k

∫
�h

k

∇’(z) · (x − y) d�y: (4.5)

Now let ( = 3d2 − d + 1, ) = ( 1; : : : ;  ()T, and Z = (+1; : : : ; +()T be two vector-valued mappings
de2ned over S�, where  i|�h

k
∈L2(�h

k) and +i|�h
k
∈C1(�h

k) for all i=1; : : : ; ( and k =1; : : : ; T (h). Then,
using (4.5), we have

();Z)0;� =
T (h)∑
k=1




(∑
j=1

∫
�h

k

 j(x)+j(x) d�x




=
T (h)∑
k=1

1
�h
k




(∑
j=1

∫
�h

k

 j(x)

(∫
�h

k

+j(y) d�y +
∫
�h

k

∇+j(zj;k) · (x − y) d�y

)
d�x




=
T (h)∑
k=1

1
�h
k




(∑
j=1

∫
�h

k

 j(x) d�x

∫
�h

k

+j(y) d�y




+
T (h)∑
k=1

1
�h
k




(∑
j=1

∫
�h

k

 j(x)

(∫
�h

k

∇+j(zj;k) · (x − y) d�y

)
d�x


 :

Now taking absolute values on the both sides of the above equation, we can conclude that

|();Z)0;�|6
∣∣∣∣∣
T (h)∑
k=1

1
�h
k

(∫
�h

k

) d�x ·
∫
�h

k

Z d�y

)∣∣∣∣∣
+

T (h)∑
k=1

1
�h
k




(∑
j=1

∫
�h

k

| j(x)|
(∫

�h
k

|∇+j(zj;k) · (x − y)| d�y

)
d�x


 ; (4.6)

where zj;k = tj; kx + (1 − tj; k)y∈�h
k for some tj; k ∈ (0; 1), j = 1; : : : ; (.

We are now in the position to prove the lemma. First of all, we set

) =
(−�(∇ · V)T + ∇q; �(V −∇vT); �(∇ · v + �q); �(∇trV + �∇q); �(∇× V)

)
for (v;V; q)∈V×S× Q. Then )|�h

k
∈ [L2(�h

k)]( for all k = 1; : : : ; T (h). Similarly, we set

Z =
(−�(∇ · Vh)T + ∇qh; �(Vh −∇vT

h ); �(∇ · vh + �qh); �(∇trVh + �∇qh); �(∇× Vh)
)

for (vh;Vh; qh)∈Vh ×Sh × Qh. Then Z|�h
k
∈ [C1(�h

k)]( for all k = 1; : : : ; T (h). Recall that vh, Vh,
and qh are continuous piecewise linear polynomials on �, and diam(�h

k)6 h. Thus we have the
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following estimates: for x; y∈�h
k , and zj;k = tj; kx + (1 − tj; k)y for some tj; k ∈ (0; 1),

I1j(x) ≡
∫
�h

k

|∇((−�(∇ · Vh)T + ∇qh)j)(zj;k) · (x − y)| d�y

6
∫
�h

k

|∇((−�(∇ · Vh)T + ∇qh)j)(zj;k)‖(x − y)| d�y

6 h
∫
�h

k

|∇((−�(∇ · Vh)T + ∇qh)j)(zj;k)| d�y

= 0; (4.7)

I2j(x) ≡
∫
�h

k

|∇(�(Vh −∇vT
h )j)(zj;k) · (x − y)| d�y

6
∫
�h

k

|∇(�(Vh −∇vT
h )j)(zj;k)‖(x − y)| d�y

6 h
∫
�h

k

|∇(�(Vh −∇vT
h )j)(zj;k)| d�y

6 h
√

�h
k �‖∇Vh‖0;�h

k
; (4.8)

I3(x) ≡
∫
�h

k

|∇(�(∇ · vh + �qh))(zj;k) · (x − y)| d�y

6 h
∫
�h

k

|∇(�(∇ · vh + �qh))(zj;k)| d�y

6 �h
√

�h
k �‖∇qh‖0;�h

k
; (4.9)

I4j(x) ≡
∫
�h

k

|∇(�(∇trVh + �∇qh)j)(zj;k) · (x − y)| d�y

6
∫
�h

k

|∇(�(∇trVh + �∇qh)j)(zj;k)‖(x − y)| d�y

6 h
∫
�h

k

|∇(�(∇trVh + �∇qh)j)(zj;k)| d�y

= 0; (4.10)

I5j(x) ≡
∫
�h

k

|∇(�(∇× Vh)j)(zj;k) · (x − y)| d�y

6
∫
�h

k

|∇(�(∇× Vh)j)(zj;k)‖(x − y)| d�y
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6 h
∫
�h

k

|∇(�(∇× Vh)j)(zj;k)| d�y

= 0: (4.11)

Substituting (4.7)–(4.11) into (4.6) then yields∣∣(−�(∇ · V)T + ∇q; −�(∇ · Vh)T + ∇qh)0;�

+ (�(V −∇vT); �(Vh −∇vT
h ))0;�

+ (�(∇ · v + �q); �(∇ · vh + �qh))0;�

+ (�(∇trV + �∇q); �(∇trVh + �∇qh))0;�

+ (�(∇× V); �(∇× Vh))0;�|
6 |Bh((v;V; q); (vh;Vh; qh))|

+
T (h)∑
k=1

1
�h
k




d∑
j=1

∫
�h

k

|(−�(∇ · V)T + ∇q)j(x)|I1j(x) d�x

+
d2∑
j=1

∫
�h

k

|�(V −∇vT)j(x)|I2j(x) d�x

+
∫
�h

k

|�(∇ · v + �q)(x)|I3(x) d�x

+
d∑

j=1

∫
�h

k

|�(∇trV + �∇q)j(x)| I4j(x) d�x

+
2d2−3d∑

j=1

∫
�h

k

|�(∇× V)j(x)|I5j(x) d�x




6 |Bh((v;V; q); (vh;Vh; qh))|

+
T (h)∑
k=1

{(
h�‖�(V −∇vT)‖0;�h

k
‖∇Vh‖0;�h

k

)

+
(
�h�‖�(∇ · v + �q)‖0;�h

k
‖∇qh‖0;�h

k

)}
6 |Bh((v;V; q); (vh;Vh; qh))|

+
T (h)∑
k=1

Ch
{(

�‖vh‖1;�h
k

+ �‖Vh‖1;�h
k

+ ‖qh‖1;�h
k

)
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×
(
‖ − �(∇ · V)T + ∇q‖0;�h

k
+ ‖�(V −∇vT)‖0;�h

k
+ ‖�(∇ · v + �q)‖0;�h

k

+ ‖�(∇trV + �∇q)‖0;�h
k

+ ‖�(∇× V)‖0;�h
k

)}
6 |Bh((v;V; q); (vh;Vh; qh))| + Ch

{(
�‖vh‖1;� + �‖Vh‖1;� + ‖qh‖1;�

)
× (‖ − �(∇ · V)T + ∇q‖0;� + ‖�(V −∇vT)‖0;� + ‖�(∇ · v + �q)‖0;�

+ ‖� (∇trV + �∇q)‖0;� + ‖�(∇× V)‖0;�
)}

:

This completes the proof.

Lemma 4.2. There exists an h0 ¿ 0 such that; for su4ciently small h¡h0;

Bh((vh;Vh; qh); (vh;Vh; qh))¿C(�2‖vh‖2
1;� + �2‖Vh‖2

1;� + ‖qh‖2
1;�); (4.12)

for all (vh;Vh; qh)∈Vh ×Sh × Qh.

Proof. Combining (4.4) with (2.11); we get for all (vh;Vh; qh)∈Vh ×Sh × Qh;

Bh((vh;Vh; qh); (vh;Vh; qh))¿C(�2‖vh‖2
1;� + �2‖Vh‖2

1;� + ‖qh‖2
1;�)

−Ch(�2‖vh‖2
1;� + �2‖Vh‖2

1;� + ‖qh‖2
1;�):

Thus; for suHciently small h; we obtain (4.12). This completes the proof.

The coercivity property (4.12) ensures the unique solvability of problem (4.3) or equivalent prob-
lem (3.10), and also gives an estimate of the condition number of the matrix ATA in (3.10).

Theorem 4.1. There exists an h0 ¿ 0 such that problem (4.3); or equivalent problem (3.10); has
a unique solution whenever h¡h0. In this case; the symmetric matrix ATA appearing in (3.10)
is positive de3nite. Moreover; if the family {Th} of regular triangulations of the domain � is
quasi-uniform; then the condition number of ATA is O(�−2h−2).

Proof. For suHciently small h¡h0; by (4.12); we have seen the bilinear form Bh(·; ·) is coercive on
the continuous piecewise linear function space Vh×Sh×Qh. The positive de2niteness of the matrix
ATA appearing in problem (3.10) follows immediately. Thus; the unique solvability of problem
(4.3) is also ensured.

Next, we give an estimate for the condition number of the linear system arising from problem
(3.10). Recall that the condition number for a symmetric and positive de2nite ‘ × ‘ matrix M is
de2ned by

condition number ofM ≡ �max

�min
=

maxR(0)
minR(0)

;
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where �max and �min are the largest and smallest eigenvalues of M, respectively, and R(0) is the
Rayleigh quotient

R(0) ≡ 0TM0
0T0

for all 0 = (11; : : : ; 1‘)T ∈R‘; 0 �∈ 0:

Let v1; : : : ; vm, V1; : : : ;Vn, and q1; : : : ; qk be bases for Vh, Sh, and Qh, respectively. Since the family
{Th} of triangulations is regular [13], there exist positive constants 31, 32, 41, 42, T1, and T2

such that, for any vh ∈Vh, Vh ∈Sh, and qh ∈Qh with

vh =
m∑
i=1

1ivi ; Vh =
n∑

i=1

5iVi ; and qh =
k∑

i=1

+iqi;

we have

31hd
m∑
i=1

12
i 6 ‖vh‖2

0;�632hd
m∑
i=1

12
i ; (4.13)

41hd
n∑

i=1

52
i 6 ‖Vh‖2

0;�642hd
m∑
i=1

52
i ; (4.14)

T1hd
k∑

i=1

+2
i 6 ‖qh‖2

0;�6T2hd
k∑

i=1

+2
i : (4.15)

If, in addition, the corresponding regular family {Th} of triangulations of S� is quasi-uniform [13],
i.e., there exists a positive constant C independent of h such that

h6C diam(�h
k) for all �h

k ∈Th; Th ∈{Th} (4.16)

then we have the following inverse estimates [13]

‖vh‖1;�6Ch−1‖vh‖0;�; (4.17)

‖Vh‖1;�6Ch−1‖Vh‖0;�; (4.18)

‖qh‖1;�6Ch−1‖qh‖0;�; (4.19)

where C is a positive constant independent of h.
For any vh =

∑m
i=1 1ivi ∈Vh, Vh =

∑n
i=1 5iVi ∈Sh, and qh =

∑k
i=1 +iqi ∈Qh, by (2.11), (4.13),

(4.14), and (4.15), we have

B((vh;Vh; qh); (vh;Vh; qh))¿C(�2‖vh‖2
1;� + �2‖Vh‖2

1;� + ‖qh‖2
1;�)

¿C(�2‖vh‖2
0;� + �2‖Vh‖2

0;� + ‖qh‖2
0;�)

¿C min{31; 41;T1}�2hd

(
m∑
i=1

12
i +

n∑
i=1

52
i +

k∑
i=1

+2
i

)
:
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On the other hand, it follows from (2.11), (4.17), (4.18), and (4.19) that

B((vh;Vh; qh); (vh;Vh; qh))6C(�2‖vh‖2
1;� + �2‖Vh‖2

1;� + ‖qh‖2
1;�)

6Ch−2(�2‖vh‖2
0;� + �2‖Vh‖2

0;� + ‖qh‖2
0;�)

6C max{32; 42;T2}(1 + �2)hd−2

(
m∑
i=1

12
i +

n∑
i=1

52
i +

k∑
i=1

+2
i

)
:

Thus, �max6C max{32; 42;T2}(1+�2)hd−2 and �min¿C min{31; 41;T1}�2hd, and so the condition
number of ATA is O(�−2h−2). This completes the proof.

In what follows, let (u;U; p)∈V×S× Q and (uh;Uh; ph)∈Vh ×Sh × Qh be the solutions of
problems (2.6) and (4.3), respectively.

Lemma 4.3. We have the following error equation: for all (vh;Vh; qh)∈Vh ×Sh × Qh;

Bh((u;U; p) − (uh;Uh; ph); (vh;Vh; qh)) = 0: (4.20)

Proof. It can be easily seen that the exact solution (u;U; p) of problem (2.6) satis2es

Bh((u;U; p); (vh;Vh; qh)) = Lh((vh;Vh; qh)) (4.21)

for all (vh;Vh; qh)∈Vh ×Sh × Qh which; combining with (4.3); implies (4.20).

Lemma 4.4. The bilinear form Bh(·; ·) satis3es the following inequalities
|Bh((v;V; q); (w;W; r))|6K1=2((v;V; q))K1=2((w;W; r)) (4.22)

for all (v;V; q); (w;W; r)∈V×S× Q.

Proof. Using the de2nition of the bilinear form Bh(·; ·); the HUolder inequality; and
m∑
i=1

(LiMi)1=26

(
m∑
i=1

Li

)1=2 ( m∑
i=1

Mi

)1=2

for all L1; : : : ; Lm;M1; : : : ; Mm ∈R+; we have

Bh((v;V; q); (w;W; r))

=
T (h)∑
k=1

{
1
�h
k

(∫
�h

k

(−�(∇ · V)T + ∇q) d�

)
·
(∫

�h
k

(−�(∇ ·W)T + ∇r) d�

)

+
�2

�h
k

(∫
�h

k

(V −∇vT) d�

)
·
(∫

�h
k

(W −∇wT) d�

)

+
�2

�h
k

(∫
�h

k

(∇ · v + �q) d�

)
×
(∫

�h
k

(∇ · w + �r) d�

)
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+
�2

�h
k

(∫
�h

k

(∇trV + �∇q) d�

)
·
(∫

�h
k

(∇trW + �∇r) d�

)

+
�2

�h
k

(∫
�h

k

(∇× V) d�

)
·
(∫

�h
k

(∇×W) d�

)}
;

6
T (h)∑
k=1

{
1
�h
k

d∑
i=1

( ∫
�h

k

|(−�(∇ · V)T + ∇q)i| × 1 d�

×
∫
�h

k

|(−�(∇ ·W)T + ∇r)i| × 1 d�

)

+
�2

�h
k

d2∑
i=1

(∫
�h

k

|(V −∇vT)i| × 1 d�
∫
�h

k

|(W −∇wT)i| × 1 d�

)

+
�2

�h
k

(∫
�h

k

|(∇ · v + �q)| × 1 d�
∫
�h

k

|(∇ · w + �r)| × 1 d�

)

+
�2

�h
k

d∑
i=1

(∫
�h

k

|(∇trV + �∇q)i| × 1 d�
∫
�h

k

|(∇trW + �∇r)i| × 1 d�

)

+
�2

�h
k

2d2−3d∑
i=1

(∫
�h

k

|(∇× V)i| × 1 d�
∫
�h

k

|(∇×W)i| × 1 d�

) }

6
T (h)∑
k=1

{
d∑

i=1

‖(−�(∇ · V)T + ∇q)i‖0;�h
k
‖(−�(∇ ·W)T + ∇r)i‖0;�h

k

+
d2∑
i=1

�2‖(V −∇vT)i‖0;�h
k
‖(W −∇wT)i‖0;�h

k

+ �2‖∇ · v + �q‖0;�h
k
‖∇ · w + �r‖0;�h

k

+
d∑

i=1

�2‖(∇trV + �∇q)i‖0;�h
k
‖(∇trW + �∇r)i‖0;�h

k

+
2d2−3d∑

i=1

�2‖(∇× V)i‖0;�h
k
‖(∇×W)i‖0;�h

k

}

6
T (h)∑
k=1

{
‖ − �(∇ · V)T + ∇q‖0;�h

k
‖ − �(∇ ·W)T + ∇r‖0;�h

k
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+ ‖�(V −∇vT)‖0;�h
k
‖�(W −∇wT)‖0;�h

k

+ ‖�(∇ · v + �q)‖0;�h
k
‖�(∇ · w + �r)‖0;�h

k

+ ‖�(∇trV + �∇q)‖0;�h
k
‖�(∇trW + �∇r)‖0;�h

k

+ ‖�(∇× V)‖0;�h
k
‖�(∇×W)‖0;�h

k

}
6K1=2((v;V; q))K1=2((w;W; r)):

This completes the proof.

We are now in the position to prove our main result. Using Lemmas 4.2, 4.3, and 4.4 with
the standard procedure similar to that in the usual 2nite element analysis, we have the following
H 1-optimal error estimate

Theorem 4.2. Let (u;U; p)∈ [V×S×Q]∩ [H 2(�)]d
2+d+1 and (uh;Uh; ph)∈Vh×Sh×Qh; h¡h0;

be the solutions of problems (2.6) and (4.3); respectively. Then we have

�‖u − uh‖1;� + �‖U −Uh‖1;� + ‖p− ph‖1;�6Ch(�‖u‖2;� + �‖U‖2;� + ‖p‖2;�): (4.23)

Proof. From the orthogonality property (4.20); we can assert that

Bh((u;U; p) − (vh;Vh; qh) + (vh;Vh; qh) − (uh;Uh; ph); (wh;Wh; rh)) = 0

for all (vh;Vh; qh); (wh;Wh; rh)∈Vh ×Sh × Qh. Now choose

(wh;Wh; rh) = (uh;Uh; ph) − (vh;Vh; qh)∈Vh ×Sh × Qh

so that

Bh((uh;Uh; ph) − (vh;Vh; qh); (uh;Uh; ph) − (vh;Vh; qh))

=Bh((u;U; p) − (vh;Vh; qh); (uh;Uh; ph) − (vh;Vh; qh))

for all (vh;Vh; qh)∈Vh ×Sh ×Qh. Then; for h¡h0; it follows from (4.12); (4.22); and (2.11) that

�2‖uh − vh‖2
1;� + �2‖Uh − Vh‖2

1;� + ‖ph − qh‖2
1;�

6C(�2‖u − vh‖2
1;� + �2‖U − Vh‖2

1;� + ‖p− qh‖2
1;�)1=2

×(�2‖uh − vh‖2
1;� + �2‖Uh − Vh‖2

1;� + ‖ph − qh‖2
1;�)1=2

for all (vh;Vh; qh)∈Vh ×Sh × Qh; and hence

�‖uh − vh‖1;� + �‖Uh − Vh‖1;� + ‖ph − qh‖1;�

6C(�‖u − vh‖1;� + �‖U − Vh‖1;� + ‖p− qh‖1;�)
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for all (vh;Vh; qh)∈Vh ×Sh × Qh. Therefore; we get

�‖u − uh‖1;� + �‖U −Uh‖1;� + ‖p− ph‖1;�

6 �‖u − vh‖1;� + �‖U − Vh‖1;� + ‖p− qh‖1;�

+ �‖uh − vh‖1;� + �‖Uh − Vh‖1;� + ‖ph − qh‖1;�

6C(�‖u − vh‖1;� + �‖U − Vh‖1;� + ‖p− qh‖1;�)

for all (vh;Vh; qh)∈Vh ×Sh × Qh. Now; choosing vh ∈Vh; Vh ∈Sh; and qh ∈Qh such that (3.4);
(3.5); and (3.6) hold when v; V; and q are replaced by u; U; and p; respectively; we obtain estimate
(4.23). This completes the proof.

5. An H 1-equivalent error estimator

In this section we brieIy introduce an [H 1(�)]d
2+d+1-equivalent error estimator. Let (u;U; p)∈V×

S× Q and (uh;Uh; ph)∈Vh ×Sh × Qh be the solutions of problems (2.6) and (4.3), respectively.
For each h¡h0, de2ne

E2
h = ‖f − (−�(∇ ·Uh)T + ∇ph)‖2

0;� + �2‖0− (Uh −∇uT
h )‖2

0;�

+ �2‖g− (∇ · uh + �ph)‖2
0;� + �2‖∇g− (∇trUh + �∇ph)‖2

0;�

+ �2‖0− (∇×Uh)‖2
0;�:

Then Eh is a computable quantity, and

E2
h = ‖ − �(∇ · (U −Uh)T) + ∇(p− ph)‖2

0;� + �2‖(U −Uh) −∇(u − uh)T‖2
0;�

+ �2‖∇ · (u − uh) + �(p− ph)‖2
0;� + �2‖∇tr(U −Uh) + �∇(p− ph)‖2

0;�

+ �2‖∇ × (U −Uh)‖2
0;�:

Thus, from (2.11), we have

C1(�2‖u − uh‖2
1;� + �2‖U −Uh‖2

1;� + ‖p− ph‖1;�)1=2

6Eh6C2(�2‖u − uh‖2
1;� + �2‖U −Uh‖2

1;� + ‖p− ph‖1;�)1=2:

Hence Eh is an [H 1(�)]d
2+d+1-equivalent a posteriori error estimator.

6. Concluding remarks

In this investigation, we study a 2nite volume scheme for approximating the solution of the
generalized Stokes problem recast in the velocity–stress–pressure 2rst-order system formulation by
using continuous piecewise linear polynomials. This method is composed of a direct cell vertex 2nite
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volume discretization step and an algebraic least-squares step. An optimal rate of convergence in the
H 1 norm for all the unknowns, velocity, stress, and pressure, is achieved.

The solution of the Navier–Stokes problem is sometimes approximated by a sequence of linear
Stokes problems. Another often more adequate linearization of the Navier–Stokes equations is the
Oseen problem [14] which o<ers an iterative process for the approximate solution. A promising
continuous piecewise linear approach may be by considering the iterative process as follows. Consider
the Navier–Stokes problem

−�Ou + (u · ∇)u + ∇p = f in �;

∇ · u = 0 in �;

u = 0 on @�:

(6.1)

Similar to system (2.6), formulating this nonlinear second-order problem as a 2rst-order system in
terms of u, U, and p, we have

−�(∇ ·U)T + (u · ∇)u + ∇p = f in �;

U −∇uT = 0 in �;

∇ · u = 0 in �;

∇trU = 0 in �;

∇×U = 0 in �;

u = 0 on @�;

n ×U = 0 on @�:

(6.2)

Next, let (u0;U0; p0) be the solution of the Stokes problem (2.6). For n = 0; 1; 2; : : :, consider the
following sequence of linear problems

−�(∇ ·Un+1)T + Anun+1 + ∇pn+1 = f in �;

Un+1 −∇(un+1)T = 0 in �;

∇ · un+1 = 0 in �;

∇trUn+1 = 0 in �;

∇×Un+1 = 0 in �;

un+1 = 0 on @�;

n ×Un+1 = 0 on @�;

(6.3)

where the coeHcient matrix An is given by

An =




@un1
@x1

· · · @un1
@xd

...
...

@und
@x1

· · · @und
@xd


 :
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Now, for each stage n, n¿ 0, we solve the corresponding linear problem by using the 2nite volume
scheme developed in Section 3. Since the velocity u is approximated by using piecewise linear
polynomials with respect to the triangulation Th, the coeHcient matrix An, n¿ 0, is a piecewise
constant matrix at each stage. One might expect the sequence {(un

h;U
n
h; p

n
h)} generated by the above

iterative process converging to a solution of the velocity–stress–pressure Navier–Stokes problem
(6.2) as n → ∞ and h → 0. This issue has become the subject of current research of the author.
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