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Abstract

Behavioural equivalences of various calculi for modelling distributed systems differ significantly because the
properties which can be observed through interaction depend heavily upon their mode of communication. A
typical approach to describing the semantics of communicating processes is to provide a labelled transition
system (lts) which captures the interaction potential of the individual processes within a larger system.
In many cases, a natural rendering of this lts leads to too fine a semantics as unobservability of certain
communications is not accounted for.
We propose that a standard approach to augmenting ltss allows morally unobservable communications to
actually be modelled as unobservables in the semantics. This approach derives from a rule initially given by
Honda and Tokoro to account for unobservability of reception in the asynchronous π-calculus. We examine
the implications of adding such rules to lts with respect to the proving behavioural equivalences for various
synchronisation mechanisms.
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1 Introduction

Semantic descriptions of processes in the process algebra/calculus tradition have

come to be dominated by the use of labelled transition systems (ltss) to describe

the nature of the interaction contributed by each participant in a communication.

This approach was inspired by early work of Plotkin [11] on structural operational

semantics and Milner’s definition of lts semantics for ccs [8].

The use of labels has an interesting artefact. Labelled transition systems now

not only capture reduction but also allow programs to be compared for equivalence

without the need for examining their behaviour within all enclosing contexts. The

dual purpose nature of these transition systems does have an unfortunate side-

effect in that the labelled transitions, which are useful for describing structurally
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defined reduction relations, do not always coincide with observability properties of

language with respect to program equivalence. This problem is particularly acute

when the underlying communication mechanism between processes is anything less

than fully synchronous. In a nutshell, the “natural looking” structural ltss for a

given language may yield too fine an equivalence relation if the labels are used for

comparing programs.

A well-known example of this lies in the unobservability of reception in languages

featuring asynchronous communication. This issue is studied thoroughly in [5,1] in

the setting of the asynchronous π-calculus in which it is demonstrated that (weak)

bisimilarity on the structural lts for the π-calculus does not correctly capture a

notion of (weak) observable equivalence in this language. There are two different,

but related, approaches to resolving this problem: [1] proposes a variant definition

of bisimilarity while [5] proposes an additional, non-structural labelled transition

rule to model the unobservability of reception. For technical reasons concerning

uniformity of definition and difficulties in establishing transitivity of the variant

bisimilarity, we prefer the latter approach by Honda and Tokoro [5]. Their innova-

tion was to blur the observability of reception actions in π-calculus by augmenting

the standard lts with (essentially) the following rule:

P
a?b
−−→ P ‖ a!b

This rule allows a process which genuinely performs a receive action P
a?b
−−→ P ′

to be identified with a process that may not be able to perform any actions, let

alone a receive action. In fact, augmenting the lts with the above rule makes

the contextually unobservable receive actions in the asynchronous world actually

become unobservable in their lts model. We will refer to rules such as the above

as Honda Tokoro (HT ) style rules.

In this paper we pursue the idea of Honda and Tokoro by generalising their

approach of using additional lts rules to guarantee the correct unobservability

properties in a structurally defined lts. We do this by identifying how we can

routinely add HT rules to an lts without compromising the soundness and com-

pleteness of its associated (bi)similarity with respect to a simple notion of contextual

equivalence. We demonstrate this approach in three different scenarios: fully asyn-

chronous, output asynchronous and fully synchronous communication in ccs-like

calculi. Furthermore, we discuss how to specialise the resulting ltss by only adding

the necessary additional unobservability rules – in some calculi some actions are

inherently observable and do not require a HT rule. This analysis is useful because

it results in more manageable ltss. Indeed, it is important to emphasise that this

paper does not address the issue of characterising when particular actions are or are

not contextually unobservable, as studied in [9]. The focus here is on the general

applicability and correctness of the unobservability rules.
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2 Structural rules, LTSs and (bi)simulations

We need to recall the standard notion of a labelled transition system. In all of our

examples the set of states coincides with the set of processes of the calculus at hand.

Definition 2.1 Suppose that A is a set of observations and S is a set of states.

An (A,S)-labelled transition system (lts) is a ternary relation T ⊆ S ×A× S. We

will write s
α
−→ s′ for (s, α, s′) ∈ T .

Traditionally, ltss defined by a set of sos rules have been used to:

• define the reduction relation compositionally by considering the structure of

terms;

• define the possible “interactions” and reason about the resulting (labelled) pre-

orders/ equivalences;

• characterise observational preorders/equivalences by using the aforementioned

labelled preorders/equivalences.

There is a natural tension between the first and the third point. The first may

require us to observe the intensional structure of the terms in order to characterise

the possible reductions. The third requires us to characterise the structure that can

be observed. Examples of and techniques for relaxing this tension are the remit of

this paper.

Our ltss will be defined using simple sos rules. Given an lts T and a rule ψ,

let ψ(T ) be the lts obtained by adding the extra transitions which can be derived

using (possibly several applications of) ψ from the existing transitions of T . This

is easily defined as a least fixed point. Seen as an endofunction on the class of

ltss, ψ is idempotent. This notation can be extended to sets of rules Ψ = {ψi}i∈I

in the obvious way; proof-theoretically, Ψ(T ) denotes the set of transitions that

result from the derivations that use the rules in Ψ, assuming the transitions of T

as axioms. When we speak about the lts defined by a set of rules Ψ, we mean the

lts Ψ(∅) where ∅ is the empty lts.

Definition 2.2 Given two (A,S)-ltss T1 and T2, a simulation from T1 to T2 is a

binary relation R ⊆ S ×S such that if P R Q and P
α
−→P ′ in T1 then ∃Q′ such that

Q
α
−→Q′ in T2 and P ′ R Q′. A simulation R is a bisimulation whenever R−1 is also

a simulation.

Given an lts T , �T is similarity, the largest simulation, while ∼T is bisimilarity,

the largest bisimulation.

3 Full asynchrony

Consider the following simple language Lf of finite processes generated by:

P ::= 0 | a! | a? | P ‖ Q | τ
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We can think of a typical term as a textual representation of a “soup” of processes [2]

which interact with each other. We thus ask that parallel composition behave

appropriately: a process is an equivalence class of terms quotiented by the smallest

congruence in which ‖ is associative, commutative and has 0 as identity.

The execution semantics (i.e. what a program does) is captured by the smallest

(unlabelled) transition system → that contains τ → 0 as well as a! ‖ a? → 0 (for

any a) and is closed under parallel composition. We will refer to the edges in the

above transition system as interactions or reductions.

Assume that an interaction has an observable effect, for concreteness let us say

that each interaction generates a certain amount of heat which can be detected by

the observer’s sophisticated sensors. The external observer cannot see the internals

of a soup (the identity and number of its components) but can experiment with it

only by:

• introducing new ingredients into the soup;

• measuring the change in heat, i.e. observing interactions.

Our most controversial assumption is that time can be slowed down to such an extent

that no two reductions can ever happen truly concurrently, that is, the observer can

observe the reductions one at a time. This is normally referred to as interleaving.

For example, the observer can distinguish between 0 and a!; the experiment runs

as follows: the observer introduces a? into the both the soups and observes that

while the first soup stays at constant temperature, the second soup gets a little bit

hotter.

The above ingredients induce a canonical preorder and equivalence on the set

of processes: the preorder being the largest (reduction) simulation which is a pre-

congruence (wrt to ‖) and the equivalence being the largest reduction bisimulation

which is a congruence. For us, these two relations capture the greatest reasonable

power of an external observer.

Definition 3.1 Reduction precongruence is the largest relation � which:

(i) is a simulation with respect to reduction, i.e. if P � Q and P → P ′ then

there exists Q′ such that Q → Q′ and P ′ � Q′;

(ii) is stable wrt ‖, i.e. if P � Q then for any R we have P ‖ R � Q ‖ R.

Definition 3.2 Reduction congruence is the largest relation � which:

(i) satisfies conditions (i) and (ii) of Definition 3.1;

(ii) is symmetric.

In the following we will attempt to reason about the contextually defined re-

duction (pre)congruence by characterising the possible “experiments” (cf. the dis-

cussion before Definition 3.1) as labelled transitions; the procedure (initial state,

experiment, final state) will be a transition in an lts. Roughly, this means that

we are in effect replacing “contexts” of Definitions 3.1 and 3.2 with “labels” in a

lts. The goal is to use labelled preorders and equivalences, such as bisimulation,

as proof methods for reasoning about reduction (pre)congruence.
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The first kind of experiment is the simplest, the observer does not need to do

anything and can observe a rise in temperature due to the presence of a τ within

the term. Let us call this experiment τ . We can characterise inductively some of

the processes for which this experiment is successful:

(Tau)
τ

τ

−→ 0

P
τ

−→P ′

(Tau‖)
P‖Q

τ

−→P ′‖Q

Another experiment is the following: the observer introduces an output on a (a!) and

observes that there is a rise in temperature. Let us name (slightly counterintuitively)

this kind of experiment a?. The reason for this label is that this is the capability

(input) that has been observed. Also this kind of experiment can be characterised

inductively:

(In)
a?

a?

−→ 0

P
a?

−→P ′

(In‖)
P‖Q

a?

−→P ′‖Q

Dually, the observer can introduce an input to observe an output.

(Out)
a!

a!

−→ 0

P
a!

−→P ′

(Out‖)
P‖Q

a!

−→P ′‖Q

Finally, if the observer’s experiments lead her to conclude that there is an input on

a in soup A and an output on a in soup B, then a heating should be observed in

the combined soup without additional ingredients. Note that the label is the same

as our first experiment: this is because, from the observer’s point of view, the same

(empty) process is provided to P ‖ Q for a change in heat to be observed.

P
a?

−→P ′ Q
a!

−→Q′

(Comm)
P‖Q

τ

−→P ′‖Q′

Let Φf
def
= {(Tau), (Tau‖), (In), (In‖), (Out), (Out‖), (Comm)}. Consider the lts Cf

def
=

Φf (∅). The following lemma shows that our intuition of this labelled transition

system as a “logbook” of certain experiments is correct: for each kind of label α

there is a process χα which is added by the experimenter to observe a reduction.

Lemma 3.3 χa!
def
= a?, χa?

def
= a! and χτ

def
= 0. P

α
−→P ′ implies P ‖ χα → P ′. �

For τ -labelled transitions, the other direction also holds.

Lemma 3.4 P
τ
−→P ′ iff P → P ′. �

Indeed, reasoning on Cf is sound wrt to observation:

Lemma 3.5 (Soundness of Cf) �C ⊆� and ∼C ⊆�.

Proof. It suffices to show that � is a reduction simulation and stable under parallel

composition. It is a reduction simulation because it is a τ -simulation and τs coincide

with reductions (Lemma 3.4). To show that it is stable under ‖, it suffices to show

that {(P ‖ R,Q ‖ R) | P � Q} is a simulation. This is easily checked by cases, the
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most interesting being P ‖ R
τ
−→P ′ ‖ R′ where, for some a, P

a!
−→P ′ and R

a?
−→R′.

Then, by assumption, ∃Q′. Q
a!
−→Q′ ∧ P ′ � Q′. But then Q ‖ R

τ
−→Q′ ‖ R′ which

is in the relation. The proof for the case of bisimulation and reduction congruence

proceeds similarly. �

However, the reverse inclusion (completeness) does not hold. The lts allows us

to distinguish processes which are observationally not distinguishable. For example:

Lemma 3.6 Let P1
def
= a? ‖ a! and P2

def
= τ . Then P1 � P2 but P1 
� CP2.

Proof. Clearly P1 
� CP2 since P1
a!
−→ a? which cannot be matched by P2.

We will show that R
def
= {(P1 ‖ R, P2 ‖ R) | R a process} ∪ Δ (where Δ is the

identity relation) is closed under reduction and stable under parallel composition.

Suppose that P1 ‖ R → Q. Then:

(i) R → R′ and Q = P1 ‖ R′. Then also P2 ‖ R → P2 ‖ R′ and Q R (P2 ‖ R′)

by construction;

(ii) P1 → 0 and Q = R. But also τ → 0 so τ ‖ R → R;

(iii) R = a! ‖ R′ and P1 ‖ R → a! ‖ R′ = R. But also τ ‖ R → R.

(iv) R = a? ‖ R′ which is similar to the previous case.
�

We also have P2 � P1 and, moreover, P1 � P2; the two processes are reduction

congruent. In fact, already a! � P2 and a? � P2, although, in each of these cases

the other direction does not hold since P2 can reduce. Of course, neither a? 
 �a!

nor a! 
�a?.

We have shown that there is a mismatch between our logbook (the lts) and the

actual power of experiments. This can be expressed succinctly by noting that the

converse of Lemma 3.3 does not hold and, more than this, no characterisation of

the labels by contexts is possible. This is implied by the following result.

Theorem 3.7 If, for an lts X , there exist processes χα such that

P
α
−→X P ′ iff P ‖ χα → P ′

then �⊆�X and �⊆∼X .

Proof. We will show that � is a (X )-simulation. Suppose that P � Q and P
α
−→P ′.

Then P ‖ χα → P ′ and since � is stable under ‖ and closed under reduction we have

that there exists Q′ such that P ′ � Q′ and Q ‖ χα → Q′. But, by assumption, the

final part implies that Q
α
−→Q′. The same reasoning shows that � is a bisimulation.�

Corollary 3.8 For α ∈ {a?, a!}, there do not exist χα such that P
α
−→P ′ iff P ‖

χα → P ′.

Proof. If such a set existed then by Theorem 3.7 we would have �⊆�C which we

know is not true by the conclusion of Lemma 3.6. �
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What has gone wrong? A moment’s reflection about the processes of Lemma 3.6

confirms that, for instance, our tentative idea that P
a!
−→ P ′ tests for the presence

of an output (and dually, an input) on a in P is unimplementable. Indeed, the

experimenter which provides an a? process and observes an interaction can conclude

that either P has an output on a or that a reduction was already possible in P . The

following rules 2 take into account the possibility of the latter:

P
τ

−→P ′

(InHT)
P

a?

−→P ′‖a!

P
τ

−→P ′

(OutHT)
P

a!

−→P ′‖a?

The extra component in the results is just the process that the experimenter pro-

vided. Since the reduction was already present in P , this process was not consumed.

Letting Ψf
def
= {(InHT), (OutHT)}, we will consider the lts HT f

def
= ΨfCf . In other

words, HT f is the lts with derivations that can be split into two (possibly empty)

parts - the first which features rules from Φf and the second with rules from Ψf .

We shall sometimes refer to those transitions which are in HT but not in C as

Honda-Tokoro transitions.

The following lemma shows the relationship between the a?- and a!-labelled

transitions in the two ltss.

Lemma 3.9 If α ∈ {a!, a?}: P
α
−→HT P ′ ⇔ P

α
−→C P ′∨ (P

τ
−→P ′′∧P ′ = P ′′ ‖ χα).�

The τ -labelled transitions are unchanged. We use these observations to show

that simulation (bisimulation) on HT remains sound for reduction precongruence

(congruence).

Lemma 3.10 (Soundness of HT f) �HT ⊆� and ∼HT ⊆�.

Proof. It suffices to show that � is stable under ‖. This is done by showing that

{(P ‖ R,Q ‖ R) | P � Q} is a simulation. One of the two symmetric interesting

cases is again P ‖ R
τ
−→P ′ ‖ R′ for P

a!
−→C P ′ and R

a?
−→C R′. Note that R = R′ ‖ a?.

We have, by assumption, that ∃Q′. Q
a!
−→Q′ such that P ′ � Q′. Now, using the

conclusion of Lemma 3.9, either Q
a!
−→C Q′, in which case also Q ‖ R

τ
−→Q′ ‖ R′, or

Q
τ
−→Q′′ such that Q′ = Q′′ ‖ a?. But then Q ‖ R

τ
−→Q′′ ‖ R = Q′′ ‖ a? ‖ R′ = Q′ ‖

R′. �

The rules of Ψf are designed so that the ‘if’ direction of the following statement

holds, provided that the ‘only if’ direction holds.

Lemma 3.11 Let χα be defined as in Lemma 3.3. Then

P
α
−→HT P ′ iff P ‖ χα → P ′

Proof. Lemma 3.4 takes care of τ . (⇒) is implied by Lemma 3.3 and the fact that

if P → P ′ then P ‖ χα → P ′ ‖ χα. For (⇐) if P ‖ χα → P ′ then either the χα is

consumed in which case P
α
−→C P ′ or it is not, in which case P

α
−→HT P ′. �

2 These rules are named after Honda and Tokoro’s rule for asynchronous π-calculus, although here they
are modified for strong equivalences.
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The above is enough to derive completeness.

Corollary 3.12 (Completeness of HT f) �⊆�HT and �⊆∼HT

Proof. Consequence of the conclusions of Lemma 3.11 and Theorem 3.7. �

4 Asynchrony

Here we will consider a language La where, an a? capability can guard another

process.

P ::= 0 | a! | a?P | P ‖ Q | τP

The reduction relation is the smallest transition system that contains a! ‖ a?P →

P as well as τP → P and is closed by parallel composition.

As before, we have the experiment for the τ prefix where nothing needs to be

provided in order to observe a heating:

(Tau)
τP

τ

−→P

P
τ

−→P ′

(Tau‖)
P‖Q

τ

−→P ′‖Q

Also, the observer can experiment with a process by providing an output:

(In)
a?P

a?

−→P

P
a?

−→P ′

(In‖)
P‖Q

a?

−→P ′‖Q

The experiment for outputs is more involved because our language now allows

more powerful tests: the observer introduces an input on a followed by some other

process R of the observer’s choosing (a?R) and observes a rise in temperature con-

sistent with one interaction. We will denote 3 this kind of experiment a!↓R. The

inductive presentation is the following:

(Out)
a!

a!↓R

−−−→R

P
a!↓R

−−−→P ′

(Out‖)
P‖Q

a!↓R

−−−→P ′‖Q

The final rule is needed to characterise those internal reductions which come from

two interacting parallel components:

P
a?

−→P ′ Q
a!↓ 0

−−−→Q′

(Comm)
P‖Q

τ

−→P ′‖Q′

Let Φa
def
= {(Tau), (Tau‖), (In), (In‖), (Out), (Out‖), (Comm)} and Ca = Φa(∅). The follow-

ing is the counterpart of Lemma 3.3 for our current setting.

Lemma 4.1 Let χa!↓R = a?R, χa? = a!, χτ = 0. Then P
α
−→P ′ implies P ‖ χα →

P ′. �

3 The motivation for this notation is our work on deriving structural ltss from reduction rules [12, 13].
Roughly, the ‘↓’ in the label separates the information provided by the process (here an output capability)
from the data provided by the environment (here R).
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It is also easy to check that the conclusion of Lemma 3.4 holds. We easily ob-

tain soundness; the proof of the following is essentially the same as the proof of

Lemma 3.5.

Lemma 4.2 (Soundness of Ca) �C ⊆� and ∼C ⊆�. �

Analogously to the fully synchronous case, simulation on Ca is too strong: there

exist processes which are distinguished by similarity but which are not distinguished

by observational precongruence.

Lemma 4.3 Let P1
def
= a?a! and P2

def
= τ . Then P1 � P2 but P1 
� CP2.

Proof. Again, it is easy to see that P1 
� CP2 as P1
a?
−→ a! which cannot be matched

by P2.

On the other hand R
def
= {(P1 ‖ R,P2 ‖ R) | R a process} ∪ Δ is closed under

reduction and stable under parallel composition: Suppose that P1 ‖ R → Q. Then:

(i) the reduction comes from R, so Q = P1 ‖ R′, and P2 ‖ R → P2 ‖ R′;

(ii) R = a! ‖ R′ and P1 ‖ R → a! ‖ R′ = R. But also τ ‖ R → R.

�

To obtain completeness, we can again generate a new lts HT a from Ca by

applying rules:
P

τ

−→P ′

(InHT)
P

a?

−→P ′‖a!

P
τ

−→P ′

(OutHT)
P

a!↓R

−−−→P ′‖a?R

Corollary 4.4 (Completeness of HT a) �⊆�HT and �⊆∼HT .

Proof. The presence of the Honda-Tokoro rules allows us to establish the counter-

part to Lemma 3.11 and completeness follows from Theorem 3.7. �

The fact that we are applying both (InHT) and (OutHT) should come as a surprise.

In fact, in the fully asynchronous case, it was intuitively clear that both the labels

should be unobservable. Here, while the a? transition should be unobservable, our

intuition tells us that a! should be observable. The crucial observation is that while

(InHT) really does make the inputs unobservable, the (OutHT) does not make outputs

unobservable, it only accounts for the fact that the experiment for a! can fail. In

fact, in the fully asynchronous setting we had a! �HT τ and this does not hold here:

Example 1 a!
�HT τ .

Proof. a!
a!↓ τ
−−−→ τ . The τ process must match this with the Honda-Tokoro transi-

tion τ
a!↓ τ
−−−→ a?τ . But clearly τ 
�HT a?τ , since the first process can do a τ labelled

transition. �

Indeed, HT remains sound.

Lemma 4.5 (Soundness of HT a) �HT ⊆� and ∼HT ⊆�.
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Proof. We need to show that � is stable under ‖. This is done by showing that

R = {(P ‖ R,Q ‖ R)|P �HT Q} is a simulation.

The interesting case is P ‖ R
τ
−→P ′ ‖ R′ for P

a!↓ 0
−−−→C P ′ and R

a?
−→C R′. Suppose

that Q does not have an output on a available and will be forced to match the a!↓ 0

transition with a Honda-Tokoro transition.

We know that, for some S and R′′, R = R′′ ‖ a?S and R′ = R′′ ‖ S. The

key observation is that P
a!↓S
−−−→C P ′ ‖ S. Then Q will have to match this with

a Honda-Tokoro transition, hence ∃Q′ such that Q
τ
−→Q′ and Q

a!↓S
−−−→HT Q′ ‖ a?S

with P ′ ‖ S � Q′ ‖ a?S (†). But then Q ‖ R
τ
−→Q′ ‖ R = Q′ ‖ a?S ‖ R′′. But

P ′ ‖ R′ = P ′ ‖ S ‖ R′′, hence by (†), we remain in R.

Similar reasoning goes through for the case of bisimilarity and reduction con-

gruence. �

In Section 6 we will show that, when reasoning about reduction congruence, the

rule (OutHT) is not actually necessary.

5 Synchrony

We can recycle our results for the synchronous language Ls, where both inputs and

outputs guard other processes:

P ::= 0 | a!P | a?P | P ‖ Q | τP

The reduction relation → is the smallest relation which, for any P , Q contains

a!P ‖ a?Q → P ‖ Q as well as τP → P and is closed under parallel composition.

In this case, our Cs lts is generated by:

(In)
a?P

a?↓R

−−−→P‖R

P
a?↓R

−−−→P ′

(In‖)
P‖Q

a?↓R

−−−→P ′‖Q

(Out)
a!P

a!↓R

−−−→P‖R

P
a!↓R

−−−→P ′

(Out‖)
P‖Q

a!↓R

−−−→P ′‖Q

P
a?↓ 0

−−−→P ′ Q
a!↓ 0

−−−→Q′

(Comm)
P‖Q

τ

−→P ′‖Q′

(Tau)
τP

τ

−→P

P
τ

−→P ′

(Tau‖)
P‖Q

τ

−→P ′‖Q

The set Ψs of Honda-Tokoro rules is the set containing the two rules:

P
τ

−→P ′

(InHT)
P

a?↓R

−−−→P ′‖a!R

P
τ

−→P ′

(OutHT)
P

a!↓R

−−−→P ′‖a?R

and we automatically obtain a sound and complete lts (for both reduction precon-

gruence and reduction congruence) HT s = Ψs(Cs).

Just as in the asynchronous case, when reasoning about reduction congruence

we can be more efficient. In fact, the results of the proceeding section imply that

the transitions generated by the rules in Ψs are not actually necessary for complete-

ness and, in fact, bisimilarity on Cs is already sound and complete for reduction

congruence.
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6 Refining rules

We have shown that closing wrt (InHT) and (OutHT) is an “automatic” way of ob-

taining an lts on which similarity characterises reduction precongruence and indeed

bisimilarity characterises reduction congruence. It is clear that this procedure is es-

sentially the same in our three settings and is sufficient for completeness. What we

have not addressed in closing the ltss with these rules is whether it was necessary

to do so. Indeed, for the synchronous language one would expect that both input

and output actions are observable and that there should be no need for additional

HT rules. This is indeed the case when considering bisimilarity and reduction con-

gruence and in this section we shall demonstrate how we can safely remove some of

the HT rules in certain circumstances.

To start, consider the language La of asynchronous communication (cf. Sec-

tion 4). Interestingly, although the exclusion of the (OutHT) rule breaks completeness

of the lts for similarity, this is not the case for bisimilarity. To show this requires

more work but the reward is a refined lts in the sense that bisimulations in specific

cases can be made smaller, and therefore, reasoning about reduction congruence is

easier.

The key to showing the redundancy of (OutHT) for the asynchronous language

lies in the fact that strong output actions are preserved by reduction congruence as

given by the following result, which is similar in spirit to Theorem 2 of [9]. However,

the notion of observational equivalence is different (ours is “dynamic” in the sense

of [10]).

Theorem 6.1 Suppose that a! ‖ Q � R, then R = a! ‖ R′ for some R′.

Proof. Omitted. �

Indeed, let ∼inHT denote bisimilarity over the lts given by extending with only

rule (inHT). The characterisation of reduction congruence does not break:

Theorem 6.2 ∼inHT =�.

Proof. It is easy to check that soundness (∼inHT ⊆�) still holds. For the reverse

inclusion, completeness, we establish that � is in fact a bisimulation relation. Sup-

pose then that P � Q and that P
α
−→ P0. The interesting case is α = a!R: choose a

name c which is fresh for both P and Q and let χ
def
= c! ‖ a?c?; P must be able to

engage in output on a so

P ‖ χ −→ (P ′′ ‖ c! ‖ c?) −→ P ′

for some P ′, P ′′ where P0 is P ′ ‖ R. We see that because P � Q, we must also have

some Q′, Q′′ and

Q ‖ χ −→ Q′′ −→ Q′

such that (P ′′ ‖ c! ‖ c?) � Q′′ and P ′ � Q′. The freshness of c and Theorem 6.1

tells us that c is not in P ′ and thus Q′ cannot be of the form c! ‖ Q′′′ for any Q′′′.

But this means that the c! in χ must have been consumed. The only possibility for
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this is if Q′′ = Q′ ‖ c! ‖ c? and this could have only arisen if Q = a! ‖ Q′. From this

we can see that Q
a!R
−−→ Q′ ‖ R and, by congruence of � we have P ′ ‖ R � Q′ ‖ R

as required. �

The key property used in the above proof is the preservation of strong output

actions given by Theorem 6.1. This property is a useful one for characterising the

observability of particular actions and has in fact been exploited in the literature in

the form of barbed equivalences [9,6]. In fact, as a corollary of Theorem 6.1 we can

easily check that reduction barbed congruence in the finite asynchronous calculus

with output barbs coincides with our reduction congruence.

For the synchronous language Ls it is in fact possible to prove that bisimilarity

over Φs(∅) without the addition of any Honda Tokoro rules is already complete for

reduction congruence. The proof of this relies on establishing results that correspond

to Theorems 6.1 and 6.2 but for both input and output actions separately. The point

is that it is sound to blindly add the HT rules to Φs(∅) in order to automatically

obtain completeness. We do not need to know whether inputs and outputs are

observable or not.

The HT rules certainly increase the size of the lts and introduce some undesir-

able properties such as infinite branching. Indeed, when HT rules can be avoided,

one often obtains a more useful lts in the sense that bisimulations are easier to

construct. We finish this section with a trivial but illustrative example to show the

impact of the (removal of the) rule (outHT) on reasoning with bisimilarity. Consider

the processes of La

P
def
= a! ‖ a?0 and Q

def
= τ0

and suppose that we wish to demonstrate that P 
� Q. Theorem 6.2 would immedi-

ately distinguish these processes as there is no ∼inHT which relates these due to the

presence of an output action on a in P which is clearly absent from Q. Compare

this the use of the ∼HT relation: consider how Q could match

P
a!↓ c!
−−−→

c!↓ 0
−−→ a?

for some c. The rule (outHT) would allow Q
a!↓ c!
−−−→ a?c! as an attempt to match P ’s

initial move but there can be no subsequent matching transition from a?c!.

The interesting point in the above example is that there is a non-trivial use

of the continuation process in the experiment a!↓ c!. Indeed, these continuation

processes are crucial to the soundness of using HT rules. Note that in the more

traditional approach to LTS semantics that one finds in, say, [8], there is no room

for specifying the continuation process in an experiment — effectively it is always

just the nil process. For the synchronous language this turns out to be sufficient

as no HT rules are necessary, however, what is significant that, if the continuation

processes are restricted to be the nil process, it is actually unsound to add them.

The previous example suffices to demonstrate this because P and Q would in fact

become bisimilar if we restricted to a!↓ 0 labels and admitted rule (outHT).
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7 Conclusions and related work

Sewell’s paper [16] about the derivation of lts has stimulated considerable interest

(e.g. [7,14,15,4]) in the relationship between labelled transition systems and under-

lying reduction semantics. Our simple “fully asynchronous” language (cf. Section 3)

was considered already by Sewell but observability was not taken into account in

his derived lts. Bonchi [3] has also considered this example: reduction congruence

agrees with the closely related concept of saturated semantics. In this paper, we

did not consider the derivation process as such but it is usually the case that such

derivations (cf. [12,13]) yield ltss which are sound but not complete, here we have

illustrated a method by which one “completes” them. This fits in with our general

research programme that aims at developing techniques (such as derivation of ltss)

which are applicable across several languages for concurrency.

Throughout the present paper we have considered finite languages. A natural

question is whether the techniques that we have studied extend to languages with

infinite behaviour. To answer it, we must first divulge our reasons for considering

finiteness: by assuming it we were able to use very simple notions of observational

preorders/equivalences (cf. Definitions 3.1 and 3.2). In particular, we were able to

avoid talking about barbs which specify “moral observability”, and such notions

become less clear for more involved languages [9]. In particular, extending the ideas

of [9] may lead to a more clear understanding of the general infinite case.
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