On a Deflation Method for the Symmetric Generalized Eigenvalue Problem

Zhi-hao Cao
Department of Mathematics
Fudan University
Shanghai, The People's Republic of China
and
Department of Applied Mathematics and Statistics
State University of New York at Stony Brook
Stony Brook, New York 11794

Submitted by Richard A. Brualdi

ABSTRACT

A generalization of the Fix-Heiberger reduction is used to deflate the infinite and the singular structure from a symmetric matrix pencil $A - \lambda B$. The finite eigenvalues can be determined from the remaining symmetric problem. With the aid of this deflation method it is shown that the Kronecker canonical form of $A - \lambda B$ is very special if B is positive semidefinite.

1. INTRODUCTION

For the general matrix pencil

$$A - \lambda B,$$

(1)

where A and B are both $m \times n$ matrices, there exist an $m \times m$ matrix P and an $n \times n$ matrix Q whose elements are independent of λ, such that $P(A - \lambda B)Q$ has the Kronecker canonical form [1]

$$P(A - \lambda B)Q = \begin{bmatrix}
A_N - \lambda B_N & A_\varepsilon - \lambda B_\varepsilon \\
& A_\eta - \lambda B_\eta
\end{bmatrix},$$

(2)

© Elsevier Science Publishing Co., Inc., 1987
52 Vanderbilt Ave., New York, NY 10017 0024-3795/87/$3.50
where:

(i) $A_N - \lambda B_N$ is a square matrix pencil, and is of the following form:

$$A_N - \lambda B_N = \begin{bmatrix} J - \lambda I & I - \lambda N \end{bmatrix},$$

where the matrix J is in the Jordan canonical form, and N is a Jordan canonical matrix with zero diagonal elements.

(ii) $A_e - \lambda B_e$ is a block diagonal matrix pencil whose diagonal blocks consist of bidiagonal matrices, each of which is an $\epsilon_i \times (\epsilon_i + 1)$ matrix of the form

$$\begin{bmatrix} \epsilon_i & \epsilon_i + 1 \\ \epsilon_i & \epsilon_i + 1 \\ \epsilon_i & \epsilon_i + 1 \\ \vdots & \vdots \\ -\lambda & 1 \\ -\lambda & 1 \end{bmatrix},$$

where ϵ_i is a nonnegative integer and is called the Kronecker column index.

(iii) $A_\eta - \lambda B_\eta$ is also a block diagonal matrix pencil whose diagonal blocks consist of bidiagonal matrices, each of which is an $(\eta_i + 1) \times \eta_i$ matrix of the form

$$\begin{bmatrix} \eta_i & \eta_i \\ \eta_i & \eta_i \\ \eta_i & \eta_i \\ \vdots & \vdots \\ -\lambda & 1 \\ -\lambda & 1 \end{bmatrix},$$

where η_i is a nonnegative integer and is called the Kronecker row index.

If A and B are both square matrices and $\det(A - \lambda B) \neq 0$, then (1) is called a regular matrix pencil. In this case, there are no blocks whose forms are (4) or (5), i.e., (3) is the canonical form of the regular matrix pencil; it is then also called the Weierstrass canonical form.

In this paper, we generalize the Fix-Heiberg reduction to deflate the infinite and the singular structure from a symmetric matrix pencil $A - \lambda B$ and determine the finite eigenvalues from the remaining symmetric problem.
With the aid of this deflation method we show that the Kronecker canonical form of $A - \lambda B$ is very special if B is symmetric positive semidefinite.

2. GENERAL CASE

We start with generalizing the Fix-Heiberger reduction [6, 9] to deflate A and B simultaneously when $A - \lambda B$ is a general $n \times n$ symmetric matrix pencil.

1. Construct an orthogonal matrix Q_1 to diagonalize B:

$$B^{(0)} \equiv Q_1^T B Q_1 = \begin{bmatrix} D_{11} & 0 \\ 0 & 0 \end{bmatrix}_{n_1},$$

where D_{11} is a diagonal matrix whose entries consist of the n_1 nonzero eigenvalues of B. Apply the same transformation to A, and partition the resulting matrix $A^{(0)}$ into the form

$$A^{(0)} \equiv Q_1^T A Q_1 = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}_{n_1}.$$

2. Diagonalize A_{22} with the orthogonal matrix Q_{22}:

$$Q_{22}^T A_{22} Q_{22} = \text{diag}(D_{33}, 0),$$

where D_{33} is a diagonal matrix whose entries consist of the nonzero eigenvalues of A_{22}. Then apply the congruent transformation associated with $Q_2 = \text{diag}(I, Q_{22})$ to get

$$A^{(1)} \equiv Q_2^T A^{(0)} Q_2 = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12}^T & D_{33} & 0 \\ A_{13}^T & 0 & 0 \end{bmatrix}_{n_1},$$

$$B^{(1)} \equiv Q_2^T B^{(0)} Q_2 = \begin{bmatrix} D_{11} \\ 0 \\ 0 \end{bmatrix}.$$
From hereafter, we reuse some of the names of the blocks after processing them to avoid step superscripts.

3. Construct an \(n_1 \times n_1 \) orthogonal matrix \(Q_{11} \) and an \(n_4 \times n_4 \) orthogonal matrix \(Q_{33} \) such that

\[
Q_{11}^T A_{13} Q_{33} = \begin{bmatrix}
\tilde{n}_4 & 0 \\
0 & \tilde{n}_4 - \tilde{n}_4
\end{bmatrix}
\]

(8)

where \(A_{14} \) is an \(\tilde{n}_4 \times \tilde{n}_4 \) nonsingular matrix. Then apply the congruent transformation associated with

\[
Q_3 = \text{diag} \left(\frac{Q_{11}}{n_1}, I, \frac{Q_{33}}{n_4} \right)
\]

to get

\[
A^{(2)} \equiv Q_3^T A^{(1)} Q_3 = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} & 0 \\
A_{12}^T & A_{22} & A_{23} & 0 & 0 \\
A_{13}^T & A_{23}^T & D_{33} & 0 \\
A_{14}^T & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\equiv \begin{bmatrix}
\tilde{A}^{(2)} & 0 \\
0 & 0
\end{bmatrix}
\]

(9)

If \(A_{13} \) in (7) is of full column rank, then \(\tilde{n}_4 = 0 \), and so \(A^{(2)} = \tilde{A}^{(2)} \) and \(B^{(2)} = \tilde{B}^{(2)} \).

Theorem 1. If \(A - \lambda B \) is a regular matrix pencil [1], then the \(n_1 \times n_4 \) matrix \(A_{13} \) in (7) is of full column rank.
Proof. If, on the contrary, \(A_{13} \) is not of full column rank, then there exists an \(n_4 \)-dimensional vector \(y_3 \neq 0 \) such that \(A_{13}y_3 = 0 \). Hence for the \(n \)-dimensional nonzero vector \(y = [0, 0, y_3^T] \) we have

\[
(A^{(i)} - \lambda B^{(i)})y = 0.
\]

This holds for any \(\lambda \), so \(A - \lambda B \) is a singular matrix pencil.

For the generalized eigenvalue problem (1) we have separated out a subset of the Kronecker indices \((n_4 - \tilde{n}_4 \) zero Kronecker row and column indices) [1]. Hence we only need to consider the generalized eigenvalue problem

\[
\tilde{A}^{(2)}x = \mu \tilde{B}^{(2)}x
\]

associated with the matrices in (9). Let \(x = [x_1^T, x_2^T, x_3^T, x_4^T]^T \), and substitute this \(x \) in (10). The problem is now separated into an \((n_1 - \tilde{n}_4) \times (n_1 - \tilde{n}_4) \)

symmetric generalized eigenvalue problem

\[
(A_{22} - A_{23}D_{33}^{-1}A_{23}^T)x_2 = \mu B_{22}x_2,
\]

and the following equations:

\[
x_1 = 0, \quad x_3 = -D_{33}^{-1}A_{23}^Tx_2, \quad x_4 = -A_{14}^{-1}(A_{12}x_2 + A_{13}x_3 - \mu B_{12}x_2).
\]

The symmetric deflation procedure can be continued with respect to the matrix pencil \((A_{22} - A_{23}D_{33}^{-1}A_{23}^T) - \lambda B_{22} \), which is in accordance with the matrices in (11). These procedures are continued \(l \) times until the resulting right-hand \((B_{22})_l \) is nonsingular. In that case we get

\[
(A_{22} - A_{23}D_{33}^{-1}A_{23}^T)_l(x_2)_l = \mu (B_{22})_l(x_2)_l.
\]

We can apply QZ algorithm [2, 8] or HR algorithm [3, 4] to solve the problem (12). If \(n_1 - \tilde{n}_4 \) is zero, then there are no finite eigenvalues.

3. ONE OF THE MATRICES IS SYMMETRIC POSITIVE SEMIDEFINITE

If one of the matrices in the symmetric matrix pencil \(A - \lambda B \) is positive (or negative) semidefinite, then the canonical form of this matrix pencil has a very special form and the solution of the corresponding generalized eigenvalue problem will be simplified considerably.
THEOREM 2. Suppose the matrix B in the symmetric matrix pencil $A - \lambda B$ is positive semidefinite. Then $A - \lambda B$ is a regular matrix pencil if and only if the $n_1 \times n_4$ matrix A_{13} in (7) is of full column rank.

Proof. We have proved the "only if" part in Theorem 1. Now we prove the "if" part. Since B is symmetric positive semidefinite, the diagonal entries of the diagonal matrix D_{11} in (7) are all positive. Hence apply the congruent transformation associated with $D_2 = \text{diag}(D_{11}^{-1/2}, I, I)$ to get

\[
\hat{A}_1 \equiv D_2 A^{(1)} D_2 = \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} \\
\hat{A}_{12}^T & D_{33} & 0 \\
\hat{A}_{13}^T & 0 & D_{33}
\end{bmatrix}, \quad \hat{B}_1 \equiv D_2 B^{(1)} D_2 = \begin{bmatrix}
I \\
0 \\
0
\end{bmatrix},
\]

(13)

where \hat{A}_{13} is still of full column rank. By applying Fix-Heiberger reduction we get the following strictly equivalent matrix pairs (\hat{A}_2, \hat{B}_2) and (\hat{A}_3, \hat{B}_3):

\[
\hat{A}_2 = \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} & \hat{A}_{14} \\
\hat{A}_{12}^T & \hat{A}_{22} & \hat{A}_{23} & 0 \\
\hat{A}_{13}^T & \hat{A}_{23}^T & D_{33} & 0 \\
\hat{A}_{14}^T & 0 & 0 & D_{33}
\end{bmatrix}, \quad \hat{B}_2 = \begin{bmatrix}
I \\
0 \\
0 \\
0
\end{bmatrix}; \quad (14)
\]

\[
\hat{A}_3 = \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} & \hat{A}_{13} & \hat{A}_{14} \\
\hat{A}_{12}^T & \hat{A}_{22} & \hat{A}_{23} & 0 \\
\hat{A}_{13}^T & \hat{A}_{23}^T & D_{33} & 0 \\
\hat{A}_{14}^T & 0 & 0 & D_{33}
\end{bmatrix}, \quad \hat{B}_3 = \begin{bmatrix}
I \\
0 \\
0 \\
0
\end{bmatrix}. \quad (15)
\]

After row and column interchange we get

\[
\hat{A}_4 = \begin{bmatrix}
0 & \hat{A}_{14}^T \\
\hat{A}_{22} & \hat{A}_{12}^T \\
0 & \hat{A}_{23}^T \\
\hat{A}_{12} & \hat{A}_{11} & \hat{A}_{13} & \hat{A}_{14}
\end{bmatrix}, \quad \hat{B}_4 = \begin{bmatrix}
0 & 0 & 0 \\
I & 0 & 0 \\
0 & 0 & I
\end{bmatrix}. \quad (16)
\]
Then with

$$
\begin{bmatrix}
1 & I \\
-\hat{A}_{12}^T \hat{A}_{14}^{-T} & I \\
-\hat{A}_{12} & \hat{A}_{11} & \hat{A}_{13} & \hat{A}_{14}
\end{bmatrix},
$$

(17)

left multiply \hat{A}_4 and \hat{B}_4, and interchange rows 1 and 2 to get

$$
\hat{A}_5 =
\begin{bmatrix}
\hat{A}_{22} & & & \\
0 & \hat{A}_{14}^T & & \\
0 & 0 & D_{33} & \\
\hat{A}_{12} & \hat{A}_{11} & \hat{A}_{13} & \hat{A}_{14}
\end{bmatrix},
\quad
\hat{B}_5 =
\begin{bmatrix}
I & & & \\
0 & 0 & & \\
0 & 0 & 0 & \\
0 & I & 0 & 0
\end{bmatrix}.
$$

(18)

This is a staircase form [10, 11]. Since the diagonal blocks are all square and the

$$
\hat{A}_{14}^T \quad \text{and} \quad \begin{bmatrix}
D_{33} \\
\hat{A}_{13} & \hat{A}_{14}
\end{bmatrix}
$$

are nonsingular, the matrix pencil $\hat{A}_5 - \lambda \hat{B}_5$ is regular [10, 11]. The matrix pencil $A - \lambda B$ is also regular because it is strictly equivalent to $\hat{A}_5 - \lambda \hat{B}_5$. ■

For the canonical form of the singular matrix pencil we have

Theorem 3. Suppose B in the symmetric matrix pencil $A - \lambda B$ is positive semidefinite. Then the canonical form of $A - \lambda B$ is as follows:

$$
A - \lambda B \sim
\begin{bmatrix}
D - \lambda I & I & \cdots & I \\
I_2 - \lambda I_2 & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
I_2 - \lambda I_2 & \cdots & \cdots & 0
\end{bmatrix}_{n_1 - n_4} \quad \begin{bmatrix}
n_1 - n_4 \\
n_3 \\
2n_4 \\
n_4 - n_4
\end{bmatrix},
$$

(19)

where D is a real diagonal matrix, and

$$
J_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.
$$
Proof. Since B is symmetric positive semidefinite, the matrix pair $(A^{(2)}, B^{(2)})$ in (9) is strictly equivalent to the following matrix pair:

$$\begin{bmatrix} \tilde{A}_5 \\ 0 \end{bmatrix}, \begin{bmatrix} \tilde{B}_5 \\ 0 \end{bmatrix} \begin{bmatrix} n_1 + n_3 + \bar{n}_4 \\ n_4 - \bar{n}_4 \end{bmatrix}, \quad (20)$$

where \tilde{A}_5 and \tilde{B}_5 have the same form as \hat{A}_5 and \hat{B}_5 in (18) respectively. From Theorem 2 we know $\hat{A}_5 - \lambda \hat{B}_5$ is strictly equivalent to the regular part of $A - \lambda B$. Hence the matrices in (20) are staircase forms of a singular matrix pair. From (18) and (20) we can immediately get the all conclusions of the theorem.

From Theorem 3 we learn that if matrix pencil $A - XB$, where B is positive semidefinite, is singular, then $N(A) \cap N(B) \neq \{0\}$, i.e., A and B must have a common null vector. Conversely, if $N(A) \cap N(B) \neq \{0\}$, then $A - \lambda B$ is singular. Hence we have

COROLLARY 1. Suppose B in the symmetric matrix pencil is positive semidefinite. Then $A - \lambda B$ is singular matrix pencil if and only if $N(A) \cap N(B) \neq \{0\}$.

For the 2×2 symmetric matrix pencil we have

COROLLARY 2. A 2×2 symmetric matrix pencil $A - \lambda B$ is singular if and only if A and B have a common null vector.

Applying Theorem 3, we can also prove the following theorem easily (cf. [5])

THEOREM 4. Symmetric matrices A and B with B positive semidefinite can be diagonalized simultaneously by nonsingular congruent transformation if and only if the submatrices

$$\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$$

in (6) have the same rank.

Proof. From Theorem 3 we know that A and B can be diagonalized simultaneously by equivalent transformation if and only if $\bar{n}_4 = 0$ in (19), i.e.,
A DEFLATION METHOD

\(\hat{A}_{13} = 0 \) in (13). Obviously,

\[
\begin{bmatrix}
\hat{A}_{12} & 0 \\
D_{33} & 0 \\
0 & 0
\end{bmatrix}
\]

\[
\text{rank}
\begin{bmatrix}
\hat{A}_{12} & 0 \\
D_{33} & 0 \\
0 & 0
\end{bmatrix}
\]

Therefore

\[
\text{rank}
\begin{bmatrix}
A_{12} \\
A_{22}
\end{bmatrix}
= \text{rank}(A_{22}).
\]

We now show that we can diagonalize \(A \) and \(B \) by congruent transformation. Since

\[
\text{rank}
\begin{bmatrix}
A_{12} \\
A_{22}
\end{bmatrix}
= \text{rank}(A_{22}),
\]

we have \(\hat{A}_{13} = 0 \) in (13). Hence

\[
\hat{A}_1 =
\begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} \\
\hat{A}_{12}^T & D_{33}
\end{bmatrix},
\hat{B}_1 =
\begin{bmatrix}
I \\
0 \\
0
\end{bmatrix}.
\]

Let

\[
H =
\begin{bmatrix}
I \\
- D_{33}^{-1}\hat{A}_{12}^T & I
\end{bmatrix}.
\]

We have

\[
H^T\hat{A}_1H =
\begin{bmatrix}
\hat{A}_{11} - \hat{A}_{12}D_{33}^{-1}\hat{A}_{12}^T & D_{33} \\
0 & 0
\end{bmatrix},
\]

\[
H^T\hat{B}_1H =
\begin{bmatrix}
I \\
0 \\
0
\end{bmatrix}.
\]

Since \(\hat{A}_{11} - \hat{A}_{12}D_{33}^{-1}\hat{A}_{12}^T \) is symmetric, the conclusion follows immediately.

When the matrix \(B \) is positive semidefinite, the solution of the corresponding generalized eigenvalue problem (1) can be reduced to the solution
of the \((n_1 - \tilde{n}_4) \times (n_1 - \tilde{n}_4)\) symmetric eigenvalue problem [cf. (11) and (14)]
\[
(\hat{A}_{22} - \hat{A}_{23} D_{33}^{-1} \hat{A}_{23}^T) x_2 = \mu x_2.
\]

Assuming that the matrix \(\hat{A}_{13}\) [cf. (13)] is of full column rank, Fix and Heiberger have already derived (21). From Theorem 2 we know that their hypothesis about \(\hat{A}_{13}\) is the regularity of the matrix pencil \(A - \lambda B\), and from Theorem 3 we know that the \(n_1 - \tilde{n}_4\) eigenvalues of (21) are the all finite eigenvalues of (1). The matrix (1) has \(n_3 + 2\tilde{n}_4\) infinite eigenvalues, and if the pencil is singular (i.e., \(n_4 > \tilde{n}_4\)), then there exist \(n_4 - \tilde{n}_4\) zero Kronecker indices.

This work was supported by an S. H. Ho Fellowship through the Committee for Educational Exchange with China. I wish to thank Professor R. P. Tewarson for his support of this work.

REFERENCES

3 M. A. Brebner and J. Grad, Eigenvalues of \(Ax = \lambda Bx\) for real symmetric matrices \(A\) and \(B\) computed by reduction to pseudosymmetric form and the HR process, Linear Algebra Appl. 43:43–118 (1982).

Received 4 February 1985; revised 25 June 1986