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Data Envelopment Analysis (DEA) is a mathematical model that evaluates the relative
efficiency of Decision Making Units (DMUs) with multiple input and output. In some
applications of DEA, ranking of the DMUs are important. For this purpose, a number of
approaches have been introduced. Among them is the cross-efficiency method. The
method utilizes the result of the cross-efficiency matrix and averages the cross-efficiency
scores of each DMU. Ranking is then performed based on the average efficiency scores. In
this paper, we proposed a new way of handling the information from the cross-efficiency
matrix. Based on the notion that the ranking order is more important than individual effi-
ciency score, the cross-efficiency matrix is converted to a cross-ranking matrix. A cross-
ranking matrix is basically a cross-efficiency matrix with the efficiency score of each ele-
ment being replaced with the ranking order of that efficiency score with respect to the
other efficiency scores in a column. By so doing, each DMU assume the role of a decision
maker and how they voted or ranked the other DMUs are reflected in their respective col-
umn of the cross-ranking matrix. These votes are then aggregated using a preference
aggregation method to determine the overall ranking of the DMUs. Comparison with
an existing cross-efficiency method indicates a relatively better result through usage of
the proposed method.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Data Envelopment Analysis (DEA) is a linear programming technique that was first introduced in Charnes et al. paper [1].
This technique evaluates the relative efficiency of Decision Making Units (DMUs) which contain some nonhomogeneous in-
put and output. In the traditional DEA models like the CCR model [1] and the BCC model [2], efficiency scores of efficient
DMUs are 1 and efficiency scores of inefficient DMUs are less than 1. A frequently discussed problem involving the said mod-
els is that some of the efficient DMUs cannot be discriminated. A number of approaches have been introduced to overcome
this problem and to improve the discrimination power of DEA. Among them are the super-efficiency methods, the multi-
criteria DEA methods and the cross-efficiency methods [3].

The super-efficiency method was introduced by Andersen and Petersen [4] and is known as the AP model. In this method,
the traditional DEA models are reformulated by excluding the input and output of the DMU that is being ranked from the
models. However, this exclusion might cause unfeasibility of the DEA models [4,5]. To overcome this situation, Saati et al.
[6] modified the non-radial model presented in Mehrabian et al. [5] and converted it to an input–output orientation model
. All rights reserved.
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that caused the LP model to be always feasible. The infeasibility of super-efficiency DEA model in a variable return to scale
environment was dealt with by Chen [7] in which both input-oriented and output-oriented super-efficiency DEA models
were proposed to fully characterize super-efficiency.

One of the methods which used the multi-criteria decision-making (MCDM) models for ranking DMUs is the method
proposed by Li and Reeves [8]. The method introduced a Multi-Criteria Data Envelopment Analysis (MCDEA) model with
three objective functions in which the first objective is to obtain the optimal solution of the CCR or the BCC models. The
other two objective functions are to minimize the maximum quantity among all deviation variables and to minimize the
summation of deviations. Recently, Bal et al. [9] combined the coefficients of variation for the input–output weights to the
objective function of the CCR model. However, as noted by Wang and Luo [10], Bal’s proposed method has its shortcom-
ings. For instance, since the input and output weights are derived from different dimensions and units, they cannot be
simply added. Also, since the model is nonlinear, multiple local optimal solutions may be obtained. Furthermore, Bal
et al. [11] converted the MCDEA model proposed by Li and Reeves [8] to a goal programming model in order to discrim-
inate the efficient DMUs.

Cross-efficiency method, pioneered by Sexton et al. [12], evaluates the performance of a DMU by comparing it to the opti-
mal input and output weights of other DMUs. Doyle and Green [13] developed a set of formulations in order to remedy the
shortcoming of the Sexton’ method which is the non-uniqueness of the factor weights obtained from the DEA models. These
models, known as aggressive and benevolent methods, obtain the robust factor weights for use in the construction of the
cross-efficiencies method. In the aggressive and benevolent formulations the cross-efficiencies of the other DMUs are min-
imized and maximized, respectively. Recently, Wang and Chin [14] proposed an alternative cross-efficiency model known as
the neutral DEA model to obtain a different set of input and output weights from aggressive and benevolent formulations.

A number of other methods have been integrated with DEA models. Liang et al. [15] integrated game theory and cross-
efficiency in order to rank the Decision Making Units in DEA. In the model, DMUs are considered as players. Before this, Sin-
uany-Stern et al. [16] proposed an approach based on the relationship between DEA and AHP (analytic hierarchy process) to
rank DMUs. Recently, Wu [17] utilized the concept of fuzzy for ranking of DMUs in the traditional DEA models. For this pur-
pose, firstly the DMUs are evaluated by the CCR and the cross-efficiency models. Secondly, a fuzzy preference relation is
established. Finally, a priority vector of the preference is constructed and is used for ranking DMUs. Zerafat Angiz et al.
[18] also utilized the fuzzy concept to completely rank efficient DMUs. On this aspect, this paper integrates the preference
aggregation method with DEA to determine the ranking of DMUs.

Preference aggregation problem, in the context of a ranked voting system is a group decision making problem of selecting
m alternatives from a set of n alternatives (n > m). Hence, each decision maker ranks the alternatives from the most preferred
(rank = 1) to the least preferred (rank = n). Obviously, due to different opinions of the decision makers, each alternative may
be placed in a different ranking position. Some studies suggest a simple aggregation method by finding the total score of each
alternative as the weighted sum of the votes that each alternative received by different decision makers. In this method, the
best alternative is the one with the largest total score. The key issue of the preference aggregation is how to determine the
weights associated with different ranking positions. Perhaps, Borda–Kendall method [19] is the most commonly used ap-
proach for determining the weights due to its computational simplicity. Pioneered by Cook and Kress [20], a number of
DEA-based preference aggregation methods have been proposed in recent years. Analysis of these methods and their draw-
backs can be found in Llamazares and Peña [21]. Recently, Zerafat Angiz et al. [22,23] also proposed DEA-based methods for
handling preference aggregation. The first work was on the use of multi-objective linear programming approach and the sec-
ond was on the use of fuzzy numbers.

In some DEA applications, pursuing the best ranking is more important than maximizing the individual efficiency score.
Wu et al. [24] incorporated this notion into their DEA model by proposing a mixed integer programming model with a sec-
ondary goal of ranking order minimization. In this paper, we incorporated this notion by converting the cross-efficiency ma-
trix into a cross-ranking matrix. A cross-ranking matrix is basically a cross-efficiency matrix with the efficiency score of each
element being replaced with the ranking order of that efficiency score with respect to the other efficiency scores in a column.
By so doing, each DMU has now become a decision maker and how they voted or ranked the other DMUs are reflected in
their respective column of the cross-ranking matrix. The aggregation of these votes is a preference aggregation problem
and a modified Cook and Kress method is used to handle the situation.

The rest of this paper is organized in the following manner. Some mathematical models used in this paper are introduced
in Section 2. The proposed method is presented in Section 3. Section 4 illustrates the new method and conclusions are given
in Section 4.

2. Background

2.1. CCR model

In mathematical terms, consider a set of n DMUs, in which xij ði ¼ 1;2; . . . ;mÞ and yrj ðr ¼ 1;2; . . . ; sÞ are input and output
of DMUj ð j ¼ 1;2; . . . ;nÞ. A standard DEA model for assessing DMUp which is known as the CCR model [1], is formulated in
Model (1).
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In Model (1), the optimal value (z�p) demonstrates the relative efficiency score associated with DMUp which is under eval-
uation. v i and ur are the associated input and output weights. In this model DMUp is efficient if z�p ¼ 1.

2.2. Cross-efficiency evaluation

In the cross-efficiency method, the elements of the cross-efficiency matrix is the efficiency score of each DMU which is
calculated using the weights obtained from the optimal solution of the DMU that is under evaluation. The results of all the
DEA cross-efficiency scores, calculated by solving n linear programming problems corresponding to n DMUs under evalua-
tion, can be described as follows:
z�jp ¼
Ps

r¼1u�rpyrjPm
i¼1v�ipxij

p; j ¼ 1;2; :::;n ð2Þ
where z�jp represents the efficiency score of DMUj while DMUp is being evaluated. u�rp and v�ip indicate the optimal weights
evaluated by the linear programming problem associated with DMUp. On the other hand, DMUj is evaluated by the optimal
weights of DMUp.

To rank the DMUs using the cross-efficiency method, the average cross-efficiency score is calculated as:
�zj ¼
Pn

p¼1z�jp
n

j ¼ 1;2; :::;n ð3Þ
There are some other scores that can be used for ranking DMUs, such as median and minimum of scores (see Doyle and
Green [13]). One drawback of the above mentioned method is that the input and output weights are not unique and thus
there are multiple optimal solutions for the traditional DEA models. To remedy this shortcoming, the following models
which are known as the aggressive Model (4) and the benevolent Model (5) are often used:
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where z�pp ¼ z�p ¼
Ps

r¼1u�rpyrp is the efficiency score of CCR model related to DMUp.

2.3. Cook and Kress method

Cook and Kress [20] proposed a method that is based on DEA to aggregate the votes from a preferential ballot. For this
purpose, they used the following DEA Model (6) in which output are number of first place votes, second place votes and
so on that a DMU obtained and a single input with value 1.
max bp ¼
Xn

k¼1

lkwpk

s:t:
Xn

k¼1

lkwjk 6 1 j ¼ 1;2; :::;m

lk � lkþ1 P dðk; eÞ k ¼ 1;2; :::;n� 1
ln P dðn; eÞ

ð6Þ
where wjk is the number of rank k vote that DMUj obtained and lk is the weight of rank k calculated by Model (6). It is clear
that lk P lkþ1, so the extra constraint lk � lkþ1 P dðk; eÞ indicates how much vote k + 1 is preferred to vote k. The notation
dðk; eÞ is a function which is non-decreasing in e and is referred to as a discrimination intensity function. Model (6) is solved
for each candidate j ¼ 1;2; . . . ;m.
3. The proposed approach

The proposed method for ranking DMUs under the notion that pursuing the best ranking is more important than maxi-
mizing the individual efficiency score comprises six stages.

Stage 1. Determine the efficiency score of all DMUs using the CCR model, i.e. Model (1). Let z�pp be efficiency score of DMUp.
Stage 2. Construct the cross-efficiency matrix Z ¼ ðz�jpÞn�n using the aggressive or the benevolent model. The z�pp values

that were determine in Stage 1 are used as the diagonal elements of the cross-efficiency matrix associated to DMUp. The
same z�pp values are also used in solving Model (5). Elements (j,p) of the matrix are the z�jp values calculated using formula (2).

Stage 3. Convert the cross-efficiency matrix that was constructed in Stage 2 into a cross-ranking matrix R ¼ ðrjpÞn�n where
rjp is the ranking order of z�jp in column p of matrix Z.

Stage 4. Construct the preference matrix W ¼ ðwjkÞn�n with reference to matrix R where wjk is the number of time that
DMUj is placed in rank k.

Stage 5. Construct matrix X ¼ ðĥjkÞn�n where ĥjk is the summation of the efficiency scores in matrix Z which corresponds to
DMUj being placed in rank k.

Stage 6. Obtain a common set of weight for final ranking of DMUs using the following modified Cook and Kress [20]
method:
max b ¼
Xn

j¼1

Pn
k¼1lkĥjk

b�j

s:t:
Xn

k¼1

lkĥjk 6 1 j ¼ 1;2; :::;n

lk � lkþ1 P dðk; eÞ k ¼ 1;2; :::;n� 1
ln P dðn; eÞ

ð7Þ
where ĥjk is as defined in Stage 5. Note that we have used ĥjk instead of wjk. b�j is the optimal solution of Model (6) with wjk

being replaced by ĥjk. In case of discrimination, a straightforward linear programming problem presented in Model (7) is
solved, since b�j ¼ 1. The value of e is obtained as indicated in Cook and Kress [20]. Finally, the DMUs are ranked based on
their z�j ¼

Pn
k¼1l�kĥjk values.

4. Illustration with a numerical example

Example. A real data set taken from a previous study by Sherman and Gold [25] for comparing the efficiency of 14 bank
branches is given in Table 1. The comparison is based on three input and four output as follows:

Input 1: Rent (thousands of dollars).
Input 2: Full time equivalent personnel.
Input 3: Supplies (thousands of dollars).



Table 1
Sherman and Gold data set on 14 bank branches.

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 Output 4

1 140,000 42,900 87,500 484,000 4,139,100 59,860 2,951,430
2 48,800 17,400 37,900 384,000 1,685,500 139,780 3,336,860
3 36,600 14,200 29,800 209,000 1,058,900 65,720 3,570,050
4 47,100 9,300 26,800 157,000 879,400 27,340 2,081,350
5 32,600 4,600 19,600 46,000 370,900 18,920 1,069,100
6 50,800 8,300 18,900 272,000 667,400 34,750 2,660,040
7 40,800 7,500 20,400 53,000 465,700 20,240 1,800,250
8 31,900 9,200 21,400 250,000 642,700 43,280 2,296,740
9 36,400 76,000 21,000 407,000 647,700 32,360 1,981,930

10 25,700 7,900 19,000 72,000 402,500 19,930 2,284,910
11 44,500 8,700 21,700 105,000 482,400 49,320 2,245,160
12 42,300 8,900 25,800 94,000 511,000 26,950 2,303,000
13 40,600 5,500 19,400 84,000 287,400 34,940 1,141,750
14 76,100 11,900 32,800 199,000 694,600 67,160 3,338,390

Table 2
Cross-efficiency matrix Z.

DMU DMU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave

1 1.000 0.149 0.216 0.916 0.839 0.344 0.722 0.421 0.285 0.238 0.256 0.268 0.246 0.246 0.438
2 1.000 1.000 0.701 1.000 1.000 0.673 1.000 0.856 0.523 0.674 1.000 0.929 1.000 1.000 0.883
3 0.772 0.627 1.000 0.837 0.879 0.449 1.000 0.582 0.361 0.892 0.914 1.000 0.864 0.864 0.725
4 0.957 0.203 0.453 1.000 1.000 0.515 0.944 0.553 0.302 0.724 0.709 0.736 0.679 0.679 0.675
5 0.785 0.203 0.336 0.880 0.904 0.305 0.808 0.287 0.121 0.702 0.758 0.727 0.786 0.786 0.599
6 0.828 0.239 0.537 0.935 1.000 1.000 1.000 1.000 0.743 1.000 1.000 1.000 0.971 0.971 0.873
7 0.631 0.173 0.452 0.717 0.762 0.215 0.782 0.226 0.134 0.767 0.727 0.760 0.694 0.694 0.553
8 0.718 0.474 0.738 0.794 0.841 0.829 0.924 1.000 0.603 0.856 0.904 0.948 0.866 0.866 0.812
9 0.093 0.310 0.558 0.094 0.097 0.163 0.122 0.257 1.000 0.101 0.094 0.116 0.086 0.086 0.227

10 0.523 0.271 0.911 0.649 0.728 0.278 0.902 0.341 0.196 1.000 0.853 1.000 0.781 0.781 0.658
11 0.567 0.387 0.517 0.669 0.740 0.368 0.791 0.393 0.250 0.834 0.967 0.926 0.956 0.956 0.666
12 0.581 0.222 0.558 0.687 0.747 0.322 0.817 0.353 0.188 0.847 0.799 0.852 0.757 0.757 0.606
13 0.519 0.300 0.288 0.607 0.661 0.466 0.615 0.431 0.223 0.621 0.869 0.723 0.905 0.905 0.581
14 0.593 0.308 0.450 0.710 0.788 0.510 0.802 0.501 0.313 0.867 1.000 0.928 1.000 1.000 0.698

Table 3
Cross-ranking matrix R.

DMU

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DMU1 1 13 13 3 5 9 10 7 8 12 11 11 12 12
DMU2 1 1 4 1 1 3 1 2 4 10 1 3 1 1
DMU3 5 2 1 5 3 7 1 3 5 2 3 1 6 6
DMU4 2 11 8 1 1 4 2 4 7 8 10 8 11 11
DMU5 4 11 11 4 2 11 6 10 14 9 8 9 7 7
DMU6 3 9 6 2 1 1 1 1 2 1 1 1 2 2
DMU7 7 12 9 7 7 13 9 12 13 7 9 7 10 10
DMU8 6 3 3 6 4 2 3 1 3 5 4 2 4 5
DMU9 13 5 5 13 12 14 12 11 1 13 12 12 13 13
DMU10 11 8 2 11 10 12 4 9 11 1 6 1 8 8
DMU11 10 4 7 10 9 8 8 7 9 6 2 5 3 3
DMU12 9 10 5 9 8 10 5 8 12 4 7 6 9 9
DMU13 12 7 12 12 11 6 11 6 10 11 5 10 5 4
DMU14 8 6 10 8 6 5 7 5 6 3 1 4 1 1
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Output 1: Loan applications, new pass-book loans, life insurance sales.
Output 2: New accounts, closed accounts.
Output 3: Travelers checks sold, bonds sold, bonds redeemed.
Output 4: Deposits, withdrawals, checks sold, treasury checks issued, B% checks, loan payments, pass-book loan pay-

ments, life insurance payments, mortgage payments.



Table 4
Preference matrix W – number of time that each DMU is placed in the different ranks.

Rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DMU1 1 0 1 0 1 0 1 1 1 1 2 3 2 0
DMU2 8 1 2 2 0 0 0 0 0 1 0 0 0 0
DMU3 3 2 3 0 3 2 1 0 0 0 0 0 0 0
DMU4 2 2 0 2 0 0 1 3 0 1 3 0 0 0
DMU5 0 1 0 2 0 1 2 1 2 1 3 0 0 1
DMU6 7 4 1 0 0 1 0 0 1 0 0 0 0 0
DMU7 0 0 0 0 0 0 5 0 3 2 0 2 2 0
DMU8 1 2 4 3 2 2 0 0 0 0 0 0 0 0
DMU9 1 0 0 0 2 0 0 0 0 0 1 4 5 1
DMU10 2 1 0 1 0 1 0 3 1 1 3 1 0 0
DMU11 0 1 2 1 1 1 2 2 2 2 0 0 0 0
DMU12 0 0 0 1 2 1 1 2 4 2 0 1 0 0
DMU13 0 0 0 1 2 2 1 0 0 2 3 3 0 0
DMU14 3 0 1 1 2 3 1 2 0 1 0 0 0 0

Table 5
Matrix X – summation of the efficiency scores in each rank place.

Rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DMU1 1 0.000 0.916 0.000 0.835 0.000 0.421 0.285 0.344 0.722 0.524 0.730 0.365 0.000
DMU2 8 0.856 1.602 1.224 0.000 0.000 0.000 0.000 0.000 0.674 0.000 0.000 0.000 0.000
DMU3 3 1.519 2.375 0.000 2.012 1.728 0.449 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DMU4 2 1.901 0.000 1.068 0.000 0.000 0.302 1.917 0.000 0.709 1.561 0.000 0.000 0.000
DMU5 0 0.904 0.000 1.665 0.000 0.808 1.544 0.727 1.429 0.287 0.844 0.000 0.000 0.121
DMU6 7 3.522 0.827 0.000 0.000 0.537 0.000 0.000 0.239 0.000 0.000 0.000 0.000 0.000
DMU7 0 0.000 0.000 0.000 0.000 0.000 3.652 0.000 1.961 1.247 0.000 0.399 0.349 0.000
DMU8 1 1.777 2.739 1.708 1.722 1.512 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DMU9 1 0.000 0.000 0.000 0.868 0.000 0.000 0.000 0.000 0.000 0.257 0.429 0.460 0.163
DMU10 2 0.911 0.000 0.902 0.000 0.853 0.000 1.833 0.341 0.728 1.368 0.278 0.000 0.000
DMU11 0 0.967 1.624 0.387 0.926 0.834 0.910 1.159 0.990 1.236 0.000 0.000 0.000 0.000
DMU12 0 0.000 0.000 0.874 1.375 0.799 0.799 1.100 2.782 0.544 0.000 0.188 0.000 0.000
DMU13 0 0.000 0.000 0.905 1.774 0.897 0.300 0.000 0.000 0.835 1.897 1.468 0.000 0.000
DMU14 3 0.000 0.867 0.928 1.011 1.409 0.802 1.303 0.000 0.45 0.000 0.000 0.000 0.000

Table 6
Results of the proposed model and the aggressive cross-efficiency model.

Proposed model Aggressive model

Efficiency Rank Efficiency Rank

DMU1 0.221 12 0.438 13
DMU2 0.999 2 0.883 1
DMU3 0.662 3 0.725 4
DMU4 0.445 6 0.675 6
DMU5 0.245 10 0.599 10
DMU6 1.000 1 0.873 2
DMU7 0.142 14 0.553 12
DMU8 0.547 4 0.812 3
DMU9 0.145 13 0.227 14
DMU10 0.392 7 0.658 8
DMU11 0.305 8 0.668 7
DMU12 0.206 9 0.617 9
DMU13 0.176 11 0.588 11
DMU14 0.513 5 0.698 5
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The use of the standard CCR model in Stage 1 resulted in 9 of the DMUs being efficient. The efficiency scores of these
DMUs are the diagonal values of the cross-efficiency matrix Z ¼ ðz�jpÞn�n in Table 2 which were constructed in Stage 2.

The cross-ranking matrix R ¼ ðrjpÞn�n that was constructed in Stage 3 by ranking the efficiency scores in each column of
the cross-efficiency matrix is shown in Table 3. In the matrix, r31 ¼ 5 means that DMU3 is ranked as number 5 when the
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optimal weights of DMU1 are used in determining the efficiency scores. Alternatively, the cross-ranking matrix can be
viewed as a ranked voting situation where 14 decision makers voted for the 14 DMUs. Each column represents a particular
decision maker’s vote and r31 ¼ 5 is now interpreted as decision maker 1 ranking DMU3 in the fifth place.

In Stage 4, a summary of the ranked voting outcomes in the cross-ranking matrix resulted in the preference matrix
W ¼ ðwjkÞn�n depicted in Table 4. In the matrix, w31 ¼ 3 means that DMU3 received three number 1 votes.

Matrix X ¼ ðĥjkÞn�n that is constructed in Stage 5 is shown in Table 5 where ĥjk is the summation of the efficiency scores in
matrix Z which corresponds to DMUj being placed in rank k. For example, ĥ32 ¼ 1:519 means that the summation of the effi-
ciency scores which corresponds to DMU3 being ranked as number 2 is 1.519. This value is obtained by first referring to
w32 ¼ 2 in matrix W which indicates that DMU3 received two number 2 votes. In row 3 of matrix R, rank 2 is found in col-
umns 2 and 10. Finally, by referring to matrix Z, we obtained z32 þ z3;10 ¼ 1:519. The advantage of using ĥjk instead of wjk is
that the discriminating power of the DEA model is improved.

In the final stage, Model (7) is solved and from the common set of weights that was obtained, the efficiency scores z�j of
the DMUs and their rank are determined. These results together with the result that were obtained using the aggressive
cross-efficiency model are shown in Table 6.

As expected, the result of the proposed method differs from that of the aggressive model due to the different approaches
used while aggregating information from the cross-efficiency matrix. The proposed method emphasized on the ranking po-
sition of the DMUs, whereas the aggressive method relied on the efficiency score. For some pairs of DMUs, their ranking po-
sition seem to be swapped with each other, such as between DMU2 and DMU6 for the first and second ranking positions,
between DMU3 and DMU8 for the third and fourth ranking positions and between DMU10 and DMU11 for the eighth
and ninth ranking positions. In referring to matrix W in Table 4, DMU6 which obtained 7 first place votes and 4 second place
votes is ranked better that DMU2 which obtained 8 first place votes and 1 second place vote. It seems that for DMU6, the gain
of 3 second place votes out-weighed the loss of 1 first place vote. DMU3 and DMU10 clearly out-ranked DMU8 and DMU11,
respectively, by getting 2 extra first place votes and the same number of second place vote.

5. Conclusion

Ranking of DMUs is a very important topic in DEA research. Many methods, each with its own strategy or logic in ranking
the DMUs have been proposed. One of the popular methods is the cross-efficiency method. This paper proposed a new meth-
od of handling information from the cross-efficiency matrix. Instead of determining the average efficiency scores in each row
and ranking the DMUs based on the scores, the efficiency scores in each column of the cross-efficiency are ranked and this
resulted in a cross-ranking matrix. The cross-ranking matrix is then treated as a ranked voting situation and is handled as a
preference aggregation problem in determining the final ranking of the DMUs. Basically, ranking of DMUs are done not only
in the final step, but also in the intermediate steps. The extra emphasis that is placed on the ranking order makes this method
suitable for use in certain situations such as in the assessment of R&D project proposal (see for example [26]) and material
selection (see for example [27]) whereby the ranking order of DMUs are more important than individual efficiency score.

The proposed method combines the cross-efficiency method with the Cook and Kress method. Since both of these meth-
ods are known to be strong at discriminating the DMUs, this special characteristic is also retained by the proposed method.

The idea of converting ordinary data into ordinal data, as proposed in this paper, can be extended to other areas of DEA
research such as in multi-period analysis, which is commonly dealt with using DEA window analysis (see for example [28]).
Besides that, the idea can also be used for the evaluation of alternatives in MCDM (Multiple Criteria Decision Making).
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