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Abstract

The “roof dual” of a QUBO (Quadratic Unconstrained Binary Optimization) problem has been introduced in [P.L. Hammer,
P. Hansen, B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization, Mathematical Programming
28 (1984) 121–155]; it provides a bound to the optimum value, along with a polynomial test of the sharpness of this bound, and
(due to a “persistency” result) it also determines the values of some of the variables at the optimum. In this paper we provide a
graph-theoretic approach to provide bounds, which includes as a special case the roof dual bound, and show that these bounds
can be computed in O(n3) time by using network flow techniques. We also obtain a decomposition theorem for quadratic pseudo-
Boolean functions, improving the persistency result of [P.L. Hammer, P. Hansen, B. Simeone, Roof duality, complementation and
persistency in quadratic 0–1 optimization, Mathematical Programming 28 (1984) 121–155]. Finally, we show that the proposed
bounds (including roof duality) can be applied in an iterated way to obtain significantly better bounds. Computational experiments
on problems up to thousands of variables are presented.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that numerous problems in operations research (e.g. portfolio problems), in computer science
(e.g. maximum satisfiability problems), in discrete mathematics (e.g. weighted stability number of graphs) and in
physics (e.g. the Ising problem) can be formulated as unconstrained minimization problems of quadratic real-valued
polynomials in 0–1 variables. The papers [12,20,26] list these and many other applications.

A problem of this type, appearing in discrete mathematics, is the “graph balancing” problem (see [28]). In this
problem a weighted signed graph is given, i.e. a graph with “positive” and “negative” edges, and with positive real
weights on all edges. The question is to find a set of edges of minimum total weight, the removal of which makes the
graph “balanced”, i.e. having no circuits which involve an odd number of negative edges. In [23] it has been noticed
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that by associating a 0–1 variable to every vertex, this problem can be reduced to a QUBO problem in these variables.
Noticing that every unconstrained quadratic minimization problem in n variables can be transformed to a balancing
problem of a graph on n + 1 vertices, in this paper we reformulate the “roof duality” approach of [24] in terms of
graph balancing.

In [24] the “roof dual” of a QUBO problem has been introduced in order to provide (i) a bound to the optimum
value, (ii) a polynomial test for checking the sharpness of this bound, and (iii) a “persistency” result, which allows
the fixation of some of the variables at their optimal values. More precisely, three different linear programming-
based approaches were shown to yield the same bound (roof dual), and transformed the QUBO problem into an
equivalent one, in which the linear part necessarily vanishes in all optimal binary points (strong persistency). These
linear programs are equivalent to the so-called standard linearization of the QUBO problem, and the corresponding
polyhedron was called later the Boolean quadric polytope (see e.g., [26,27,41]). Among the subsequent studies related
to roof duality we mention [1,13–15,25,38,37,44].

Roof duality was later generalized to a complete hierarchy of increasingly sharper bounds Ck , k = 2, 3, . . . , n,
where C2 is the roof dual value, C3 is called the cubic dual, and Cn is the optimum value of the QUBO problem [8].
Each bound Ck can be obtained by solving a Linear Program (LP) involving O(nk) variables. In particular, C3 was
shown to be equal to the LP optimum over the first Chvátal closure of the Boolean quadric polytope [9], and it is also
known to be the optimum value of a special class of QUBO problems [3]. An analogous LP formulation, known as
the elementary closure of lift-and-project cuts (see [18]) for the Boolean quadric polytope, provides almost exactly
the same bound, involving also O(n3) variables [7]. However, the use of these LP-based bounds, as reported in [7],
becomes computationally too expensive already for QUBO problems with 200 variables.

In this paper we introduce a new bound, the iterated roof dual, which is stronger than the C2 bound, but somewhat
weaker than the C3 bound, and which can be computed using a network flow formulation much more efficiently
than the LP-based calculation of C3. By recalling a combination of Boolean, linear programming and graph-theoretic
techniques from [10,43], we establish first the equivalence of roof duality to a particular packing problem in an
associated graph. We derive in this way an efficient algorithm to compute the roof dual via the solution of a max-
flow problem in a network of 2n + 2 vertices. This approach improves also the persistency results, allowing the
efficient detection of the optimal values of the largest possible subset of variables that could be fixed using the
principles identified in [24]. Finally, we propose a method consisting in the iterative application of the network-based
computation of the roof dual for finding the iterated roof dual bound. We demonstrate with the help of an extensive
computational study that this method is very efficient, and highly competitive with other bounding techniques.

In Sections 2 and 3 we introduce some of the basic notations, definitions and problems studied in this paper.
In Section 3 the equivalence of roof duality and a particular packing problem is proved. We also show that other
variants of this packing problem may provide better bounds than roof duality. In Section 4 a network model for these
packing problems is presented, while in Section 5 the structure and persistency results are established. In Section 6
we introduce the iterated roof dual bound, and in Section 7 we present an extensive computational study, involving
numerous benchmark problem sets, as well as randomly generated problems with up to thousands of variables. In
our study we compare the quality of bounds and computing times of our approach to several other well-established
bounding techniques available in the literature.

2. Notations and definitions

A pseudo-Boolean function (PBF) is a real-valued function defined on {0, 1}
n . Every PBF has a unique multilinear

polynomial expression. A PBF is called quadratic if its unique polynomial expression has degree at most 2.
The quadratic 0–1 minimization problem is to find the minimum in {0, 1}

n of a quadratic PBF.
Let V = {x1, . . . , xn} denote the set of 0–1 variables. The complement of a 0–1 variable x is defined by x = 1− x .

The elements of the set L = {x1, x 1, . . . , xn, x n} are called literals.
A polynomial expression with variables in L and having only positive coefficients (with the possible exception of

the free term) will be called a posiform. Every PBF has posiform representations (which however, are not unique, e.g.
f = 3 + x − 2xy can be represented by the posiforms 2 + x + 2x y or 1 + x + 2y + 2x y).

Given a PBF f , a variable xi will be called essential if there exists a point X∗ such that f (x∗

1 , . . . , x∗
n ) 6=

f (x∗

1 , . . . , x∗

i−1, x ∗

i , x∗

i+1, . . . , x∗
n ), (e.g. xy + x + y + x y depends essentially on y, but not on x).



E. Boros et al. / Discrete Optimization 5 (2008) 501–529 503

Definition 2.1. If x and y are variables, then the expression x y + x y is called a positive bi-term, while xy + x y is
called a negative bi-term.

Bi-terms naturally express the equality or non-equality of the variables involved:

x y + x y = 0 ⇐⇒ x = y,

xy + x y = 0 ⇐⇒ x 6= y.

Definition 2.2. If E is a collection of bi-terms, such that no pair of variables is involved in more than one element of
E , and αe > 0 for all e ∈ E , then the quadratic pseudo-Boolean expression φ =

∑
e∈E αee is called a bi-form.

Bi-forms offer a natural representation of quadratic PBF’s:

Remark 2.3. For any quadratic PBF f in variables x1, . . . , xn there is a unique constant c and a unique bi-form φ in
the variables x0, x1, . . . , xn such that

f (x1, . . . , xn) = c + φ(1, x1, . . . , xn). (2.1)

In this case φ is called the bi-form of f . The variable x0 will be called the root of φ; we shall also say that φ is rooted
at x0.

Proof. The representation can be obtained by successively applying to the given polynomial expression of f the
transformations

xi x j =
1
2
(xi x j + x i x j ) +

1
2
(xi + x j ) −

1
2

−xi x j =
1
2
(xi x j + x i x j ) −

1
2
(xi + x j )

(2.2)

of its positive and negative quadratic terms (1 ≤ i < j ≤ n), and then the transformations

xi = (xi x0 + x i x 0)

−xi = (xi x 0 + x i x0) − 1
(2.3)

of its positive and negative linear terms (i = 1, . . . , n). �

Example 1. Consider the quadratic PBF given by

f = −3x1 + 12x2 − x3 + 3x4 + 14x5 − 10x1x2 + 12x1x3 − 6x1x5 − 14x2x3 + 4x3x4 − 10x4x5.

The unique bi-form of f is then

φ = 5(x0x 1 + x 0x1) + 6(x0x5 + x 0x 5) + 5(x1x 2 + x 1x2)

+ 6(x1x3 + x 1x 3) + 3(x1x 5 + x 1x5) + 7(x2x 3 + x 2x3) + 2(x3x4 + x 3x 4) + 5(x4x 5 + x 4x5),

satisfying the equation f (x1, . . . , x5) = φ(1, x1, . . . , x5) − 13.

Remark 2.4. If φ is a bi-form, then φ(x0, x1, . . . , xn) = φ(x 0, x 1, . . . , x n) for every binary vector
(x0, x1, . . . , xn) ∈ {0, 1}

n+1.

Proof. Follows directly from the definitions, since the value of φ depends only on equalities and non-equalities of the
variables, that is on relations which do not change when simultaneously all the variables are complemented. �

Remark 2.5. If φ is the unique bi-form of the quadratic PBF f , then we have

min
(x1,...,xn)∈{0,1}n

f (x1, . . . , xn) = c + min
(x0,x1,...,xn)∈{0,1}n+1

φ(x0, x1, . . . , xn).

Proof. Follows readily by Remark 2.4. �
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The above remarks imply that instead of x0, any of the n + 1 variables of the bi-form φ could be fixed at 1, without
changing the set of values φ assumes.

Corollary 2.6. If φ is the unique bi-form of the quadratic PBF f , as in (2.1), and g(x0, . . . , xi−1, xi+1, . . . , xn) =

c + φ(x0, . . . , xi−1, 1, xi+1, . . . , xn), i.e., if we obtain g from φ by fixing xi = 1, then both f and g are quadratic
PBFs and have the same minimum value. �

Example 2. Returning to the quadratic PBF f given in Example 1 and its unique bi-form φ, we can see that the
function

g(x0, x2, x3, x4, x5) = −13 + φ(x0, 1, x2, x3, x4, x5)

= 21 − 11x0 + 2x2 + 11x3 + 3x4 − 4x5 + 12x0x5 − 14x2x3 + 4x3x4 − 10x4x5

has the same minimum value as f .

Remark 2.3 shows that the minimization of a PBF is equivalent to the minimization of the corresponding unique
bi-form. Since the above transformation can be performed in O(n2) time, we shall assume from now on that quadratic
PBFs are given as bi-forms in the variables x0, x1, . . . , xn . We shall use in the sequel both f and φ to denote bi-forms.

Definition 2.7. Given a bi-form, f =
∑

e∈E αee, we associate to it a graph G f , whose vertices correspond to the
indices {0, 1, . . . , n} of the variables, and whose edges correspond to those pairs (i, j) for which there is a bi-term in
f involving the variables xi and x j . The edge e = (i, j) will sometimes refer in the sequel to the edge (i, j) of G f ,
and some other times to the Boolean expression e(X) = (xi x j + x i x j ) or = (xi x j + x i x j ) associated to it in f . An
edge will be called positive (negative) if the associated bi-term is positive (negative); the weight of an edge e is the
corresponding positive coefficient αe in f . In other words, G f is a weighted signed graph, associated to the bi-form
of f .

Definition 2.8. If X is a 0–1 vector of n +1 components, then an edge e ∈ E is called conflicting with X if e(X) 6= 0,
otherwise we say it agrees with X .

Remark 2.9. For any 0–1 vector X ∈ {0, 1}
n+1,

f (X) =

∑
e is conflicting with X

αe.

We consider paths in G f with a possible repetition of edges (in the literature such paths are called sometimes
walks). The number of times an edge e is used by a path P will be called the multiplicity of e with respect to P , and
will be denoted by m P (e). We call a path closed, if its first and last vertices coincide.

Definition 2.10. A path is called negative if the sum of the multiplicities of the negative edges in it is odd. A closed
negative path without repetition of edges is called a negative cycle, while a closed negative path, with possibly repeated
edges, is called a noose. A noose is called rooted if it passes through the root of f . To a rooted noose N (which we
will consider as a subset N of the edges together with a multiplicity function m N ) we shall also associate the PBF
N =

∑
e∈N m N (e)e.

The following easy remarks (see e.g. [10,15]) will be useful later in this paper.

Remark 2.11. The equation f (X) = 0 is consistent if and only if there is no negative cycle in G f . Moreover, the
equation f (X) = 0 has a unique solution (assuming x0 = 1) if and only if G f is connected and does not contain
negative cycles.

Remark 2.12. If e and e′ are bi-terms involving the pairs of variables x, y and y, z, respectively, then

e + e′
= e′′

+ c

for some cubic posiform c and a bi-term e′′ involving x and z. Moreover the sign of e′′ is the product of the signs of e
and e′.
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Fig. 1. The graph G f of the bi-form given in Example 1.

Proof.

(xy + x y ) + (yz + y z ) = (xz + x z) + 2(xyz + x y z ),

(xy + x y ) + (yz + y z) = (xz + x z ) + 2(xyz + x y z),

(x y + x y) + (yz + y z) = (xz + x z) + 2(x y z + x yz ). �

(2.4)

Example 3. Consider the rooted noose N = {(0, 1), (1, 2), (2, 3), (3, 1), (1, 0)} in the graph of Fig. 1. Applying
Remark 2.12, we have

N = 2(x0x 1 + x 0x1) + (x1x 2 + x 1x2) + (x2x 3 + x 2x3) + (x1x3 + x 1x 3)

= (x0x 1 + x 0x1) + (x0x 2 + x 0x2) + (x2x 3 + x 2x3) + (x1x3 + x 1x 3) + 2(x0x 1x2 + x 0x1x 2)

= (x0x 1 + x 0x1) + (x0x 3 + x 0x3) + (x1x3 + x 1x 3) + 2(x0x 1x2 + x 0x1x 2) + 2(x0x 2x3 + x 0x2x 3)

= (x0x 1 + x 0x1) + (x0x1 + x 0x 1) + 2(x0x 1x2 + x 0x1x 2)

+ 2(x0x 2x3 + x 0x2x 3) + 2(x0x 1x 3 + x 0x1x3)

= 1 + 2[(x0x 1x2 + x 0x1x 2) + (x0x 2x3 + x 0x2x 3) + (x0x 1x 3 + x 0x1x3)].

Thus

N (1, x1, x2, x3) = 1 + 2[x 1x2 + x 2x3 + x 1x 3].

More generally,

Remark 2.13. If N is a rooted noose in G f , then

N (1, x1, . . . , xn) = 1 + q(x1, x 1, . . . , xn, x n),

where q is a quadratic posiform.

3. Roof duality and packing of nooses

Roof duality is a procedure proposed in [24] for associating to a given quadratic 0–1 maximization problem a
relaxation of it, thus providing a bound on the optimum (called the roof dual of the function), along with a polynomial
test to check the sharpness of this bound, and to determine the values of some of the variables in the optimum.

In this section we give a new interpretation of this method in terms of G f and its rooted nooses. This interpretation
will provide the basis for an efficient calculation of the roof dual, to be presented in Section 4.
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Let f be a given bi-form, x0 its root, and let C, N and N0 denote the set of negative cycles, the set of nooses and
the set of rooted nooses in G f , respectively. If (P) is an optimization problem, let us denote its optimum value by
ω(P).

With the notation of the previous section we shall associate to a bi-form f the following problems:

• a “cycle covering” problem

minimize v(Y ) =

∑
e∈E

αe ye

s.t.
∑
e∈C

ye ≥ 1 ∀C ∈ C,

ye ∈ {0, 1} ∀e ∈ E,

(CC)

• a “noose covering” problem

minimize v(Y ) =

∑
e∈E

αe ye

s.t.
∑
e∈N

m N (e)ye ≥ 1 ∀N ∈ N ,

ye ∈ {0, 1} ∀e ∈ E,

(NC)

• the continuous relaxation (NCc) of the noose covering problem, obtained from (NC) by replacing the conditions
ye ∈ {0, 1} by ye ≥ 0 for all e ∈ E . (The conditions ye ≤ 1 are omitted since they hold automatically in the
optimum.)

We shall also consider in the sequel the “noose packing” problem

maximize w(ξ) =

∑
N∈N

ξN

s.t.
∑
N3e

m N (e)ξN ≤ αe ∀e ∈ E,

ξN ≥ 0 ∀N ∈ N

(NP)

and the “rooted noose packing” problem (RNP) which is obtained from (NP) by replacing N by N0.
As we shall see below, problems (CC) and (NC) are integer programming problems which are equivalent with the

minimization of f , while (NCc), (NP) and (RNP) are weaker linear programming relaxations of the above integer
programming problems, and the weakest one (RNP) turns out to be equivalent with roof duality.

Finally let us rephrase the “roof duality” approach of [24] for the minimization of bi-forms. For this, let us consider
the bi-form of f written as

f =

∑
(i, j)∈E+

αi j (xi x j + x i x j ) +

∑
(i, j)∈E−

αi j (xi x j + x i x j ),

where E+ and E− denote the set of positive and negative edges in G f , respectively. For each quadratic term of f , its
L1 optimal linear lower bounds are given by

xi x j ≥ λi j (xi + x j − 1), for any 0 ≤ λi j ≤ 1,

xi x j ≥ λi j (xi − x j ), for any 0 ≤ λi j ≤ 1,

x i x j ≥ λi j (x j − xi ), for any 0 ≤ λi j ≤ 1,

x i x j ≥ λi j (1 − xi − x j ), for any 0 ≤ λi j ≤ 1,

for 0 ≤ i < j ≤ n. For a fixed parameter vector λ let

Lλ(X) =

∑
(i, j)∈E−

αi j (λi j − λi j ) +

n∑
i=0

xi

 ∑
(i, j)∈E−

αi j (λi j − λi j ) +

∑
(i, j)∈E+

αi j (λi j − λi j )

 .

It can be seen (as in [24]) that the roof dual ρ( f ) of f is given by

ρ( f ) = max
λ

min
X

Lλ(X). (3.1)
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The main result of this section is

Theorem 3.1.

min
X∈{0,1}n+1

f (X) = ω(CC)

= ω(NC)

≥ ω(NCc)

= ω(NP)

≥ ω(RNP) = ρ( f ).

The rest of this section will be devoted to the proof of this theorem; the main effort of the proof concerns the last
equation.

Lemma 3.2. minX∈{0,1}n+1 f (X) = ω(CC).

Proof. For any binary vector X let Y X be the vector whose components are defined by

ye =

{
1 if e is conflicting with X,

0 otherwise.

Then, by Remark 2.9 we have v(Y X ) = f (X), implying ω(CC) ≤ min f (X).
Conversely, let Y be a feasible solution to (CC). Then the subgraph formed by the edges {e|ye = 0} does not

contain a negative cycle. It follows from Remark 2.11 that there exists a vector XY such that e(XY ) = 0 for edges e
with ye = 0. Thus, we have v(Y ) ≥ f (XY ), implying ω(CC) ≥ min f (X). �

Lemma 3.3. ω(CC) = ω(NC).

Proof. For any N ∈ N there is a cycle C ∈ C with C ⊆ N , therefore if Y is a feasible solution to (CC), then∑
e∈N

m N (e)ye ≥

∑
e∈C

ye ≥ 1,

implying that the feasible solutions of (CC) are also feasible in (NC). The converse is immediately true, since C ⊆ N .
�

Lemma 3.4. ω(NC) ≥ ω(NCc) = ω(NP) ≥ ω(RNP).

Proof. Problem (NCc) is the linear programming relaxation of the minimization problem (NC), and problem (NP) is
the linear programming dual of problem (NCc). Finally, problem (RNP) is the same maximization problem as (NP)
with added restrictions requiring ξN = 0 for all N ∈ N \N0. �

In order to establish the remaining equality in Theorem 3.1 we shall first show

Lemma 3.5. ω(RNP) ≤ ρ( f ).

Proof. It has been shown in [24] that ρ( f ) is the largest constant c satisfying the equation f = c + g with some
quadratic posiform g. For a feasible solution ξ of (RNP) let us define

βe
def
= αe −

∑
N3e

m N (e)ξN ,

for e ∈ E . The feasibility of ξ implies that all βe ≥ 0, and therefore f =
∑

N∈N0
ξN N +

∑
e∈E βee is a decomposition

of f into two bi-forms. It follows from Remark 2.13 that for each rooted noose N ∈ N0 there is a quadratic posiform
qN such that N = 1 + qN . Hence we have

f =

∑
N∈N0

ξN (1 + qN ) +

∑
e∈E

βee

= w(ξ) +

∑
N∈N0

ξN qN +

∑
e∈E

βee.

Therefore f is the sum of w(ξ) and of a posiform, implying ω(RNP) ≤ ρ( f ). �
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In order to obtain the converse inequality, we shall show that to any fixed parameter λ there corresponds a feasible
solution ξ = ξ(λ) of (RNP) satisfying the inequality w(ξ) ≥ minX Lλ(X).

Let 0 ≤ λ̂ ≤ 1 be a fixed parameter vector, and let us introduce

βi j =

{
αi j |λ̂i j − λ̂i j |, if (i, j) ∈ E−,

αi j |λ̂i j − λ̂i j |, if (i, j) ∈ E+
;

(3.2)

furthermore, let us associate a linear function to each edge in G f by putting

li j =


(xi + x j − 1), if (i, j) ∈ E− and λ̂i j > λ̂i j ,

(1 − xi − x j ), if (i, j) ∈ E− and λ̂i j < λ̂i j ,

(xi − x j ), if (i, j) ∈ E+ and λ̂i j > λ̂i j ,

(x j − xi ), if (i, j) ∈ E+ and λ̂i j < λ̂i j ,

(3.3)

and let Ê = {(i, j)|βi j > 0}. Then,

Remark 3.6. Ĝ f = (V, Ê) is a subgraph of G f , βi j ≤ αi j for any (i, j) ∈ E(G f ), and

L
λ̂
(X) =

∑
(i, j)∈Ê

βi j li j . (3.4)

Definition 3.7. An ordered sequence A = {(i1, j1), (i2, j2), . . . , (is, js)} of edges of Ĝ f is called an alternating
noose if jk = ik+1(mod s) and if x jk appears with different signs in the expressions lik jk and lik+1 jk+1 , k = 1, . . . , s − 1.
The vertex i1 is called the root of A.

Lemma 3.8. If A is an alternating noose, rooted at r , and if we denote

L A =

s∑
k=1

lik jk (3.5)

then:

(i) L A = 0, if xr appears with different signs in li1 j1 and lis js ;
(ii) L A = 2xr − 1, if xr appears with positive signs in both li1 j1 and lis js ;

(iii) L A = 1 − 2xr , if xr appears with negative signs in both li1 j1 and lis js .

Therefore, the value of L A is 0 or ± 1 in every binary point X.

Remark 3.9. If A is an alternating noose in Ĝ f and L A 6= 0, then the edges of A with the corresponding multiplicities
form a noose in G f .

Proof. This follows by noticing that an expression li j given by (3.3) contains a ±1 constant only if (i, j) ∈ E−, and
that the sum of these constants in (3.5) is also ±1 by Lemma 3.8. Thus the ordered sequence of edges A in G f passes
through on an odd number of negative edges. �

Denoting by A the set of alternating nooses of Ĝ f rooted at 0, and successively generating such nooses and
“subtracting” them from Ĝ f we shall eventually obtain a representation of L

λ̂
of the form

L
λ̂

=

∑
A∈A

ηA L A + L̂, (3.6)

where the ηA’s are non-negative reals satisfying∑
A3(i, j)

ηA ≤ βi j , ∀(i, j), (3.7)

and such that (3.6) is maximal, i.e. L̂ does not contain an alternating noose A ∈ A.
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To the decomposition (3.6) of L
λ̂

we shall associate a vector ξ̂ by putting ξ̂N = ηA if N is the rooted noose of G f
corresponding (by Remark 3.9) to A.

Lemma 3.10. ξ̂ is a feasible solution to (RNP) and

w(ξ̂) ≥

∑
A∈A

ηA L A(X)

for any binary vector X.

Proof. The feasibility of ξ̂ follows from (3.7) and Remark 3.6. Since L A(X) ∈ {0, +1, −1} by Lemma 3.8,

w(ξ̂) =

∑
ξ̂N =

∑
ηA ≥

∑
ηA L A(X). �

Definition 3.11. Let us define for any pair of (not necessarily distinct) indices i, j a set of elementary functions by

Ei j
def
=

{
{±(xi − x j ), ±(1 − xi − x j )} if i 6= j,
{(1 − 2xi ), (2xi − 1)} if i = j

for 0 ≤ i, j ≤ n. Two elementary functions li j ∈ Ei j and l jk ∈ E jk will be called conflicting at j if the signs of x j in
the two functions are different.

Remark 3.12. If li j ∈ Ei j and l jk ∈ E jk are conflicting at j and i 6= k, then the function lik
def
= li j + l jk belongs to

Eik .

Definition 3.13. A positive combination of elementary functions will be called conflict-free if it contains no
conflicting pairs of elementary functions.

Lemma 3.14. Any non-negative combination L =
∑

li j ∈Ei j
γi j li j of elementary functions has a conflict-free

representation.

Proof. Starting with the given representation of L we check for the existence of a conflicting pair, say li j and l jk with
positive coefficients. If such a pair is found, and say 0 < γi j ≤ γ jk , we modify the representation by introducing the
elementary function lik = li j + l jk (see Remark 3.12), and applying the equation

γi j li j + γ jkl jk = γi j lik + (γ jk − γi j )l jk .

Repeating this argument for all the other pairs of elementary functions conflicting at j , we shall arrive in a finite
number of steps to a representation of L without conflicts at j . Remarking that if there is no conflict at j then the
above procedure does not introduce a new conflict at j , and repeating the previous steps for the other indices, we shall
obtain in a finite number of steps a conflict-free representation of L . �

Returning to the decomposition (3.6) we can state

Lemma 3.15.

min
xi ∈{0,1},i=1,...,n

L̂(1, x1, . . . , xn) ≤ 0.

Proof. By the definition of L
λ̂
,

L̂ =

∑
γ̂i j li j

is given as a positive combination of elementary functions not belonging to E00. Let us consider a conflict-free
representation of L̂ ,

L̂ =

∑
γi j li j , (3.8)

the existence of which is assured by Lemma 3.14. An element of Ei i with positive coefficient can be introduced by
the above transformation only if there is an alternating noose A = {(i1, j1), . . . , (it , jt )} rooted at i with all positive
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coefficients γ̂is , js > 0, s = 1, . . . , t . Due to the “maximality” of (3.6) no element of E00 has positive coefficient in
(3.8). We can also notice that fixing any variable xi to the value 1 (0) if it appears with a negative (positive) sign in
li j , we get li j ≤ 0. For every i = 1, . . . , n let us put x∗

i = 0 if xi appears only with positive coefficients, x∗

i = 1 if xi
appears only with negative coefficients in (3.8). We have now li j (X∗) ≤ 0 for all the terms with γi j > 0, thus proving
the lemma. �

Lemma 3.16.

w(ξ̂) ≥ min
X∈{0.1}n+1

L
λ̂
(X).

Proof. The lemma follows from Lemmas 3.10 and 3.15. �

Finally, Lemmas 3.5 and 3.16 imply

Lemma 3.17. ω(RNP) = ρ( f ).

Theorem 3.1 follows now directly from Lemmas 3.2–3.4 and 3.17.
Let us remark that by the symmetries observed in Corollary 2.6, we could use any of the variables as roots,

and consider analogous rooted noose packing problems: Denoting by Ni the set of nooses rooted at vertex xi , for
i = 0, 1, . . . , n, we can consider the problems

maximize w(ξ) =

∑
N∈N

ξN

s.t.
∑
N3e

m N (e)ξN ≤ αe ∀e ∈ E,

ξN ≥ 0 ∀N ∈ Ni .

(RNP(i))

Clearly, problem (RNP(0)) is the same as (RNP). Furthermore, the optimum value of each of the problems (RNP(i)),
i = 0, 1, . . . , n, is a lower bound on the minimum of f . Thus, Lemma 3.17 implies readily the following corollary.

Corollary 3.18.

min
X∈{0,1}n+1

f (X) ≥ max
i=0,...,n

ω(RNP(i)) ≥ ω(RNP) = ρ( f ). �

Example 4. For the bi-form φ in Example 1 the following is an optimal rooted noose packing for the root x0:

ξN =

3, if N = [(0, 1), (1, 5), (5, 0)],

2, if N = [(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)],

0, otherwise,

implying by Lemma 3.17 that ρ(φ) = 5. However, switching the root to vertex x1, we can obtain the following noose
packing (rooted at x1):

ξN =


3, if N = [(1, 0), (0, 5), (5, 1)],

5, if N = [(1, 2), (2, 3), (3, 1)],

1, if N = [(1, 3), (3, 4), (4, 5), (5, 0), (0, 1)],

0, otherwise,

providing by Corollary 3.18 the value 9 as a lower bound for φ.

In concluding this section, let us make a few side remarks, leaving the easy proofs for the reader.
Let us note first that in the noose packing problem (NP) we could replace N by C without changing the optimum

value. Furthermore, the resulting negative cycle packing problem can easily be shown to be equivalent with negative
triangle packing, which we state here for completeness. For this, let us introduce a positive edge e for every pair of
variables which are not connected by an edge in G f , assume that αe = 0 for these newly introduced edges, and denote
by Ẽ this extended set of edges. Let us also denote by e the sign complement of edge e (i.e., if e is a negative edge
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between variables xi and x j , then e denotes a positive edge between xi and x j , etc.), and note that if e ∈ Ẽ , then we
have e 6∈ Ẽ . Let us denote finally by T the collection of all negative triangles (i.e., negative cycles consisting of three
edges), and consider the problem

maximize w(ξ) =

∑
T ∈T

ξT −

∑
e∈Ẽ

(∑
T 3e

ξT

)
s.t. 0 ≤

∑
T 3e

ξT −

∑
T 3e

ξT ≤ αe ∀e ∈ Ẽ,

ξT ≥ 0 ∀T ∈ T .

(TP)

We can thus conclude that ω(NP) = ω(TP). Furthermore, comparing problem (TP) with the formulation of the
so-called cubic dual bound C3 introduced in [8], and in particular with the triangle inequalities-based formulations of
it (see [3,9]), we can easily show the following claim.

Remark 3.19. ω(NP) = ω(TP) = C3. �

Though this bound is generally better than the roof dual bound, and can also be computed by linear programming
in polynomial time, computationally it is still much more involved than the network flow-based computation of an
optimal rooted noose packing, which we present in the next section. Due to this computational advantage, in this paper
we focus on rooted noose packings, and their iterated versions.

4. Rooted noose packing via maximum flows

In this section we show that the optimum value and an optimal solution of a rooted noose packing problem can
be computed by solving a maximum-flow problem in a network on 2n + 2 vertices. Together with the result of the
previous section this implies that the roof dual ρ( f ) of a quadratic pseudo-Boolean function f in n variables, as well
as any of the possibly improved lower bounds ω(RNP(i)) can be computed in O(n3) time. We present our approach
for the case of x0 as root, though it can be applied directly for any other choice of a root.

Definition 4.1. If f is a bi-form rooted at x0, then let N f = (W, A) be the network, whose 2n + 2 nodes correspond
to the literals of the set W = {x0, x 0, . . . , xn, x n}, and whose edges are associated to the edges of G f in the following
way. If e ∈ E is a positive edge between i and j , i.e. e = xi x j + x i x j , then there are two corresponding edges in A:
an edge e′ between xi and x j and another edge e′′ between x i and x j . If e ∈ E is a negative edge between i and j ,
i.e. e = xi x j + x i x j , then there are two corresponding edges in A: an edge e′ between xi and x j and another edge
e′′ between x i and x j . Let in both cases c(e′) = c(e′′) =

1
2αe be the capacities of these edges in N . As an example,

the network N f corresponding to the bi-form f of Example 1 is given in Fig. 2.
If P is a path from x0 to x 0 in N f , going through the vertices {u1, . . . , u p} (i.e. u1 = x0, u p = x 0), then the

sequence {u p, . . . , u 1} describes another path P between x0 and x 0. The pair P, P will be called a bi-path.

The following lemmas can be seen easily.

Lemma 4.2. There is a one-to-one correspondence between the rooted nooses in G f and the bi-paths in N f .

Proof. A rooted noose provides a closed walk from x0 to x0 in G f , in which we pass an odd number of times negative
edges (some of them possibly twice). Thus, by the above definitions, the corresponding edges in N f form a path P
from x0 to x 0 and its twin P , i.e., a bi-path. Conversely, a bi-path P, P in N f corresponds to a closed walk W from
x0 to x0 in G f . Since along the path P (and P ) we must move an odd number of times from an un-complemented
variable to a complemented one, in W we must pass through an odd number of negative edges, i.e., W is a rooted
noose in G f . �

It is well-known in the theory of network flows that a flow F from x0 to x 0 (in N f ) can always be decomposed
into the sum of a finite number of elementary flows F1, . . . , Ft , going through the paths P1, . . . , Pt from x0 to x 0.
Thus, due to the symmetric nature of N f , the following claim follows readily from the definitions.



512 E. Boros et al. / Discrete Optimization 5 (2008) 501–529

Fig. 2. The network N f corresponding to the bi-form f given in Example 1.

Lemma 4.3. Let Fi , i = 1, . . . , t be elementary flows from x0 to x 0 through the paths Pi , and having values fi ,
respectively. Further, let F i be the elementary flow through the path P i having the value fi for i = 1, . . . , t . If
F =

∑
Fi is a feasible flow in N f , then F =

∑
F i is also a feasible flow in N f (having the same value as F). �

A flow F from x0 to x 0 in N f with the property F = F is called a bi-flow.

Lemma 4.4. To every feasible rooted noose packing ξ =
∑

N∈N0
ξn N there is a corresponding bi-flow of N f with∑

N∈N0
ξN as its flow value. Conversely, every feasible bi-flow in N f corresponds in this way to a feasible solution

of (RNP) (however, this correspondence may not be one-to-one, in general).

Proof. Since a convex combination of feasible flows is again a feasible flow, Lemma 4.3 implies that from any feasible
flow F of N f we can obtain a feasible bi-flow with the same flow value, by considering simply 1

2 F +
1
2 F . Therefore,

Lemmas 4.2 and 4.3 imply readily the claim.
To illustrate that rooted noose packings of G f and bi-flows of N f are not necessarily in a one-to-one

correspondence, let us consider the bi-form f defined by

f (x0, x1, x2, x3, x4) = 2(x0x1 + x 0x 1) + 2(x0x2 + x 0x 2) + 2(x1x2 + x 1x 2)

+ 2(x1x3 + x 1x 3) + 2(x3x4 + x 3x 4) + 2(x4x1 + x 4x 1)

and its graph G f . The nooses

N1 = 2(x0x1 + x 0x 1) + (x1x3 + x 1x 3) + (x3x4 + x 3x 4) + (x4x1 + x 4x 1)

N2 = 2(x0x2 + x 0x 2) + 2(x1x2 + x 1x 2) + (x1x3 + x 1x 3)

+ (x3x4 + x 3x 4) + (x4x1 + x 4x 1)

with weights ξN1 = ξN2 = 1 form a feasible rooted noose packing in G f . In the corresponding bi-flow of N f however
the flows cancel out on some of the arcs (corresponding to a circulation), and the non-zero edges of the resulting
bi-flow correspond to the rooted noose packing consisting of a single noose N3 with weight ξN3 = 2, where

N3 = (x0x1 + x 0x 1) + (x0x2 + x 0x 2) + (x1x2 + x 1x 2). �
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Finally, Lemma 4.4 implies immediately the main statement of this section:

Theorem 4.5. ω(RNP) is equal to the value of the maximum flow from x0 to x 0 in N f . �

Corollary 4.6. Problem (RNP) can be solved in O(n3) time. �

Let us add that whenever the given bi-form f has integral coefficients, the corresponding network N f has a half-
integral maximum bi-flow, as the simple argument in the proof of Lemma 4.4 shows. Consequently, for integral
bi-forms we have half-integral optimal noose packings.

Let us also note that the undirected network N f could be viewed for algorithmic purpose as the directed network
obtained from N f by replacing every undirected edge e = (u, v) by two directed arcs e′

= (u, v) and e′′
= (v, u)

between the same pair of literals, and assigning to both of them capacity c(e′) = c(e′′) = c(e). Recall further from
the theory of network flows that the set of nodes reachable from the source in the residual network corresponding to
an arbitrary maximum flow is always the same set, not depending on the particular maximum flow. This justifies the
following definition:

Definition 4.7. Let us define the source side of f as the unique set of literals reachable from x0 in the residual network
corresponding to a maximum bi-flow, and denote it by Q f .

Note that by the symmetry of N f , the set Q f is exactly the set of nodes from which x 0 can be reached in a residual
network corresponding to a maximum bi-flow.

Let us further remark that the directed version of N f was generalized in [43] (see also [12] for a detailed
description), associating a directed network N f to an arbitrary quadratic posiform of a quadratic PBF f , such that
the maximum-flow value in N f is the same as the roof dual value of f . In our current presentation we prefer the
symmetric bi-form-based model, because that leads us to the cycle and noose packing problems, and allows for an
iterated version of rooted noose packing, providing substantial improvements over roof duality (see Sections 6 and 7).

Let us finally add that computing the roof dual value by the above undirected network model provides sometimes
even algorithmic advantages. For instance, [33] shows that in an undirected network of n nodes and m edges a
maximum flow of value v can be computed in O(nm2/3v1/6) time. Thus, for bi-forms with ”small” integer coefficients
the roof dual value could be obtained more efficiently by using the algorithm of [33] in the above undirected network
model than by standard network flow algorithms in the directed network model of [12,43].

5. Structure and persistency

The following “persistency” property of roof duality has been proved in [24]: if ρ0 +
∑n

j=1 ρ j x j is an optimal
roof (Lλ(X) in our notations) of a quadratic PBF f , then for every index j for which ρ j > 0 (ρ j < 0) we must have
x∗

j = 0 (respectively, x∗

j = 1) in every minimum point X∗ of f . Of course, the set of variables, which can be fixed at
their optimal value in this way depends on the chosen optimal roof, and it can indeed be different for different optimal
roofs. It was remarked in [24] that there exists a unique maximal subset of such variables, obtainable from certain
optimal roofs, called the master roofs.

In this section we derive a decomposition of a bi-form from an optimal solution of a corresponding rooted noose
packing problem (for an arbitrary root), and show that the set Q f of literals, when x0 is the chosen root, defines the
unique maximal set of variables corresponding to a master roof. In this way the network flow-based computation of
an optimal rooted noose packing provides us automatically also with a master roof (see also [10,6,12,43]).

Similarly to the terminology of [24] we call a bi-form f gap-free if min f = ρ( f ).

Definition 5.1. Let f =
∑

e∈E αee and g =
∑

e∈E ′ βee be two bi-forms defined on the same set of variables. We
shall say that g � f if E ′

⊆ E and βe ≤ αe for all e ∈ E ′; we write g ≺ f if g � f and the strict inequality βe < αe
holds for at least one edge e ∈ E ′, or αe > 0 for at least one edge e ∈ E \ E ′.

Using these notations, we formulate now the following “structure” theorem:

Structure Theorem. Any bi-form f can be decomposed into three parts

f = h f + g f + f ′

f
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satisfying the following properties:

(i) h f is gap-free, ρ(h f ) = ρ( f ) and h f is ‘�’-minimal with respect to these properties, i.e. if h′ is gap-free,
ρ(h′) = ρ( f ) and h′

� h, then h′
= h.

(ii) g f and f ′

f have no common variables, min g f = 0, and h f + g f is also gap-free, with ρ(h f + g f ) = ρ( f ).
(iii) If x0 = 1 the equation g f (X) = 0 has a unique solution (in its essential variables), and every minimum point of

f satisfies this equation.
(iv) The bi-form f ′

f is “arbitrary”, i.e. if F ′ is an arbitrary bi-form in the same variables and in the same bi-terms
as f ′

f , and if by definition F = h f + g f + F ′, then F has a decomposition hF = h f , gF = g f and f ′

F = F ′,
satisfying the above properties.

If f has n variables, then such a decomposition can be found in O(n3) time.

First we shall associate a decomposition of f to every optimal solution of (RNP); we shall show further in the
section that for certain optimal solutions this decomposition satisfies the Structure Theorem.

Definition 5.2. Given the bi-form f , and a feasible solution ξ = (ξN |N ∈ N0) of (RNP) we shall define the ξ -
decomposition of f

f = hξ + gξ + f ′
ξ (5.1)

as follows. First, let

hξ =

∑
N∈N0

ξN N =

∑
e∈E

βee, (5.2)

where βe =
∑

N3e m N (e)ξN for e ∈ E . The sum of the remaining terms of f − hξ (which is a bi-form, since
0 ≤ βe ≤ αe for e ∈ E due to the feasibility of ξ ) will be regrouped into two parts, gξ and f ′

ξ , where gξ is the bi-form
whose graph is the connected component of G f −hξ containing 0, and f ′

ξ is the sum of the remaining terms. Further,
we shall denote by Pξ the set of vertices of Ggξ .

Persistency Theorem. Let ξ be an arbitrary optimal solution of (RNP). Then at any minimum point X∗ of f we
have gξ (X∗) = 0.

Example 5. As we have noted in Example 4, for the bi-form f of Example 1 the following is an optimal solution

ξN =

3, if N = [(0, 1), (1, 5), (5, 0)],

2, if N = [(0, 1), (1, 3), (3, 4), (4, 5), (5, 0)],

0, otherwise,

showing that ρ( f ) = ρ(φ) − 13 = 5 − 13 = −8. Furthermore, we have

hξ = 3[(x0x 1 + x 0x1) + (x1x 5 + x 1x5) + (x0x5 + x 0x 5)]

+ 2[(x0x 1 + x 0x1) + (x1x3 + x 1x 3) + (x3x4 + x 3x 4) + (x4x 5 + x 4x5) + (x0x5 + x 0x 5)]

= 5(x0x 1 + x 0x1) + 5(x0x5 + x 0x 5) + 2(x1x3 + x 1x 3)

+ 3(x1x 5 + x 1x5) + 2(x3x4 + x 3x 4) + 2(x4x 5 + x 4x5).

The graph of G f −hξ is shown in Fig. 3. The connected component of this graph containing 0 is induced by
Pξ = {0, 4, 5}, and therefore,

gξ = (x0x5 + x 0x 5) + 3(x4x 5 + x 4x5),

f ′
ξ = 5(x1x 2 + x 1x2) + 4(x1x3 + x 1x 3) + 7(x2x 3 + x 2x3).

The Persistency Theorem shows that at any minimum point of f we must have gξ (X) = 0, i.e. from x0 = 1 it follows
that x4 = x5 = 0.

Definition 5.3. We say that a bi-form h =
∑

e∈E βee is critical if there is no other bi-form h′
� h such that

ρ(h) = ρ(h′).
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Fig. 3. The graph of G f −h (= Gg ∪ G f ′ ) given in Example 5.

Lemma 5.4. If h is a critical bi-form, then

(i) h =
∑

N∈N0
ξN N, ξN ≥ 0 for the rooted nooses of Gh .

(ii) h is gap-free, i.e. there is a binary vector X ′ such that h(X ′) = ρ(h).
(iii) For any binary vector X ′ with h(X ′) = ρ(h) and for any rooted noose N with ξN > 0 there is exactly one edge

of N conflicting with X ′.

Proof. (i) Let ξ be an optimal solution of the (RNP) problem corresponding to h. Since h is critical, Lemma 3.17
implies that h =

∑
ξN N .

(ii) Let h be the “quadratic complement” of the PBF h (see [24]), i.e. the quadratic posiform for which h = ρ(h)+h .
We shall show that h = 0 is consistent; obviously any solution X ′ of it satisfies h(X ′) = ρ(h). The
characterization of Boolean equations in [2] implies that if h = 0 is inconsistent then we have a variable, say x ,
and some literals, say u1, . . . , us and v1, . . . , vp, such that the terms

xu1, u 1u2, . . . , u s x

and

x v1, v 1v2, . . . , v px

are all present in h . (These are the terms corresponding to a contradictory cycle in the implication graph; see [2].)
Applying the transformations (2.2) we have

xu1 +

s−1∑
i=1

u i ui+1 + u s x = G + (2x − 1)

x v1 +

p−1∑
j=1

v jv j+1 + v px = G ′
+ (2x − 1),

where G and G ′ are bi-forms. It can be seen from the identities (2.4) that the bi-form G + G ′ contains bi-terms
which are also present in h. Therefore, for some positive ε we have

h − ε(G + G ′) = ρ(h) + [h − ε(xu1 + · · · + u s x + x v1 + · · · + v px )].

This equality is in contradiction with the fact that h is critical.
(iii) Applying Lemma 3.17 we have ρ(h) =

∑
ξN . Since a rooted noose is a bi-form with integral coefficients, for

any binary vector X and for any rooted noose N it follows that N (X) ≥ 1. From this fact and from (i) above it
follows that if we have h(X ′) = ρ(h) then we also have

ρ(h) = h(X ′) =

∑
ξN N (X ′) ≥

∑
ξN = ρ(h),
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implying that N (X ′) = 1 for every rooted noose N with ξN > 0; it follows that exactly one edge in N is in
conflict with X ′. �

Let us observe next that the following claim follows readily by the definitions.

Remark 5.5. If ξ1 and ξ2 are optimal solutions of (RNP), such that ξ1 � ξ2 holds, then we have Pξ1 ⊇ Pξ2 . �

Definition 5.6. Let ξ be an optimal solution of (RNP). If the bi-form hξ is critical, then it will be called a roof minor
of f . (Notice that a roof minor can be easily obtained, e.g. by solving the (RNP) problem with a max-flow algorithm
based on shortest augmenting paths.)

Remark 5.7. If ξ1 and ξ2 are both optimal solutions of (RNP), then ξ3 =
1
2 (ξ1 + ξ2) is also an optimal solution of it,

hξ3 =
1
2 (hξ1 + hξ2), gξ3 ≥

1
2 (gξ1 + gξ2), and Pξ3 ⊇ Pξ1 ∪ Pξ2 .

Proof. Immediate by the definitions. �

The above remarks imply that there exists a master roof minor hξ , i.e. one defining a unique maximal set P = Pξ

of persistent variables. We claim next that in fact we have this equality for any roof minor.

Remark 5.8. Let ξ be an optimal solution of (RNP) for which the bi-form hξ is critical. Then we have Pξ = P .

Proof. Let F be a maximum flow in N f to which ξ corresponds as in Lemma 4.4. Let us note that to any arc with
a positive residual capacity corresponding to the maximum flow F , there is a corresponding term of gξ (with the
possible exceptions of arcs entering x0), and conversely, any non-zero term of gξ corresponds to a non-zero residual
capacity in N f . Thus, the variables involved in the set Q f are exactly the essential variables of gξ , that is the set Pξ .
Since Q f is unique, it does not depend on the chosen maximum flow, and hence we must have P = Pξ . �

Let f be a given bi-form, and let us fix an optimal solution ξ of the corresponding problem (RNP), such that hξ is
a roof minor of f (i.e., for which P = Pξ ). We claim next that hξ + gξ is a gap-free function.

Lemma 5.9. If hξ is a roof minor of f , then there exists a binary vector X such that hξ (X) + gξ (X) = ρ(h) (=

ρ(h + g) = ρ( f )).

Proof. By using a similar argument to that in (ii) of Lemma 5.4 we shall show that h + gξ = 0 is consistent, where
h denotes again the quadratic complement of hξ .

If h + gξ is always positive, then – similarly to the proof of (ii) of Lemma 5.4 – we can find a subset of the terms
of h + gξ , the sum of which is a bi-form, denoted by G + G ′, such that G + G ′

= 0 is also inconsistent. If G + G ′

has no common variables with gξ , then we get the same contradiction as in (ii) of Lemma 5.4. Otherwise the graph
Ggξ ∪ GG+G ′ contains a rooted noose N ∈ N0, in contradiction with the optimality of ξ . �

From the previous results it is obvious that we can get a binary vector X̂ , satisfying ρ( f ) = ρ(hξ ) = hξ (X̂) and
gξ (X̂) = 0 in O(n3) time. We are going to show below that at any minimum point X∗ of f , the vectors X∗ and X̂
coincide in the components xi for i ∈ P .

Definition 5.10. For any subset S ⊂ V , 0 6∈ S, we shall associate to X̂ the binary vector X S by putting

x S
i =

{
x̂i if i 6∈ S,

1 − x̂i if i ∈ S.

Lemma 5.11. If S ⊂ V , 0 6∈ S and S ∩ P 6= ∅, then f ′
ξ (X S) = f ′

ξ (X S\P ), gξ (X S) > 0, and gξ (X S\P ) = 0.

Proof. The first equation follows immediately from the fact that f ′
ξ does not depend on variables xi for i ∈ P . The

second inequality follows from the facts that gξ (X̂) = 0, S ∩ P 6= ∅, and that for any vertex i ∈ P there is an incident
edge of Ggξ with positive weight. The third equality follows from the fact that gξ does not depend on any variables xi
for i 6∈ P . �
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The maximality of P = Pξ implies that there is a special relation between P and the rooted nooses N with ξN > 0.

Lemma 5.12. Let I = {0, i1, . . . , ik, ik+1, . . . , it+1, 0} be the ordered sequence of vertices of a rooted noose N with
ξN > 0. Let ek = (ik, ik+1) be the edge (see (iii) of Lemma 5.4) of N conflicting with X̂ . If I 6⊂ P then let m denote
the maximal index for which im ∈ P but im+1 6∈ P. Then i j ∈ P for all j ≤ m and m ≤ k.

Proof. If m > k, then Ggξ ∪ {ek} contains a rooted noose, say N ′. The solution

ξ ′

M =

ξM + ε if M = N ′,

ξM − ε if M = N ,

ξM otherwise,

is also optimal, and has strictly smaller weights in hξ ′ on the edges of N connecting P and V \ P . Therefore Pξ ′ ⊃ P ,
in contradiction with the maximality of P .

Similarly, if m ≤ k and there is a j < m with i j 6∈ P , then let N ′ be the rooted noose in the graph
Ggξ ∪ {(im, im+1), . . . , (it , it+1), (it+1, 0)}. A similar modification of ξ as above would result in another optimal
solution ξ ′′ with an hξ ′′ having strictly smaller weights on the edges (i j , i j+1), . . . , (im−1, im), implying the same
contradiction as above. �

Lemma 5.13. If S ⊂ V , 0 6∈ S and S ∩ P 6= ∅, then N (X S) ≥ N (X S\P ) for all rooted nooses with ξN > 0.

Proof. Follows immediately by Lemma 5.12. �

Lemma 5.14. Let ξ be an optimal solution of the Problem (RNP) such that hξ is a roof minor of f . Further, let X̂ be
a binary vector for which gξ (X̂) = 0. Then for any subset S ⊂ V , 0 6∈ S and S ∩ P 6= ∅,

f (X S) > f (X S\P ).

Proof. Follows readily from Lemmas 5.11 and 5.13. �

An easy consequence of Lemma 5.14 is the following claim.

Corollary 5.15. Let ξ be an optimal solution of (RNP) such that hξ is a roof minor of f . Then at any minimum point
X∗ of f we have gξ (X∗) = 0, implying that the optimal values of x∗

i for i ∈ P are uniquely determined. �

Proof of the Persistency Theorem. Let ξ be an arbitrary optimal solution of (RNP), and let ξ ′ be a roof minor. Then
we have P = Pξ ′ ⊇ Pξ according to Remarks 5.5 and 5.8. Let us then consider ξ ′′

=
ξ+ξ ′

2 . Obviously Pξ ′′ = Pξ ′ = P .
Furthermore, by Remark 5.7 we have gξ ′′ ≥

1
2 (gξ+gξ ′). Hence, for the binary vector X with gξ ′′(X) = 0 (the existence

of which follows from the optimality of ξ ′′ for (RNP)), gξ (X) = gξ ′(X) = 0. By Corollary 5.15 and Remark 2.11,
xi = x∗

i , i ∈ P for any minimum point X∗ of f . Therefore gξ (X∗) = 0 follows, too. �

Proof of the Structure Theorem. The statement follows easily from the above results for the ξ -decomposition of f
for which hξ is a roof minor of f , which can be constructed from a maximal flow in N f , as in Lemma 4.4, obtainable
in O(n3) time. �

6. Iterated roof duality

Given a bi-form f , let

f = hξ + gξ + f ′
ξ

be the ξ -decomposition of f for an optimal ξ . The bi-form f ′
ξ is obviously independent of the root 0 of f . Designating

an arbitrary variable of f ′
ξ as the root of it, we can further decompose f ′

ξ . In general, starting with f (0)
= f we shall

write

f (k)
= hξ + gξ + f (k+1)

for some optimal ξ of the (RNP) problem corresponding to f (k), and defining f (k+1)
= f (k)′

ξ .

Clearly, there is a k (≤ n) for which f (k)
= 0. Let us call ρ̂( f ) =

∑k−1
i=0 ρ( f (i)) the iterated roof dual of f .



518 E. Boros et al. / Discrete Optimization 5 (2008) 501–529

Remark 6.1. min f ≥ ρ̂( f ), and ρ̂( f ) can be computed in O(n4) time.

Proof. The above approach constructs a feasible solution for the noose packing problem (NP), which by Theorem 3.1
provides a lower bound to the minimum of f . Furthermore, in every iteration we designate one of the original variables
as the root, and this variable is not involved in subsequent iterations. Thus, there are at most n iterations in the above
procedure, from which the O(n4) time complexity follows by Corollary 4.6. �

Example 6. Returning to the bi-form of Example 1, we can see from Example 5 that after one iteration we have

f (1)
= 5(x1x 2 + x 1x2) + 4(x1x3 + x 1x 3) + 7(x2x 3 + x 2x3).

Here we can declare x1 as the root variable, and then N = [(1, 2), (2, 3), (1, 3)] is the only rooted noose, for which
we have ξN = 4 in the optimal solution, yielding ρ( f (1)) = 4,

gξ = (x1x 2 + x 1x2) + 3(x2x 3 + x 2x3),

and f (2)
= 0. Thus, we have ρ̂(φ) = 5 + 4, i.e., ρ̂( f ) = 9 − 13 = −4, which in this particular case is the true

minimum of f .

Let us remark that the above approach constructs a feasible (and not necessarily optimal) solution for the noose
packing problem (NP), by starting with the roof dual value, by Lemma 3.17, and increasing it iteratively. Thus, by
Remark 3.19 we have

ω(NP) = C3 ≥ ρ̂( f ) ≥ ρ( f ) = ω(RNP).

Let us add finally that in the recent publication [36] a branch-and-bound implementation is reported in which another
efficient heuristic solution for the cycle packing problem (equivalently, for (NP)) is used to provide the bounds.

7. Computational experiments

We have carried out extensive computational experimentation of the proposed techniques using several benchmark
problems available in the literature. Let us note that the maximization and the minimization of quadratic pseudo-
Boolean functions are equivalent problems, since minimizing f is equivalent with maximizing − f . Thus, the
presented results can be applied directly to maximization problems, as well. Following the literature, we also present
our computational results in the context of maximization.

In order to compare the quality and the computing times obtained with our implementations of the roof dual and
the iterated roof dual algorithms, we used the SemiDefinite Relaxation, or SDR (see Goemans and Williamson [22]).
There are many publicly available semidefinite solvers on the Internet. Each solver has strengths and weaknesses,
which are very much dependent on the type and size of the problem to be solved. There is no solver which clearly
dominates the others in all aspects, e.g. robustness, memory management, or solution speed (see [40]). We have used
the following solvers that have been proposed to solve SemiDefinite Programs, or SDPs:

SDPA – SDPA is a software package for solving SDPs (see e.g. [19]). It is an implementation of a Mehrotra-type
primal-dual predictor-corrector interior-point method. The Windows version 6.2.1 of SPDA was used in this
study.

DSDP – DSDP is a software implementation of the dual interior-point method for SDP (see e.g. [5]). It provides
primal and dual solutions, exploits low-rank structure and sparsity in the data, and has relatively low memory
requirements for an interior-point method. The version 5.8 of DSDP was used in this study.

SBM – SBM is a software implementation of the spectral bundle method (see e.g. [30,31]), for minimizing the
maximum eigenvalue of an affine matrix function (real and symmetric). The code is suited for large scale
problems. It allows us to exploit structural properties of the matrices such as sparsity and low-rank structure.
The version 1.1.3 of SBM was considered in this study.

We did not have a special preference for selecting any of the above methods. Our goal was to cover
a variety of SDR solution methods, e.g. by using a robust method that handles small and medium sized
problems (like SPDA), by using a method that handles larger problems with a sparse structure (like DSDP),
and by adopting a method (like SBM) that is quicker than the others (although this speedup is achieved at the price of
obtaining an approximate solution to SDR).
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Table 1
Characteristics of computer systems used for testing the algorithms

Computer systems I II III

CPU Intel Pentium 4 Xeon Intel Pentium 4
Clock speed 2.8 GHz 3.06 GHz 3.6 GHz
Hyper-Threading? yes no yes
RAM 512 MB 3.5 GB 2 GB
Cache L2 512 KB L2 512 KB L2 1 MB
Operating system Wind. XPa Linuxb Wind. XPa

Algorithms tested RDA, IRDA, SDPA DSDP, SBM XPRESS

a Microsoft Windows XP Professional version 5.1.2600 (service pack 2).
b Fedora Core Linux 2.6.9-1.667smp i686.

Finally, we should mention that for a restricted number of problems we have added computational experience also
for the case when the C3 bound was used (see end of Section 3). Other than by using linear programming, we are
unaware of any other approach that could provide C3 in polynomial time. Since solving these large LP problems is
time and memory consuming, we computed this bound only for one family of problems.

The method used to solve the LPs is the Newton–Barrier algorithm that comes with Xpress-MP 2005B (release
16.10.02). The presolve and the crossover was turned off in all runs. We use XPRESS in the text to identify the results
returned by this particular LP solver, with the options previously mentioned.

The Roof Dual and the Iterated Roof Dual Algorithms (respectively called RDA and IRDA hereafter) were
implemented in C++, compiled using the Microsoft Windows 32 bit C/C++ Optimizing Compiler (version 12)
for 80 × 86, and linked with the Microsoft Incremental Linker (version 6) using the single-threaded run-time library.

Three computer systems were used for testing. The decision to use these many computers and not one, is related
to licensing requirements, operating system restrictions, and amount of physical memory available. Table 1 shows the
main characteristics of each system, and also shows which algorithm(s) were tested in each one of them. The three
platforms are comparable in terms of speed with a maximum speedup smaller than two, between the fastest (Computer
III) and the slowest machine (Computer I).

7.1. MAX-CUT

In this study we included the analysis of two large groups of problems, one involving maximum-cut problems
(or MAX-CUT in short) on graphs (known to be equivalent to quadratic unconstrained binary maximization
problems [11]), and another using randomly generated quadratic binary optimization problems proposed by Glover
et al. [21] and Beasley [4].

The families of graphs used in the MAX-CUT experiments are listed below, along with their original references,
and their brief descriptions:

Gn,d – Random graphs proposed by Kim and Moon [35]. Each graph has n vertices (n being 500 or 1000), and an
edge is placed between two vertices with probability p, independently of other edges. The probability p is
chosen so that the expected vertex degree is d = p (n − 1).

Un,d – Random geometric graphs proposed by Kim and Moon [35]. Each graph has n vertices (n being 500 or 1000)
that lie in the unit square and whose coordinates are chosen uniformly from the unit interval. There is an edge
between two vertices if their Euclidean distance is t , which results in an expected vertex degree of d = nπ t2.

Rn – Sparse random graphs proposed by Homer and Peinado [32]. Each graph has an edge probability of 10/n,
and the number of vertices n varies from 1000 to 8000. These graphs belong to the random graph class C in
Goemans and Williamson [22].

via – Graphs provided by Homer and Peinado [32], derived from layer assignment problems in the design process
for VLSI chips. Each edge has a coefficient associated to it, some of them being negative.

sg3dlL – 3D-toroidal graphs proposed by Burer, Monteiro and Zhang [17], consisting of thirty cubic lattices having
randomly generated ±1 interaction magnitudes. Each graph has a side length L , has n = L3 vertices and 3n
edges. There are ten graphs for each value of the side length L , which are the values 5, 10 and 14.
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torus – 3D-toroidal graphs originated from the Ising model of spin glasses in physics. They were taken from
the DIMACS library of mixed semidefinite-quadratic-linear programs1 (see also [40]). Two graphs have
±1 interaction magnitudes, whereas the other two graphs have interactions determined by a Gaussian
distribution.

The first experiments concerned the finding of upper bounds for MAX-CUT in the 16 graphs of Kim et al. [35].
The results are shown in Table 4(a) and (b) in the Appendix. The tables show that in almost all these 16 cases the
upper bound given by the semidefinite relaxation was slightly better (on the average 7.1% lower) than that given by
the iterated roof dual, and better than (on the average 27% lower) the roof dual bound. The difference in the quality
of the bounds was amply compensated by the computing times needed to find them. Indeed, on the average, the time
needed by DSDP (the most efficient of the three implementations of semidefinite relaxations) was of 18.5 s, while that
needed by the iterated roof dual algorithm was of only 1.5 s, and that needed by the roof dual algorithm was of 0.01 s.

Turning now to the MAX-CUT problem for the graphs of Homer and Peinado [32] (see Table 5(a) and (b) in
the Appendix) we notice that the comparative values of roof dual-based versus semidefinite-relaxation-based upper
bounds differ substantially between the group R of random graphs, and the group of via graphs coming from VLSI
design. For the group R, the upper bounds of SDR are 21.1% better than those of roof duality, and 8.1% better than
those coming from iterated roof duality. The situation of the via graphs is quite different, since the three upper bounds
are quite comparable within this group. More precisely, the upper bounds of SDR are only 1.7% better than those of
roof duality, but the upper bounds of iterated roof duality are 0.5% better than those of SDR. As far as computing
times go the average time needed by SBM (the most efficient of the three implementations of SDR for the group of
R graphs) was of 477.4 s, while for RDA the average time is 0.02 s and for IRDA it is of 35.8 s. For the group of via
graphs, the average time needed by DSDP (the most efficient of the three implementations of SDR for this group) was
of 42 s, while for RDA the average time is 0.03 s and for IRDA it is of 0.13 s.

The next group of MAX-CUT problems concerns cubic lattice graphs (similar in structure to the graphs appearing
in Ising problems) of Burer et al. [17] (see Table 6(a) and (b) in the Appendix). It can be seen that for these graphs,
the upper bound given by the iterated roof dual is 1.4% better than that given by SDR, while the SDR bound is 31.5%
better than that given by the roof dual bound. It is interesting to note that the computing time required by SBM (the
most efficient of the three implementations of SDR for the cubic lattices) for finding the upper bound associated to an
average graph in the family was of 42.7 s, while that of IRDA was of 2.7 s, and that of RDA was less than 0.01 s.

The last group of MAX-CUT problems examined are associated to torus graphs (having also a similar structure
to that of the graphs appearing in Ising problems) proposed at the 7th DIMACS Implementation Challenge
on Semidefinite Programming, which are frequently used as benchmarks in computational studies concerning
semidefinite programming (e.g. [16,17,29,40]; see Table 7(a) and (b) in the Appendix). For these graphs, the upper
bound given by the iterated roof dual bound is 1.4% better than that given by SDR, which in its turn is 26.9%
better than that given by roof duality. The average computing time required by SBM (the most efficient of the three
implementations of SDR for the torus graphs) is 115.7 s, while that required by IRDA is of 4.5 s, and that required by
RDA is of about 0.01 s.

In summary (see Table 2(a) and (b)), the upper bounds for MAX-CUT examined in this study present the following
characteristics:

• In the case of G, U and R graphs the best bounds are obtained by SDR;
• In the case of via, sg3dl and torus graphs the best bounds are obtained by IRDA;
• The shortest computing times are those of RDA, followed by those of IRDA. The average computing time per

graph is of 92.3 s for SDP (the fastest implementation of the considered semidefinite programs), 6.0 s for IRDA,
and about 0.014 s for RDA.

7.2. Randomly generated quadratic binary optimization problems

The second group of problems includes standard randomly generated families of problems, having a constant
density (i.e., proportion of coefficients with value zero) and having all non-zero coefficients from a closed interval.
The following two families were considered:

1 The DIMACS library of mixed semidefinite-quadratic-linear programs: http://dimacs.rutgers.edu/Challenges/Seventh/Instances/.

http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
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Table 2
Bounding MAX-CUT

(a) Average relative gap (g) to the largest known cut (z)

Family Number of problems SDR gap (g = 1 − ς/z) (%) Roof dual gap (g = 1 − ρ/z) (%) Iter. roof dual gap (g = 1 − ρ̂/z) (%)

G graphs 8 5.68 28.79 11.04

U graphs 8 2.64 56.28 13.24

R graphs 8 7.31 36.01 16.72

via graphs 10 0.53 2.32 0.02

sg3dl
graphs

30 14.86 67.65 13.27

torus graphs 4 12.47 54.26 10.88

(b) Average computing times

Family Best Roof dual algorithms

SDPb (s) RDAa (s) IRDAa (s)

G graphs 23.2 <0.01 0.9

U graphs 13.8 <0.01 2.2

R graphs 477.4 <0.02 35.8

via graphs 42.0 <0.03 0.1

sg3dl graphs 42.7 <0.01 2.7

torus graphs 115.7 <0.01 4.5

a Computed on computer system I.
b Computed on computer system II.

D – A set of 10 QUBO problems proposed by Glover et al. [21] having 100 variables per problem, and densities
varying from 10% to 100% in steps of 10%.

O RL – A set of 60 QUBO test problems (n = 50, 100, 250, 500, 1000, 2500; 10 problems for each value of n)
proposed by Beasley [4]. These problems have been randomly generated with constant characteristics (10%
density; all linear and quadratic coefficients being integers, uniformly drawn respectively from [−100, +100]
and [−200, +200]). The problems with 50 variables turned out to be all solved to optimality by applying
iterated roof duality (and in most cases even by applying roof duality). Therefore, these problems have been
eliminated from the study. The best known solutions (i.e. lower bounds on the maximum) for the remaining
problems were collected from the following other studies [4,34,39,42].

We present in Table 8(a) in the Appendix the maximum values of some randomly generated quadratic functions
with binary variables, along with the values of four upper bounds to the maximum (SDR, RDA, IRDA and C3),
expressed as percentages of the values of the corresponding exact maxima. It can be seen that the best bounds for
problems with densities of at most 40% were provided by the cubic dual (averaging 2.2% over the maximum), while
for problems having densities of 50% or higher the best upper bounds were given by SDR (averaging 7.6% above
the maximum). On the other hand, the best computing times (see Table 8(b) in the Appendix) were achieved by
RDA (averaging less than 0.01 s) and IRDA (averaging less than 0.2 s). It follows that for problems which have low
densities, the most efficient methods may be those based on roof duality. It is worth noting that numerous problem
classes (e.g., minimum vertex covers of planar graphs or power-law graphs, MAX-CUT of Ising problems) belong to
this category.

In Table 9 in the Appendix we present three upper bounds obtained by SDR, roof duality and iterated roof duality
for the 10% dense quadratic unconstrained binary optimization problems of Beasley [4] having up to 2500 variables.
It can be seen that for the “small” problems, i.e. those with 100 variables, the bounds given by IRDA are the best
among the three upper bounds considered; the average gap between IRDA and the true maximum of the function is of
3.3% (see Table 3(a)). However, for problems having 250 or more variables the best bounds are those given by SDR;
the average gap between SDR and the best known solution (representing a lower bound to the maximum) is of 8.9%.
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Table 3
10% dense quadratic unconstrained binary optimization problems (Beasley [4])

(a) Average relative gap (g) to the best known lower bound (z)

Family Variables (n) SDR gap
(

g =
ς−z

z

)
(%) Roof dual gap

(
g =

ρ−z
z

)
(%) Iter. roof dual gap

(
g =

ρ̂−z
z

)
(%)

ORL-100 100 6.3 15.3 3.3

ORL-250 250 7.6 78.1 18.5

ORL-500 500 9.0 150.6 41.6

ORL-1000 1000 9.5 248.8 73.0

ORL-2500 2500 9.4 430.4 129.1

(b) Average computing times

Family Semidefinite programs Roof dual algorithms

DSDPb (s) SBMb (s) SDPAa (s) RDAa (s) IRDAa (s)

ORL-100 0.21 2.55 1.01 <0.005 0.01

ORL-250 2.20 28.88 14.98 0.02 0.24

ORL-500 24.97 115.56 131.21 0.05 2.38

ORL-1000 269.29 673.49 1096.21 0.20 21.47

ORL-2500 8385.05 107 623.67d n/ac 1.49 416.78

a Computed on computer system I.
b Computed on computer system II.
c Memory exceeded for all problems with 2 500 variables.
d Computing time found for the first problem only.

As in the previous cases the computing times of the different methods follow a clear pattern. The average time needed
by DSDP (the fastest of the three SRD procedures; see Table 3(b)) is of 1736.3 s. For the same problems, the average
time required by RDA is of 0.4 s, and by IRDA is of 88.2 s.

8. Conclusions

The above results demonstrate that the iterated roof dual bound can be computed very efficiently with the proposed
IRDA implementation. The computing time of this bound is much faster than the computation of semidefinite bounds
or the cubic dual. We can also see that the quality of the iterated roof dual bound is highly competitive with other
approaches. In particular, for sparse problems, which are quite frequent in applications, these bounds are superior to
all other methods we tested, and can be computed on average 20–50 times faster than those. We can also see that
the cubic dual bound is the best on a larger range of mostly sparser problems, however its time complexity makes its
application impractical for larger problems.

Let us also add that by using a branch-and-bound implementation, which uses the iterated roof dual as a bounding
procedure, we found optimal solutions for several of the benchmark problems. For instance, in a very small computing
time this implementation found the MAX-CUT value of problem G500.2.5, the optimal MAX-CUT values of all via
graphs, the optimal values of all problems with 100 variables from the ORL, and the optimal solutions of the group D
of problems up to 40% density.

We are currently working on designing an optimal family of techniques for various combinatorial optimization
problems (e.g. graph stability, maximum clique) using roof duality-based algorithms coupled with branching
techniques. In spite of the fact that the bounds given by semidefinite relaxation are of high quality, the time and
memory requirements of the roof duality-based methods being substantially smaller, assure the practical applicability
of this latter group of methods, and guarantee their high efficiency. Moreover, in view of the typical sparsity of real
life quadratic unconstrained binary optimization problems, the use of roof duality-based methods is both effective and
efficient (see [13]).
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Appendix

See Tables 4–9.

Table 4
MAX-CUT (Kim et al. [35])

(a) Upper bounds

Family Problem name Vert. (n) Edges MAX-CUT Upper bounds to the maximum

Semidefinite relaxation Roof dual (ρ) Iter. roof dual (ρ̂)

Gn,d G500.2.5 500 625 574 598.15 620.5 590.50
G500.05 1223 ≥1008 1 070.06 1 217.0 1 086.00
G500.10 2355 ≥1735 1 847.97 2 346.0 1 960.64
G500.20 5120 ≥3390 3 566.74 5 103.0 4 006.70

G1000.2.5 1000 1272 ≥1173 1 223.01 1 268.5 1 212.91
G1000.05 2496 ≥2053 2 191.80 2 490.5 2 232.66
G1000.10 5064 ≥3705 3 954.67 5 052.5 4 245.18
G1000.20 10 107 ≥6729 7 105.60 10 090.0 8 059.02

Un,d U500.05 500 1282 900 922.42 1 274.0 962.00
U500.10 2355 ≥1 546 1 587.86 2 345.0 1 716.09
U500.20 4549 ≥2 783 2 864.27 4 534.0 3 229.47
U500.40 8793 ≥5 181 5 303.45 8 765.0 6 164.78

U1000.05 1000 2394 ≥1 711 1 752.76 2 388.5 1 830.25
U1000.10 4696 ≥3 073 3 158.95 4 686.5 3 424.81
U1000.20 9339 ≥5 737 5 890.78 9 319.5 6 617.69
U1000.40 18 015 ≥10 560 10 851.01 17 986.0 12 593.03

(b) Computing times

Problem Semidefinite programs Roof dual algorithms

DSDPb (s) SBMb (s) SDPAa (s) RDAa (s) IRDAa (s)

G500.2.5 3.35 1279.20 85.84 <0.005 0.05
G500.05 3.72 70.67 105.98 <0.005 0.09
G500.10 4.80 4.28 104.16 <0.005 0.31
G500.20 8.54 4.64 106.08 <0.005 0.84

G1000.2.5 17.85 4056.78 694.05 <0.005 0.23
G1000.05 29.56 138.02 843.69 <0.005 0.53
G1000.10 47.80 11.37 871.16 <0.005 1.47
G1000.20 69.98 15.00 826.34 0.02 3.36

U500.05 3.71 2179.61 2179.61 <0.005 0.17
U500.10 3.15 52.15 107.58 <0.005 0.38
U500.20 3.74 6.32 111.56 <0.005 0.89
U500.40 4.41 3.85 106.80 <0.005 1.81

U1000.05 21.96 3596.08 794.62 <0.005 0.82
U1000.10 20.79 403.90 837.03 <0.005 1.88
U1000.20 22.87 22.24 871.67 <0.005 3.91
U1000.40 29.90 13.87 941.30 0.02 7.66

a Computed on computer system I.
b Computed on computer system II.
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Table 5
MAX-CUT (Homer and Peinado [32])

(a) Upper bounds

Family Problem name Vertices (n) Edges MAX-CUT Upper bounds to the maximum

Semidefinite relaxation Roof dual (ρ) Iter. roof dual (ρ̂)

R R1000 1000 5 033 ≥3 687 3 934.5 5 021.5 4 220.96

R2000 2000 9 943 ≥7 308 7 820.0 9 932.5 8 454.98

R3000 3000 14 965 ≥10 997 11 790.6 14 953.5 12 800.36

R4000 4000 19 939 ≥14 684 15 729.2 19 927.0 17 118.74

R5000 5000 24 794 ≥18 225 19 587.1 24 783.0 21 362.02

R6000 6000 29 862 ≥21 937 23 602.7 29 849.0 25 798.04

R7000 7000 35 110 ≥25 763 27 730.6 35 097.0 30 363.51

R8000 8000 39 642 ≥29 140 31 382.1 39 629.5 34 375.45

via via.c1n 828 1 389 6 150 6 182.42 6 339.0 6 150.00

via.c2n 980 1 712 7 098 7 117.75 7 473.0 7 098.00

via.c3n 1327 2 393 6 898 6 943.72 7 282.0 6 906.25

via.c4n 1366 2 539 10 098 10 110.59 10 437.0 10 098.00

via.c5n 1202 2 129 7 956 8 003.15 8 427.0 7 962.00

via.c1y 829 1 693 7 746 7 795.87 7 746.0 7 746.00

via.c2y 981 2 039 8 226 8 276.36 8 226.0 8 226.00

via.c3y 1328 2 757 9 502 9 572.56 9 502.0 9 502.00

via.c4y 1367 2 848 12 516 12 556.58 12 516.0 12 516.00

via.c5y 1203 2 452 10 248 10 327.99 10 248.0 10 248.00

(b) Computing times

Problem Semidefinite programs Roof dual algorithms

DSDPb (s) SBMb (s) SDPAa (s) RDAa (s) IRDAa (s)

R1000 43.15 13.09 815.81 0.02 1.47

R2000 389.74 55.28 8053.94 0.02 5.75

R3000 8 751.11 102.93 n/ac 0.02 13.00

R4000 2 492.46 244.18 n/ac 0.02 22.74

R5000 4 625.69 352.35 n/ac 0.02 35.59

R6000 9 055.98 472.75 n/ac 0.03 50.50

R7000 13 566.78 1725.05 n/ac 0.03 69.23

R8000 18 212.75 853.85 n/ac 0.05 87.92

via.c1n 14.23 92.94 506.45 0.02 0.09

via.c2n 20.02 133.56 825.53 0.02 0.39

via.c3n 47.97 376.64 2242.39 0.02 0.16

via.c4n 51.55 239.53 2431.20 0.03 0.19

via.c5n 34.69 227.62 1644.06 0.00 0.13

via.c1y 19.97 493.52 576.74 0.03 0.05

via.c2y 28.83 636.06 944.25 0.03 0.05

via.c3y 70.66 2502.97 2363.20 0.05 0.08

via.c4y 77.51 1098.55 2849.97 0.05 0.06

via.c5y 54.55 3716.97 1759.91 0.03 0.06

a Computed on computer system I.
b Computed on computer system II.
c Memory exceeded.
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Table 6
MAX-CUT on cubic lattice graphs (Burer et al. [17])

(a) Upper bounds

Family Problem name Vert. (n) Edges MAX-CUT Upper bounds to the maximum

Semidefinite relaxation Roof dual (ρ) Iter. roof dual (ρ̂)

sg3dl05 sg3dl051000 125 375 110 126.53 185 126.38

sg3dl052000 125 375 112 128.20 185 127.73

sg3dl053000 125 375 106 123.98 185 126.50

sg3dl054000 125 375 114 128.18 185 124.09

sg3dl055000 125 375 112 127.06 185 129.13

sg3dl056000 125 375 110 126.88 185 128.25

sg3dl057000 125 375 112 126.81 185 126.00

sg3dl058000 125 375 108 125.48 185 123.38

sg3dl059000 125 375 110 126.00 185 127.25

sg3dl0510000 125 375 112 127.68 185 124.31

sg3dl10 sg3dl101000 1000 3000 ≥896 1025.91 1497 1001.31

sg3dl102000 1000 3000 ≥900 1036.47 1497 1008.46

sg3dl103000 1000 3000 ≥892 1021.92 1497 1003.93

sg3dl104000 1000 3000 ≥898 1031.34 1497 1011.13

sg3dl105000 1000 3000 ≥886 1021.29 1497 1001.17

sg3dl106000 1000 3000 ≥888 1023.34 1497 1001.66

sg3dl107000 1000 3000 ≥900 1030.06 1497 1014.06

sg3dl108000 1000 3000 ≥882 1023.74 1497 1006.17

sg3dl109000 1000 3000 ≥902 1029.24 1497 1010.40

sg3dl1010000 1000 3000 ≥894 1027.65 1497 1005.20

sg3dl14 sg3dl141000 2744 8232 ≥2446 2816.90 4113 2773.56

sg3dl142000 2744 8232 ≥2458 2825.79 4113 2762.61

sg3dl143000 2744 8232 ≥2442 2815.40 4113 2762.61

sg3dl144000 2744 8232 ≥2450 2817.45 4113 2764.10

sg3dl145000 2744 8232 ≥2446 2809.86 4113 2772.49

sg3dl146000 2744 8232 ≥2450 2822.92 4113 2765.19

sg3dl147000 2744 8232 ≥2444 2813.08 4113 2757.21

sg3dl148000 2744 8232 ≥2446 2818.70 4113 2771.18

sg3dl149000 2744 8232 ≥2424 2793.42 4113 2744.38

sg3dl1410000 2744 8232 ≥2458 2826.35 4113 2763.24

(b) Average computing times

Family Semidefinite programs Roof dual algorithms

DSDPb (s) SBMb (s) SDPAa (s) RDAa (s) IRDAa (s)

sg3dl05 0.19 0.87 1.72 <0.005 0.01

sg3dl10 25.29 14.07 871.23 <0.005 0.91

sg3dl14 431.17 113.09 n/ac 0.01 7.16

a Computed on computer system I.
b Computed on computer system II.
c Memory exceeded.
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Table 7
MAX-CUT for torus graphs (7th DIMACS Implementation Challenge)

(a) Upper bounds

Problem name Vert. (n) Edges MAX-CUT Upper bounds to the maximum
Semidefinite relaxation Roof dual (ρ) Iter. Roof dual (ρ̂)

toruspm3-8-50 512 1 536 ≥458 527.81 765.0 523.05
toruspm3-15-50 3375 10 125 ≥3 016 3 475.13 5 060.0 3 414.49
torusg3-8 512 1 536 41 684 814 45 735 854.8 58 921 474.5 45 100 733.03
torusg3-15 3375 10 125 ≥285 790 637 313 457 107.3 402 667 673.0 308 433472.25

(b) Computing times

Problem Semidefinite programs Roof dual algorithms

DSDPb (s) SBMb (s) SDPAa (s) RDAa (s) IRDAa (s)

toruspm3-8-50 4.16 5.00 114.78 <0.005 0.22
toruspm3-15-50 763.58 226.89 n/ac 0.02 10.92
torusg3-8 8.03 6.35 186.98 <0.005 0.14
torusg3-15 1301.45 224.62 n/ac 0.02 6.70

a Computed on computer system I.
b Computed on computer system II.
c Memory exceeded.

Table 8
100 variable quadratic unconstrained binary optimization (Glover et al. [21])

(a) Upper bounds

Problem name Density (d) (%) Maximum Upper bounds to the maximum

Semidefinite relaxation Roof dual (ρ) Iter. roof dual (ρ̂) Cubic dual

1d 10 6 333 6 592.77 7 063.50 6 424.50 6 333.00
2d 20 6 579 7 234.24 12 297.00 7 791.00 6 709.82
3d 30 9 261 9 962.97 18 053.50 10 875.25 9 374.79
4d 40 10 727 11 592.46 25 156.50 13 425.50 11 321.82
5d 50 11 626 12 632.10 30 732.00 15 538.13 13 044.50
6d 60 14 207 15 235.31 37 334.50 18 041.50 15 664.33
7d 70 14 476 15 671.97 44 171.50 20 614.75 18 340.00
8d 80 16 352 17 353.30 50 239.50 22 723.50 20 625.67
9d 90 15 656 17 010.86 55 130.00 24 109.00 21 753.67
10d 100 19 102 20 421.35 63 830.50 28 370.50 25 951.67

(b) Computing times

Problem Semidefinite programs Roof dual algorithm Cubic dual LP

DSDPb (s) SBMb (s) SDPAa (s) RDAa (s) IRDAa (s) XPRESSc (s)

1d 0.22 1.72 1.03 <0.005 <0.005 118
2d 0.26 2.68 1.06 <0.005 0.02 164
3d 0.23 4.91 1.08 <0.005 0.05 173
4d 0.22 3.16 1.11 <0.005 0.08 143
5d 0.22 4.95 1.17 0.02 0.11 122
6d 0.20 8.90 1.08 <0.005 0.14 74
7d 0.22 6.87 1.17 0.02 0.20 71
8d 0.23 11.19 1.19 0.02 0.25 72
9d 0.23 8.78 1.20 <0.005 0.27 68
10d 0.23 9.35 1.25 <0.005 0.33 69

a Computed on computer system I.
b Computed on computer system II.
c Computed on computer system III.



E. Boros et al. / Discrete Optimization 5 (2008) 501–529 527

Table 9
Upper bounds of 10% dense quadratic unconstrained binary optimization problems (Beasley [4])

Family (n) Problem number Maximum Upper bounds to the maximum

Semidefinite relaxation Roof dual (ρ) Iter. roof dual (ρ̂)

ORL-100 1 7 970 8 721.11 10 160.5 8 725.50
2 11 036 11 704.18 12 285.5 11 245.50
3 12 723 13 336.70 13 664.5 12 864.00
4 10 368 10 927.93 12 099.0 10 656.00

(100) 5 9 083 9 736.93 10 617.0 9 339.50
6 10 210 11 073.07 13 086.5 11 042.00
7 10 125 10 906.86 12 016.5 10 489.00
8 11 435 12 078.48 12 638.0 11 542.06
9 11 455 11 926.97 12 235.0 11 581.00
10 12 565 13 151.28 13 686.0 12 749.00

ORL-250 1 45 607 48 732.37 78 321.0 52 528.63
2 44 810 48 093.50 78 258.5 52 728.61
3 49 037 51 745.40 80 919.0 55 145.06
4 41 274 44 391.58 75 411.0 49 577.34

(250) 5 47 961 50 803.63 79 972.5 54 165.75
6 ≥41 014 44 547.53 78 452.5 50 704.70
7 46 757 49 709.76 80 040.0 54 096.54
8 ≥35 726 40 005.60 72 599.5 46 508.41
9 48 916 52 330.23 81 838.5 56 244.03
10 40 442 44 026.14 75 752.5 49 320.57

ORL-500 1 ≥116 586 128 402.72 308 706.5 171 327.46
2 ≥128 339 138 237.20 309 825.5 175 209.92
3 ≥130 812 140 738.05 317 653.5 181 089.10
4 ≥130 097 141 602.11 315 733.0 180 490.21

(500) 5 ≥125 487 136 578.72 311 891.5 176 444.61
6 ≥121 772 132 960.20 310 139.5 173 953.18
7 ≥122 201 134 273.56 312 285.5 175 700.29
8 ≥123 559 135 438.79 313 878.5 177 959.90
9 ≥120 798 132 615.73 312 183.0 175 938.65
10 ≥130 619 141 076.28 317 514.5 180 860.23

ORL-1000 1 ≥371 438 403 684.0 1256 488.0 627 769.04
2 ≥354 932 390 028.8 1251 578.0 619 465.32
3 ≥371 236 404 445.7 1263 836.0 628 844.76
4 ≥370 675 403 911.4 1269 344.0 633 482.54

(1000) 5 ≥352 760 388 304.0 1260 413.5 622 233.15
6 ≥359 629 392 175.5 1257 474.5 620 005.81
7 ≥371 193 405 621.7 1259 282.5 628 620.56
8 ≥351 994 388 940.6 1253 255.0 620 828.19
9 ≥349 337 385 204.7 1254 976.0 617 834.57
10 ≥351 415 385 664.6 1240 515.5 613 573.00

ORL-2500 1 ≥1515 944 1652 473.3 7886 424.0 3417 034.96
2 ≥1471 392 1614 710.7 7843 106.0 3384 231.31
3 ≥1414 192 1558 172.2 7810 572.5 3354 353.86
4 ≥1507 701 1642 588.4 7860 349.5 3408 753.16

(2500) 5 ≥1491 816 1626 210.5 7858 834.0 3390 133.74
6 ≥1469 162 1608 890.8 7827 394.0 3377 820.75
7 ≥1479 040 1619 037.2 7852 577.0 3386 395.44
8 ≥1484 199 1616 263.5 7831 767.5 3381 058.32
9 ≥1482 413 1622 399.3 7868 242.0 3400 093.17
10 ≥1483 355 1625 693.3 7840 749.5 3392 232.40
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